Search results for: soil collapsibility properties
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 11178

Search results for: soil collapsibility properties

2838 Cardenolides from the Egyptian Cultivar: Acokanthera spectabilis Leaves Inducing Apoptosis through Arresting Hepatocellular Carcinoma Growth at G2/M

Authors: Maha Soltan, Amal Z. Hassan, Howaida I. Abd-Alla, Atef G. Hanna

Abstract:

Two naturally known cardenolides; acovenoside A and acobioside A were isolated from the Egyptian cultivar; Acokanthera spectabilis leaves. It is an ornamental and poisonous plant that has been traditionally claimed for their medicinal properties against infectious microbes, killing worms and curing some inflammations at little amounts. We examined the growth inhibition effects of both cardenolides against four types of human cancer cell lines using Sulphorhodamine B assay. In addition, the clonogenic assay was also performed for testing the growth inhibiting power of the isolated compounds. An in vitro mechanistic investigation was further accomplished against hepatocellular carcinoma HepG2 cell line. Microscopic examination, colorimetric ELISA and flow cytometry techniques were our tools of proving at least part of the anticancer pathway of the tested compounds. Both compounds were able to inhibit the growth of 4 human cancer cell lines at less than 100 nM. In addition, they were able to activate the executioner Caspase-3 and apoptosis was then induced as a consequence of cell growth arrest at G2/M. An attention must be payed to those bioactive agents particularly when giving their activity against cancer cells at considerable small values while presenting safe therapeutic margins as indicated by literature.

Keywords: anticancer, cardenolides, Caspase-3, apoptosis

Procedia PDF Downloads 128
2837 Conformal Noble Metal High-Entropy Alloy Nanofilms by Atomic Layer Deposition for Enhanced Hydrogen Evolution Reaction/Oxygen Evolution Reaction Electrocatalysis Applications

Authors: Jing Lin, Zou Yiming, Goei Ronn, Li Yun, Amanda Ong Jiamin, Alfred Tok Iing Yoong

Abstract:

High-entropy alloy (HEA) coatings comprise multiple (five or more) principal elements that give superior mechanical, electrical, and thermal properties. However, the current synthesis methods of HEA coating still face huge challenges in facile and controllable preparation, as well as conformal integration, which seriously restricts their potential applications. Herein, we report a controllable synthesis of conformal quinary HEA coating consisting of noble metals (Rh, Ru, Ir, Pt, and Pd) by using the atomic layer deposition (ALD) with a post-annealing approach. This approach realizes low temperature (below 200 °C), precise control (nanoscale), and conformal synthesis (over complex substrates) of HEA coating. Furthermore, the resulting quinary HEA coating shows promising potential as a platform for catalysis, exhibiting substantially enhanced electrocatalytic hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) performances as compared to other noble metal-based structures such as single metal coating or multi-layered metal composites.

Keywords: high-entropy alloy, thin-film, catalysis, water splitting, atomic layer deposition

Procedia PDF Downloads 112
2836 Numerical Study of Natural Convection Heat Transfer in a Two-Dimensional Vertical Conical PartiallyAnnular Space

Authors: Belkacem Ould Said, Nourddine Retiel, Abdelilah Benazza, Mohamed Aichouni

Abstract:

In this paper, a numerical study of two-dimensional steady flow has been made of natural convection in a differentially heated vertical conical partially annular space. The heat transfer is assumed to take place by natural convection. The inner and outer surfaces of annulus are maintained at uniform wall temperature. The annulus is filled with air. The CFD FLUENT12.0 code is used to solve the governing equations of mass, momentum and energy using constant properties and the Boussinesq approximation for density variation. The streamlines and the isotherms of the fluid are presented for different annuli with different boundary conditions and Rayleigh numbers. Emphasis is placed on the influences of the height of the inner vertical cone on the flow and the temperature fields. In addition, the effects on the heat transfer are discussed for various values of physical parameters of the fluid and geometric parameters of the annulus. The heat transfer on the hot walls of the annulus is also calculated in order to make comparisons between the cylinder annulus for boundary conditions and several Rayleigh numbers. A good agreement of Nusselt number has been found between the present predictions and reference from the literature data.

Keywords: natural convection, heat transfer, numerical simulation, conical partially, annular space

Procedia PDF Downloads 293
2835 Land Art in Public Spaces Design: Remediation, Prevention of Environmental Risks and Recycling as a Consequence of the Avant-Garde Activity of Landscape Architecture

Authors: Karolina Porada

Abstract:

Over the last 40 years, there has been a trend in landscape architecture which supporters do not perceive the role of pro-ecological or postmodern solutions in the design of public green spaces as an essential goal, shifting their attention to the 'sculptural' shaping of areas with the use of slopes, hills, embankments, and other forms of terrain. This group of designers can be considered avant-garde, which in its activities refers to land art. Initial research shows that such applications are particularly frequent in places of former post-industrial sites and landfills, utilizing materials such as debris and post-mining waste in their construction. Due to the high degradation of the environment surrounding modern man, the brownfields are a challenge and a field of interest for the representatives of landscape architecture avant-garde, who through their projects try to recover lost lands by means of transformations supported by engineering and ecological knowledge to create places where nature can develop again. The analysis of a dozen or so facilities made it possible to come up with an important conclusion: apart from the cultural aspects (including artistic activities), the green areas formally referring to the land are important in the process of remediation of post-industrial sites and waste recycling (e. g. from construction sites). In these processes, there is also a potential for applying the concept of Natural Based Solutions, i.e. solutions allowing for the natural development of the site in such a way as to use it to cope with environmental problems, such as e.g.  air pollution, soil phytoremediation and climate change. The paper presents examples of modern parks, whose compositions are based on shaping the surface of the terrain in a way referring to the land art, at the same time providing an example of brownfields reuse and application of waste recycling.  For the purposes of object analysis, research methods such as historical-interpretation studies, case studies, qualitative research or the method of logical argumentation were used. The obtained results provide information about the role that landscape architecture can have in the process of remediation of degraded areas, at the same time guaranteeing the benefits, such as the shaping of landscapes attractive in terms of visual appearance, low costs of implementation, and improvement of the natural environment quality.

Keywords: brownfields, contemporary parks, landscape architecture, remediation

Procedia PDF Downloads 136
2834 Development of Nanostructrued Hydrogel for Spatial and Temporal Controlled Release of Active Compounds

Authors: Shaker Alsharif, Xavier Banquy

Abstract:

Controlled drug delivery technology represents one of the most rapidly advancing areas of science in which chemists and chemical engineers are contributing to human health care. Such delivery systems provide numerous advantages compared to conventional dosage forms including improved efficacy, and improved patient compliance and convenience. Such systems often use synthetic polymers as carriers for the drugs. As a result, treatments that would not otherwise be possible are now in conventional use. The role of bilayered vesicles as efficient carriers for drugs, vaccines, diagnostic agents and other bioactive agents have led to a rapid advancement in the liposomal drug delivery system. Moreover, the site avoidance and site-specific drug targeting therapy could be achieved by formulating a liposomal product, so as to reduce the cytotoxicity of many potent therapeutic agents. Our project focuses on developing and building hydrogel with nanoinclusion of liposomes loaded with active compounds such as proteins and growth factors able to release them in a controlled fashion. In order to achieve that, we synthesize several liposomes of two different phospholipids concentrations encapsulating model drug. Then, formulating hydrogel with specific mechanical properties embedding the liposomes to manage the release of active compound.

Keywords: controlled release, hydrogel, liposomes, active compounds

Procedia PDF Downloads 435
2833 Effect of Surface-Modification of Indium Tin Oxide Particles on Their Electrical Conductivity

Authors: Y. Kobayashi, T. Kurosaka, K. Yamamura, T. Yonezawa, K. Yamasaki

Abstract:

The present work reports an effect of surface- modification of indium tin oxide (ITO) particles with chemicals on their electronic conductivity properties. Examined chemicals were polyvinyl alcohol (nonionic polymer), poly(diallyl dimethyl ammonium chloride) (cationic polymer), poly(sodium 4-styrene-sulfonate) (anionic polymer), (2-aminopropyl) trimethoxy silane (APMS) (silane coupling agent with amino group), and (3-mercaptopropyl) trimethoxy silane (MPS) (silane coupling agent with thiol group). For all the examined chemicals, volume resistivities of surface-modified ITO particles did not increase much when they were aged in air at 80 oC, compared to a volume resistivity of un-surface-modified ITO particles. Increases in volume resistivities of ITO particles surface-modified with the silane coupling agents were smaller than those with the polymers, since hydrolysis of the silane coupling agents and condensation of generated silanol and OH groups on ITO particles took place to provide efficient immobilization of them on particles. The APMS gave an increase in volume resistivity smaller than the MPS, since a larger solubility in water of APMS providing a larger amount of APMS immobilized on particles.

Keywords: indium tin oxide, particles, surface-modification, volume resistivity

Procedia PDF Downloads 240
2832 Smart Material for Bacterial Detection Based on Polydiacetylene/Polyvinyl Butyrate Fiber Composites

Authors: Pablo Vidal, Misael Martinez, Carlos Hernandez, Ananta R. Adhikari, Luis Materon, Yuanbing Mao, Karen Lozano

Abstract:

Conjugated polymers are smart materials that show tremendous practical applications in diverse subjects. Polydiacetylenes are conjugated polymers with special optical properties. In response to the environmental changes such as pH and molecular binding, it changes its color. Such an interesting chromic and emissive behavior of polydiacetylenes make them a highly popular polymer in wide areas, including biomedicine such as a biosensor. In this research, we used polyvinyl butyrate as a matrix to fibrillate polydiacetylenes. We initially prepared polyvinyl butyrate/diacetylene matrix using forcespinning technique. They were then polymerized to form polyvinyl butyrate/polydiacetylene (PVB/PDA). These matrices then studied for their bio-sensing response to gram-positive and gram-negative bacteria. The sensing ability of the PVB/PDA biosensor was observed as early as 30 min in the presence of bacteria at 37°C. Now our effort is to decrease this effective temperature to room temperature to make this device applicable in the general daily life. These chromic biosensors will find extensive application not only alert the infection but also find other promising applications such as wearable sensors and diagnostic systems.

Keywords: smart material, conjugated polymers, biosensor, polyvinyl butyrate/polydiacetylene

Procedia PDF Downloads 112
2831 The Spatial Analysis of Wetland Ecosystem Services Valuation on Flood Protection in Tone River Basin

Authors: Tingting Song

Abstract:

Wetlands are significant ecosystems that provide a variety of ecosystem services for humans, such as, providing water and food resources, purifying water quality, regulating climate, protecting biodiversity, and providing cultural, recreational, and educational resources. Wetlands also provide benefits, such as reduction of flood, storm damage, and soil erosion. The flood protection ecosystem services of wetlands are often ignored. Due to climate change, the flood caused by extreme weather in recent years occur frequently. Flood has a great impact on people's production and life with more and more economic losses. This study area is in the Tone river basin in the Kanto area, Japan. It is the second-longest river with the largest basin area in Japan, and it is still suffering heavy economic losses from floods. Tone river basin is one of the rivers that provide water for Tokyo and has an important impact on economic activities in Japan. The purpose of this study was to investigate land-use changes of wetlands in the Tone River Basin, and whether there are spatial differences in the value of wetland functions in mitigating economic losses caused by floods. This study analyzed the land-use change of wetland in Tone River, based on the Landsat data from 1980 to 2020. Combined with flood economic loss, wetland area, GDP, population density, and other social-economic data, a geospatial weighted regression model was constructed to analyze the spatial difference of wetland ecosystem service value. Now, flood protection mainly relies on such a hard project of dam and reservoir, but excessive dependence on hard engineering will cause the government huge financial pressure and have a big impact on the ecological environment. However, natural wetlands can also play a role in flood management, at the same time they can also provide diverse ecosystem services. Moreover, the construction and maintenance cost of natural wetlands is lower than that of hard engineering. Although it is not easy to say which is more effective in terms of flood management. When the marginal value of a wetland is greater than the economic loss caused by flood per unit area, it may be considered to rely on the flood storage capacity of the wetland to reduce the impact of the flood. It can promote the sustainable development of wetlands ecosystem. On the other hand, spatial analysis of wetland values can provide a more effective strategy for flood management in the Tone river basin.

Keywords: wetland, geospatial weighted regression, ecosystem services, environment valuation

Procedia PDF Downloads 87
2830 Chemopreventive Potency of Medicinal and Eatable Plant, Gromwell Seed on in Vitro and in Vivo Carcinogenesis Systems

Authors: Harukuni Tokuda, Xu FengHao, Nobutaka Suzuki

Abstract:

As part of an ongoing our projects to investigate the anti-tumor promoring properties (chemopreventive potency) of Gromwell seed, dry powder materials and its active compounds were carried out through useful test systems. Gromwell seed (Coix lachryma-jobi seed) (GS) is a grass crop that has long been used and played a role in traditional medicine as a nourishing food, and for the treatment of various aliments, paticularly cancer. The application of a new screening procedure which utilizes the synergistic effect of short-chain fatty acids and phorbol esters in enable rapid and easy detection of naturally occurring substances(anti-tumor promoters chemo-preventive agents) with inhibition of Epstein-Barr virus(EBV) activation, using human lymphblastoid cells. In addition, we have now extended these investigations to a new tumorigenesis model in which we initiated the tumors with DMBA intiation and promoted with 1.7 nmol of TPA in two-stage mouse skin test and other models. these results provide a basis for further development of these botanical supplements for human cancer chemoprevention and observations seem that this materials more extensively as one of the trials for the purpose of complementary and alternative medicine.

Keywords: chemoprevention, medicinal plant, mouse, carcinogenesis systems

Procedia PDF Downloads 470
2829 Synthesis of Green Silver Nanoparticles with Aqueous Extract of Glycyrrhiza glabra and Its Characterization

Authors: Mandeep Kataria, Ankita Thakur

Abstract:

Glycyrrhiza glabra grows in the sub- tropical and warm temperate regions of the world, in Mediterranean countries and China, America, Europe, Asia and Australia. It grows in areas with sunny, dry and hot climates. It has numerous medicinal properties like it is used to cure Peptic Ulcers, Canker sores, Eczema, Indigestion and Upper Respiratory Infections. Biosynthetic methods such as plant extract have emerged as a simple and viable alternative to more complex chemical synthetic procedures to obtain nanomaterials. Extract from plant may act both as reducing and capping agents in silver nanoparticles synthesis. In the present work, Green Silver nanoparticles were successfully formulated from bioreduction of silver nitrate solutions using Glycyrrhiza glabra root extract. These Green Silver nanoparticles have been appropriately characterized using Visible spectroscopy, colour change. The Antimicrobial activity was done by Agar disc diffusion assay. AgNPs were developed by using aqueous root extract of Glycyrrhiza glabra, which acts as a reducing as well as stabilizing agent. The green synthetic method is a fast, low cost and eco-friendly process in the field of nanotechnology. The study revealed that the green-synthesized silver nanoparticle provides a promising approach for antimicrobial activity.

Keywords: Glycyrrhiza glabra, nanoparticles, antimicrobial activity, aqueous extract

Procedia PDF Downloads 112
2828 Discovery of Two-dimensional Hexagonal MBene HfBO

Authors: Nanxi Miao, Junjie Wang

Abstract:

The discovery of 2D materials with distinct compositions and properties has been a research aim since the report of graphene. One of the latest members of the 2D material family is MXene, which is produced from the topochemical deintercalation of the A layer from a laminate MAX phase. Recently, analogous 2D MBenes (transitional metal borides) have been predicted by theoretical calculations as excellent alternatives in applications such as metal-ion batteries, magnetic devices, and catalysts. However, the practical applications of two-dimensional (2D) transition-metal borides (MBenes) have been severely hindered by the lack of accessible MBenes because of the difficulties in the selective etching of traditional ternary MAB phases with orthorhombic symmetry (ort-MAB). Here, we discover a family of ternary hexagonal MAB (h-MAB) phases and 2D hexagonal MBenes (h-MBenes) by ab initio predictions and experiments. Calculations suggest that the ternary h-MAB phases are more suitable precursors for MBenes than the ort-MAB phases. Based on the prediction, we report the experimental synthesis of h-MBene HfBO by selective removal of in from h-MAB Hf2InB2. The synthesized 2D HfBO delivered a specific capacity of 420 mAh g-1 as an anode material in lithium-ion batteries, demonstrating the potential for energy-storage applications. The discovery of this h-MBene HfBO added a new member to the growing family of 2D materials and provided opportunities for a wide range of novel applications.

Keywords: 2D materials, DFT calculations, high-throughput screening, lithium-ion batteries

Procedia PDF Downloads 48
2827 Study of Nanocrystalline Al Doped Zns Thin Films by Chemical Bath Deposition Method

Authors: Hamid Merzouk, Djahida Touati-Talantikite, Amina Zaabar

Abstract:

New nanosized materials are in huge expansion worldwide. They play a fundamental role in various industrial applications thanks their unique and functional properties. Moreover, in recent years, a great effort has been made to the design and control fabrication of nanostructured semiconductors such zinc sulphide. In recent years, much attention has been accorded in doped and co-doped ZnS to improve the ZnS films quality. We present in this work the preparation and characterization of ZnS and Al doped ZnS thin films. Nanoparticles ZnS and Al doped ZnS films are prepared by chemical bath deposition method (CBD), for various dopant concentrations. Thin films are deposed onto commercial microscope glass slides substrates. Thiourea is used as sulfide ion source, zinc acetate as zinc ion source and manganese acetate as manganese ion source in alkaline bath at 90 °C. X-ray diffraction (XRD) analyses are carried out at room temperature on films and powders with a powder diffractometer, using CuKα radiation. The average grain size obtained from the Debye–Scherrer’s formula is around 10 nm. Films morphology is examined by scanning electron microscopy. IR spectra of representative sample are recorded with the FTIR between 400 and 4000 cm-1.The transmittance (70 %) is performed with the UV–VIS spectrometer in the wavelength range 200–800 nm. This value is enhanced by Al doping.

Keywords: ZnS, nanostructured semiconductors, thin films, chemical bath deposition

Procedia PDF Downloads 513
2826 Responses of Grain Yield, Anthocyanin and Antioxidant Capacity to Water Condition in Wetland and Upland Purple Rice Genotypes

Authors: Supaporn Yamuangmorn, Chanakan Prom-U-Thai

Abstract:

Wetland and upland purple rice are the two major types classified by its original ecotypes in Northern Thailand. Wetland rice is grown under flooded condition from transplanting until the mutuality, while upland rice is naturally grown under well-drained soil known as aerobic cultivations. Both ecotypes can be grown and adapted to the reverse systems but little is known on its responses of grain yield and qualities between the 2 ecotypes. This study evaluated responses of grain yield as well as anthocyanin and antioxidant capacity between the wetland and upland purple rice genotypes grown in the submerged and aerobic conditions. A factorial arrangement in a randomized complete block design (RCBD) with two factors of rice genotype and water condition were carried out in three replications. The two wetland genotypes (Kum Doi Saket: KDK and Kum Phayao: KPY) and two upland genotypes (Kum Hom CMU: KHCMU and Pieisu1: PES1) were used in this study by growing under submerged and aerobic conditions. Grain yield was affected by the interaction between water condition and rice genotype. The wetland genotypes, KDK and KPY grown in the submerged condition produced about 2.7 and 0.8 times higher yield than in the aerobic condition, respectively. The 0.4 times higher grain yield of upland genotype (PES1) was found in the submerged condition than in the aerobic condition, but no significant differences in KHCMU. In the submerged condition, all genotypes produced higher yield components of tiller number, panicle number and percent filled grain than in the aerobic condition by 24% and 32% and 11%, respectively. The thousand grain weight and spikelet number were affected by water condition differently among genotypes. The wetland genotypes, KDK and KPY, and upland genotype, PES1, grown in the submerged condition produced about 19-22% higher grain weight than in the aerobic condition. The similar effect was found in spikelet number which the submerged condition of wetland genotypes, KDK and KPY, and the upland genotype, KHCMU, had about 28-30% higher than the aerobic condition. In contrast, the anthocyanin concentration and antioxidant capacity were affected by both the water condition and genotype. Rice grain grown in the aerobic condition had about 0.9 and 2.6 times higher anthocyanin concentration than in the submerged condition was found in the wetland rice, KDK and upland rice, KHCMU, respectively. Similarly, the antioxidant capacity of wetland rice, KDK and upland rice, KHCMU were 0.5 and 0.6 times higher in aerobic condition than in the submerged condition. There was a negative correlation between grain yield and anthocyanin concentration in wetland genotype KDK and upland genotype KHCMU, but it was not found in the other genotypes. This study indicating that some rice genotype can be adapted in the reverse ecosystem in both grain yield and quality, especially in the wetland genotype KPY and upland genotype PES1. To maximize grain yield and quality of purple rice, proper water management condition is require with a key consideration on difference responses among genotypes. Increasing number of rice genotypes in both ecotypes is needed to confirm their responses on water management.

Keywords: purple rice, water condition, anthocyanin, grain yield

Procedia PDF Downloads 148
2825 Optical Characterization and Surface Morphology of SnO2 Thin Films Prepared by Spin Coating Technique

Authors: J. O. Ajayi, S. S. Oluyamo, D. B. Agunbiade

Abstract:

In this work, tin oxide thin films (SnO2) were prepared using the spin coating technique. The effects of precursor concentration on the thin film properties were investigated. Tin oxide was synthesized from anhydrous Tin (II) Chloride (SnCl2) dispersed in Methanol and Acetic acid. The metallic oxide (SnO2) films deposited were characterized using the UV Spectrophotometer and the Scanning Electron Microscope (SEM). From the absorption spectra, absorption increases with decrease in precursor concentration. Absorbance in the VIS region is lower than 0 % at higher concentration. The optical transmission spectrum shows that transmission increases as the concentration of precursor decreases and the maximum transmission in visible region is about 90% for films prepared with 0.2 M. Also, there is increase in the reflectance of thin films as concentration of precursor increases. The films have high transparency (more than 85%) and low reflectance (less than 40%) in the VIS region. Investigation showed that the direct band gap value increased from 3.79eV, to 3.82eV as the precursor concentration decreased from 0.6 M to 0.2 M. Average direct bandgap energy for all the tin oxide films was estimated to be 3.80eV. The effect of precursor concentration was directly observed in crystal outgrowth and surface particle densification. They were found to increase proportionately with higher concentration.

Keywords: anhydrous TIN (II) chloride, densification, NIS- VIS region, spin coating technique

Procedia PDF Downloads 252
2824 Modeling of Ductile Fracture Using Stress-Modified Critical Strain Criterion for Typical Pressure Vessel Steel

Authors: Carlos Cuenca, Diego Sarzosa

Abstract:

Ductile fracture occurs by the mechanism of void nucleation, void growth and coalescence. Potential sites for initiation are second phase particles or non-metallic inclusions. Modelling of ductile damage at the microscopic level is very difficult and complex task for engineers. Therefore, conservative predictions of ductile failure using simple models are necessary during the design and optimization of critical structures like pressure vessels and pipelines. Nowadays, it is well known that the initiation phase is strongly influenced by the stress triaxiality and plastic deformation at the microscopic level. Thus, a simple model used to study the ductile failure under multiaxial stress condition is the Stress Modified Critical Strain (SMCS) approach. Ductile rupture has been study for a structural steel under different stress triaxiality conditions using the SMCS method. Experimental tests are carried out to characterize the relation between stress triaxiality and equivalent plastic strain by notched round bars. After calibration of the plasticity and damage properties, predictions are made for low constraint bending specimens with and without side grooves. Stress/strain fields evolution are compared between the different geometries. Advantages and disadvantages of the SMCS methodology are discussed.

Keywords: damage, SMSC, SEB, steel, failure

Procedia PDF Downloads 287
2823 An Integrated Geophysical Investigation for Earthen Dam Inspection: A Case Study of Huai Phueng Dam, Udon Thani, Northeastern Thailand

Authors: Noppadol Poomvises, Prateep Pakdeerod, Anchalee Kongsuk

Abstract:

In the middle of September 2017, a tropical storm named ‘DOKSURI’ swept through Udon Thani, Northeastern Thailand. The storm dumped heavy rain for many hours and caused large amount of water flowing into Huai Phueng reservoir. Level of impounding water increased rapidly, and the extra water flowed over a service spillway, morning-glory type constructed by concrete material for about 50 years ago. Subsequently, a sinkhole was formed on the dam crest and five points of water piping were found on downstream slope closely to spillway. Three techniques of geophysical investigation were carried out to inspect cause of failures; Electrical Resistivity Imaging (ERI), Multichannel Analysis of Surface Wave (MASW), and Ground Penetrating Radar (GPR), respectively. Result of ERI clearly shows evidence of overtop event and heterogeneity around spillway that implied possibility of previous shape of sinkhole around the pipe. The shear wave velocity of subsurface soil measured by MASW can numerically convert to undrained shear strength of impervious clay core. Result of GPR clearly reveals partial settlements of freeboard zone at top part of the dam and also shaping new refilled material to plug the sinkhole back to the condition it should be. In addition, the GPR image is a main answer to confirm that there are not any sinkholes in the survey lines, only that found on top of the spillway. Integrity interpretation of the three results together with several evidences observed during a field walk-through and data from drilled holes can be interpreted that there are four main causes in this account. The first cause is too much water flowing over the spillway. Second, the water attacking morning glory spillway creates cracks upon concrete contact where the spillway is cross-cut to the center of the dam. Third, high velocity of water inside the concrete pipe sucking fine particle of embankment material down via those cracks and flushing out to the river channel. Lastly, loss of clay material of the dam into the concrete pipe creates the sinkhole at the crest. However, in case of failure by piping, it is possible that they can be formed both by backward erosion (internal erosion along or into embedded structure of spillway walls) and also by excess saturated water of downstream material.

Keywords: dam inspection, GPR, MASW, resistivity

Procedia PDF Downloads 225
2822 Study of the Formation Mechanism of Dipalmitoylphosphatidylcholine Liposomes and Calcium Ion Complexes

Authors: T. Mdzinarashvili, M. Khvedelidze, E. Shekiladze, S. Chinchaladze, M. Mdzinarashvili

Abstract:

The study of the possible interaction between calcium ions and lipids is of great importance for the studies of complexes of calcium drug-carrying nanoparticles. We prepared calcium-containing complex liposomes from Dipalmitoylphosphatidylcholine (DPPC) lipids and studied their thermodynamic properties. In calorimetric studies, we determined that the phase transition temperature of these complexes is close to 420 C. It was shown that both hydrophobic and hydrophilic connections take part in the formation of calcium nanoparticles. We were interested in hydrophilic bonds represented by hydrogen bonds. We have shown that these hydrogen bonds are formed between the phospholipid heads, and the main contributor is the oxygen atoms in the phosphoric acid residues. In addition, based on the amount of heat absorbed during the breaking of hydrogen bonds formed between calcium-containing nanoparticle complexes, it can be concluded that the hydrogen atoms in the head of DPPC lipids form hydrogen bonds between P=O and P-O groups of phosphate. The energy of heat absorption measured by the calorimeter is of the order obtained by breaking the hydrogen bonds we have specified. Thus, we conclude that our approach to the model of liposome formation from lipids is correct. As for calcium atoms - due to the fact that it is present in the form of positive ions in the liposome, they will connect only with negatively charged phosphorus ions.

Keywords: DPPC, liposomes, calcium, complex nanoparticles

Procedia PDF Downloads 97
2821 An Alternative Nano Design Strategy by Neutralized AMPS and Soy Bean Lecithin to Form Nanoparticles

Authors: Esra Cansever Mutlu, Muge Sennaroglu Bostan, Fatemeh Bahadori, Ebru Toksoy Oner, Mehmet S. Eroglu

Abstract:

Paclitaxel is used in treatment of different cancer types mainly breast, ovarian, lung and Kaposi’s sarcoma. It is poorly soluble in water; therefore, currently used formulations tremendously show side-effects and high toxicity. Encapsulation of the drug in a nano drug carrier which causes both reducing side effects and increasing drug activity is a desired new approach for the nano-medicine to target the site of cancer. In this study, synthesis of a novel nano paclitaxel formulation made of a new amphiphilic monomer was followed by the investigation of its pharmacological properties. UV radical polymerization was carried out by using the monomer Lecithin-2-Acrylamido-2-methylpropane (L-AMPS) and the drug-spacer, to obtain sterically high stabilized, biocompatible and biodegradable phospholipid nanoparticles, in which the drug paclitaxel (Pxl) was encapsulated (NanoPxl). Particles showed high drug loading capacity (68%) and also hydrodynamic size less than 200 nm with slight negative surface charge. The drug release profile was obtained and in vitro cytotoxicity test was performed on MCF-7 cell line. Consequently, these data indicated that paclitaxel loaded Lecithin-AMPS/PCL-MAC nanoparticles can be considered as a new, safe and effective nanocarrier for the treatment of breast cancer.

Keywords: paclitaxel, nanoparticle, drug delivery, L-AMPS

Procedia PDF Downloads 309
2820 Biotransformation of Glycerine Pitch as Renewable Carbon Resource into P(3HB-co-4HB) Biopolymer

Authors: Amirul Al-Ashraf Abdullah, Hema Ramachandran, Iszatty Ismail

Abstract:

Oleochemical industry in Malaysia has been diversifying significantly due to the abundant supply of both palm and kernel oils as raw materials as well as the high demand for downstream products such as fatty acids, fatty alcohols and glycerine. However, environmental awareness is growing rapidly in Malaysia because oleochemical industry is one of the palm-oil based industries that possess risk to the environment. Glycerine pitch is one of the scheduled wastes generated from the fatty acid plants in Malaysia and its discharge may cause a serious environmental problem. Therefore, it is imperative to find alternative applications for this waste glycerine. Consequently, the aim of this research is to explore the application of glycerine pitch as direct fermentation substrate in the biosynthesis of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) [P(3HB-co-4HB)] copolymer, aiming to contribute toward the sustainable production of biopolymer in the world. Utilization of glycerine pitch (10 g/l) together with 1,4-butanediol (5 g/l) had resulted in the achievement of 40 mol% 4HB monomer with the highest PHA concentration of 2.91 g/l. Synthesis of yellow pigment which exhibited antimicrobial properties occurred simultaneously with the production of P(3HB-co-4HB) through the use of glycerine pitch as renewable carbon resource. Utilization of glycerine pitch in the biosynthesis of P(3HB-co-4HB) will not only contribute to reducing society’s dependence on non-renewable resources but also will promote the development of cost efficiency microbial fermentation towards biosustainability and green technology.

Keywords: biopolymer, glycerine pitch, natural pigment, P(3HB-co-4HB)

Procedia PDF Downloads 445
2819 The Study of Natural Synthetic Linalool Isolated from Ginger (Zingiber officinale) Using Photochemical Reactions

Authors: Elgendy M. Eman, Sameeh Y. Manal

Abstract:

Ginger (Zingiber officinale) is so important plant for its medicinal properties from ancient time and used as a spicy herb all over the world. This study was designed to examine the chemical composition of the essential oil and various crude extracts (n-hexane, chloroform and ethanol) of Zingiber officinale as well. GC–MS analyses of the essential oil resulted in the identification of 68 compounds,; 1,8-cineole (8.9%) and linalool (15.1%) were the main components in the essential oil .The crude extracts were analyzed with TLC plates and revealed several spots under UV light; however the hexane extract exhibited the highest number of spots compared to the other extracts. Hexane extract was selected for GC-MS profile, and the results revealed the presence of several volatile compounds and linalool was the major component with high percentage (11.4 %). Further investigation on the structure elucidation of the bioactive compound (linalool) using IR, GC-MS and NMR techniques compared to authenticated linalool then subjected to purification using preparative and column chromatography. Linalool has been epoxidized using m-chloroperbenzoicacid (mcpba) at room temperature in the presence of florescent lamps to give two cyclic oxygenated products (furan epoxide & pyran epoxide) as a stereospecific product.it is concluded that, oxidation process is enhanced by irradiation to form epoxide derivative, which acts as the precursor of important products.

Keywords: epoxide, ginger, irradiation, linalool

Procedia PDF Downloads 285
2818 Nanoenergetic Materials as Effective Heat Energy Sources for Enhanced Gas Generators

Authors: Sang Beom Kim, Kyung Ju Kim, Myung Hoon Cho, Ji Hoon Kim, Soo Hyung Kim

Abstract:

In this study, we systematically investigated the effect of nanoscale energetic materials in formulations of aluminum nanoparticles (Al NPs; heat source)/copper oxide nanoparticles (CuO NPs; oxidizer) on the combustion and gas-generating properties of sodium azide microparticles (NaN3 MPs; gas-generating agent) for potential applications in gas generators. The burn rate of the NaN3 MP/CuO NP composite powder was only ~0.3 m/s. However, the addition of Al NPs to the NaN3 MP/CuO NP matrix caused the rates to reach ~5.3 m/s, respectively. In addition, the N2 gas volume flow rate generated by the ignition of the NaN3 MP/CuO NP composite powder was only ~0.6 L/s, which was significantly increased to ~3.9 L/s by adding Al NPs to the NaN3 MP/CuO NP composite powder. This suggested that the highly reactive NPs, with the assistance of CuO NPs, were effective heat-generating sources enabling the complete thermal decomposition of NaN3 MPs upon ignition. Al NPs were highly effective in the gas generators because of the increased reactivity induced by the reduced particle size. Finally, we successfully demonstrated that a homemade airbag with a specific volume of ~140 mL could be rapidly and fully inflated by the thermal activation of nanoscale energetic material-added gas-generating agents (i.e., NaN3 MP/Al NP/CuO NP composites) within the standard time of ~50 ms for airbag inflation.

Keywords: nanoenergetic materials, aluminum nanoparticles, copper oxide nanoparticles, gas generators

Procedia PDF Downloads 356
2817 Study of Coconut and Babassu Oils with High Acid Content and the Fatty Acids (C6 to C16) Obtained from These Oils

Authors: Flávio A. F. da Ponte, Jackson Q. Malveira, José A. S. Ramos Filho, Monica C. G. Albuquerque

Abstract:

The vegetable oils have many applications in industrial processes and due to this potential have constantly increased the demand for the use of low-quality oils, mainly in the production of biofuel. This work aims to the physicochemical evaluation of babassu oil (Orbinya speciosa) and coconut (Cocos nucifera) of low quality, as well the obtaining the free fatty acids 6 to 16 carbon atoms, with intention to be used as raw material for the biofuels production. The babassu oil and coconut low quality, as well the fatty acids obtained from these oils were characterized as their physicochemical properties and fatty acid composition (using gas chromatography coupled to mass). The NMR technique was used to assess the efficiency of fractional distillation under reduced pressure to obtain the intermediate carbonic chain fatty acids. The results showed that the bad quality in terms of physicochemical evaluation of babassu oils and coconut oils interfere directly in industrial application. However the fatty acids of intermediate carbonic chain (C6 to C16) may be used in cosmetic, pharmaceutical and particularly as the biokerosene fuel. The chromatographic analysis showed that the babassu oil and coconut oil have as major fatty acids are lauric acid (57.5 and 38.6%, respectively), whereas the top phase from distillation of coconut oil showed caprylic acid (39.1%) and major fatty acid.

Keywords: babassu oil (Orbinya speciosa), coconut oil (Cocos nucifera), fatty acids, biomass

Procedia PDF Downloads 306
2816 Residual Dipolar Couplings in NMR Spectroscopy Using Lanthanide Tags

Authors: Elias Akoury

Abstract:

Nuclear Magnetic Resonance (NMR) spectroscopy is an indispensable technique used in structure determination of small and macromolecules to study their physical properties, elucidation of characteristic interactions, dynamics and thermodynamic processes. Quantum mechanics defines the theoretical description of NMR spectroscopy and treatment of the dynamics of nuclear spin systems. The phenomenon of residual dipolar coupling (RDCs) has become a routine tool for accurate structure determination by providing global orientation information of magnetic dipole-dipole interaction vectors within a common reference frame. This offers accessibility of distance-independent angular information and insights to local relaxation. The measurement of RDCs requires an anisotropic orientation medium for the molecules to partially align along the magnetic field. This can be achieved by introduction of liquid crystals or attaching a paramagnetic center. Although anisotropic paramagnetic tags continue to mark achievements in the biomolecular NMR of large proteins, its application in small organic molecules remains unspread. Here, we propose a strategy for the synthesis of a lanthanide tag and the measurement of RDCs in organic molecules using paramagnetic lanthanide complexes.

Keywords: lanthanide tags, NMR spectroscopy, residual dipolar coupling, quantum mechanics of spin dynamics

Procedia PDF Downloads 181
2815 Measure-Valued Solutions to a Class of Nonlinear Parabolic Equations with Degenerate Coercivity and Singular Initial Data

Authors: Flavia Smarrazzo

Abstract:

Initial-boundary value problems for nonlinear parabolic equations having a Radon measure as initial data have been widely investigated, looking for solutions which for positive times take values in some function space. On the other hand, if the diffusivity degenerates too fast at infinity, it is well known that function-valued solutions may not exist, singularities may persist, and it looks very natural to consider solutions which, roughly speaking, for positive times describe an orbit in the space of the finite Radon measures. In this general framework, our purpose is to introduce a concept of measure-valued solution which is consistent with respect to regularizing and smoothing approximations, in order to develop an existence theory which does not depend neither on the level of degeneracy of diffusivity at infinity nor on the choice of the initial measures. In more detail, we prove existence of suitably defined measure-valued solutions to the homogeneous Dirichlet initial-boundary value problem for a class of nonlinear parabolic equations without strong coerciveness. Moreover, we also discuss some qualitative properties of the constructed solutions concerning the evolution of their singular part, including conditions (depending both on the initial data and on the strength of degeneracy) under which the constructed solutions are in fact unction-valued or not.

Keywords: degenerate parabolic equations, measure-valued solutions, Radon measures, young measures

Procedia PDF Downloads 271
2814 TiO2 Nanowires as Efficient Heterogeneous Photocatalysts for Waste-Water Treatment

Authors: Gul Afreen, Sreedevi Upadhyayula, Mahendra K. Sunkara

Abstract:

One-dimensional (1D) nanostructures like nanowires, nanotubes, and nanorods find variety of practical application owing to their unique physico-chemical properties. In this work, TiO2 nanowires were synthesized by direct oxidation of titanium particles in a unique microwave plasma jet reactor. The prepared TiO2 nanowires manifested the flexible features, and were characterized by using X-ray diffraction, Brunauer-Emmett-Teller (BET) surface area analyzer, UV-Visible and FTIR spectrophotometers, Scanning electron microscope, and Transmission electron microscope. Further, the photodegradation efficiency of these nanowires were tested against toxic organic dye like methylene blue (MB) and the results were compared with the commercial TiO2. It was found that TiO2 nanowires exhibited superior photocatalytic performance (89%) as compared to commercial TiO2 (75%) after 60 min of reaction. This is attributed to the lower recombination rate and increased interfacial charge transfer in TiO2 nanowire. Pseudo-first order kinetic modelling performed with the experimental results revealed that the rate constant of photodegradation in case of TiO2 nanowire was 1.3 times higher than that of commercial TiO2. Superoxide radical (O2˙) was found to be the major contributor in the photodegradation mechanism. Based on the trapping experiments, a plausible mechanism of the photocatalytic reaction is discussed.

Keywords: heterogeneous catalysis, photodegradation, reactive oxygen species, TiO₂ nanowires

Procedia PDF Downloads 129
2813 Evaluation of High Damping Rubber Considering Initial History through Dynamic Loading Test and Program Analysis

Authors: Kyeong Hoon Park, Taiji Mazuda

Abstract:

High damping rubber (HDR) bearings are dissipating devices mainly used in seismic isolation systems and have a great damping performance. Although many studies have been conducted on the dynamic model of HDR bearings, few models can reflect phenomena such as dependency of experienced shear strain on initial history. In order to develop a model that can represent the dependency of experienced shear strain of HDR by Mullins effect, dynamic loading test was conducted using HDR specimen. The reaction of HDR was measured by applying a horizontal vibration using a hybrid actuator under a constant vertical load. Dynamic program analysis was also performed after dynamic loading test. The dynamic model applied in program analysis is a bilinear type double-target model. This model is modified from typical bilinear model. This model can express the nonlinear characteristics related to the initial history of HDR bearings. Based on the dynamic loading test and program analysis results, equivalent stiffness and equivalent damping ratio were calculated to evaluate the mechanical properties of HDR and the feasibility of the bilinear type double-target model was examined.

Keywords: base-isolation, bilinear model, high damping rubber, loading test

Procedia PDF Downloads 110
2812 Cocrystals of Etodolac: A Crystal Engineering Approach with an Endeavor to Enhance Its Biopharmaceutical Assets

Authors: Sakshi Tomar, Renu Chadha

Abstract:

Cocrystallization comprises a selective route to the intensive design of pharmaceutical products with desired physiochemical and pharmacokinetic properties. The present study is focused on the preparation, characterization, and evaluation of etodolac (ET) co-crystals with coformers nicotinamide (ETNI) and Glutaric acid (ETGA), using cocrystallization approach. Preliminarily examination of the prepared co-crystal was done by differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FT-IR), powder X-ray diffraction (PXRD). DSC thermographs of ETNI and ETGA cocrystals showed single sharp melting endotherms at 144°C and 135°C, respectively, which were different from the melting of drugs and coformers. FT-IR study points towards carbonyl-acid interaction sandwiched between the involving molecules. The emergence of new peaks in the PXRD pattern confirms the formation of new crystalline solid forms. Both the cocrystals exhibited better apparent solubility, and 3.8-5.0 folds increase in IDR were established, as compared to pure etodolac. Evaluations of these solid forms were done using anti-osteoarthritic activities. All the results indicate that etodolac cocrystals possess better anti-osteoarthritic efficacy than free drug. Thus loom of cocrystallization has been found to be a viable approach to resolve the solubility and bioavailability issues that circumvent the use of potential antiosteoarthritic molecules.

Keywords: bioavailability, etodolac, nicotinamide, osteoarthritis

Procedia PDF Downloads 189
2811 Surface Segregation-Inspired Design for Bimetallic Nanoparticle Catalysts

Authors: Yaxin Tang, Mingao Hou, Qian He, Guangfu Luo

Abstract:

Bimetallic nanoparticles serve as a promising class of catalysts with tunable properties suitable for diverse catalytic reactions, yet a comprehensive understanding of their actual structures under operating conditions and the optimal design principles remains largely elusive. In this study, we unveil a prevalent surface segregation phenomenon in nearly 100 platinum-group-element-based bimetallic nanoparticles through first principles-based molecular dynamics simulations. Our findings highlight that two components in a nanoparticle with relatively lower surface energy tend to segregate to the surface. Motivated by this discovery, we propose a deliberate exploitation of surface segregation in designing bimetallic nanoparticle catalysts, aiming for heightened stability and reduced consumption of precious metals. To validate this strategy, we further investigate 36 platinum-based bimetallic nanoparticles for propane dehydrogenation catalysis. Through a systematic examination of catalytic sites on nanoparticles, we identify several systems as top candidates with Pt-enriched surfaces, remarkable thermal stability, and superior catalytic activity for propane dehydrogenation. The insights gained garnered from this study are anticipated to provide a valuable framework for the optimal design of other bimetallic nanoparticles.

Keywords: bimetallic nanoparticles, platinum-group element, catalysis, surface segregation, first-principles calculations

Procedia PDF Downloads 39
2810 Lipid Nanoparticles for Spironolactone Delivery: Physicochemical Characteristics, Stability and Invitro Release

Authors: H. R. Kelidari, M. Saeedi, J. Akbari, K. Morteza-Semnani, H. Valizadeh

Abstract:

Spironolactoe (SP) a synthetic steroid diuretic is a poorly water-soluble drug with a low and variable oral bioavailability. Regarding to the good solubility of SP in lipid materials, SP loaded Solid lipid nanoparticles (SP-SLNs) and nanostructured lipid carrier (SP-SLNs) were thus prepared in this work for accelerating dissolution of this drug. The SP loaded NLC with stearic acid (SA) as solid lipid and different Oleic Acid (OA) as liquid lipid content and SLN without OA were prepared by probe ultrasonication method. With increasing the percentage of OA from 0 to 30 wt% in SLN/NLC, the average size and zeta potential of nanoparticles felled down and entrapment efficiency (EE %) rose dramatically. The obtained micrograph particles showed pronounced spherical shape. Differential Scanning Calorimeter (DSC) measurements indicated that the presence of OA reduced the melting temperature and melting enthalpy of solid lipid in NLC structure. The results reflected good long-term stability of the nanoparticles and the measurements show that the particle size remains lower in NLC compare to SLN formulations, 6 months after production. Dissolution of SP-SLN and SP-NLC was about 5.1 and 7.2 times faster than raw drugs in 120 min respectively. These results indicated that the SP loaded NLC containing 70:30 solid lipid to liquid lipid ratio is a suitable carrier of SP with improved drug EE and steady drug release properties.

Keywords: drug release, lipid nanoparticles, spironolactone, stability

Procedia PDF Downloads 319
2809 Renewable and Functional Biopolymers Using Green Chemistry

Authors: Aman Ullah

Abstract:

The use of renewable resources in supplementing and/or replacing traditional petrochemical products, through green chemistry, is becoming the focus of research. The utilization of oils can play a primitive role towards sustainable development due to their large scale availability, built-in-functionality, biodegradability and no net CO2 production. Microwaves, being clean, green and environmentally friendly, are emerging as an alternative source for product development. Solvent free conversion of fatty acid methyl esters (FAME's) derived from canola oil and waste cooking oil under microwave irradiation demonstrated dramatically enhanced rates. The microwave-assisted reactions lead to the most valuable terminal olefins with enhanced yields, purities and dramatic shortening of reaction times. Various monomers/chemicals were prepared in high yield in very short time. The complete conversions were observed at temperatures as low as 40 ºC within less than five minutes. The products were characterized by GC-MS, GC-FID and NMR. The monomers were separated and polymerized into different polymers including biopolyesthers, biopolyesters, biopolyamides and biopolyolefins. The polymers were characterized in details for their structural, thermal, mechanical and viscoelastic properties. The ability for complete conversion of oils under solvent free conditions and synthesis of different biopolymers is undoubtedly an attractive concept from both an academic and an industrial point of view.

Keywords: monomers, biopolymers, green chemistry, bioplastics, biomaterials

Procedia PDF Downloads 87