Search results for: microbial spoilage
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 990

Search results for: microbial spoilage

240 Interaction Effects of Dietary Ginger, Zingiber Officinale, on Plasma Protein Fractions in Rainbow Trout, Oncorhynchus Mykiss

Authors: Ali Taheri Mirghaed, Sara Ahani, Ashkan Zargar, Seyyed Morteza Hoseini

Abstract:

Diseases are the major challenges in intensive aquaculture that cause significant annual losses. Antibiotic-therapy is a common way to control bacterial disease in fish, and oxytetracycline (OTC) is the only oral antibiotic in aquaculture approved FDA. OTC has been found to have negative effects on fish, such as oxidative stress and immune-suppression, thus, it is necessary to mitigate such effects. Medicinal herbs have various benefits on fish, including antioxidant, immunostimulant, and anti-microbial effects. Therefore, we hypothesized if dietary ginger meal (GM) interacts with dietary OTC by monitoring plasma protein fractions in rainbow trout. The study was conducted as a 2 × 2 factorial design, including diets containing 0 and 1% GM and 0 and 1.66 % OTC (corresponding to 100 mg/kg fish biomass per day). After ten days treating the fish (60 g individual weight) with these feeds, blood samples were taken from al treatments (n =3). Plasma was separated by centrifugation, and protein fractions were determined by electrophoresis. The results showed that OTC and GM had interaction effects on total protein (P<0.001), albumin (P<0.001), alpha-1 fraction (P=0.010), alpha-2 fraction (P=0.001), beta-2 fraction (P=0.014), and gamma fraction (P<0.001). Beta-1 fraction was significantly (P=0.030) affected by dietary GM. GM decreased plasma total protein, albumin, and beta-2 but increased beta-1 fraction. OTC significantly decreased total protein (P<0.001), albumin (P=0.001), alpha-2 fraction (P<0.001), beta-2 fraction (P=0.004), and gamma fraction (P<0.001) but had no significant effects on alpha-1 and beta-1 fractions. Dietary GM inhibited/suppressed the effects of dietary OTC on the plasma total protein and protein fractions. In conclusion, adding 1% GM to diet can mitigate the negative effects of dietary OTC on plasma proteins. Thus, GM may boost health of rainbow trout during the period of medication with OTC.

Keywords: ginger, plasma protein electrophoresis, dietary additive, rainbow trout

Procedia PDF Downloads 63
239 The Importance of Storage Period on Biogas Potential of Cattle Manure

Authors: Seongwon Im, Jimin Kim, Kyeongcheol Kim, Dong-Hoon Kim

Abstract:

Cattle manure (CM) produced from farmhas been utilized to soils for increasing crop production owing to high nutrients content and effective microorganisms. Some cities with the concentrated activity of livestock industry have suffered from environmental problems, such as odorous gas emissions and soil and water pollution, caused by excessive use of compost. As an alternative option, the anaerobic digestion (AD) process can be utilized, which can reduce the volume of organic waste but also produce energy. According to Korea-Ministry of Trade, Industry, and Energy (KMTIE), the energy potential of CM via biogas production was estimated to be 0.8 million TOE per year, which is higher than that of other organic wastes. However, limited energy is recovered since useful organic matter, capable of converting to biogas, may be degraded during the long storage period (1-6 months).In this study, the effect of storage period on biogas potential of CM was investigated. Compared to fresh CM (VS 14±1 g/L, COD 205±5 g/L, TKN 7.4±0.8 g/L, NH4+-N 1.5±0.1), old CM has higher organic (35-37%) and nitrogen content (50-100%) due to the drying process during storage. After stabilization period, biogas potential of 0.09 L CH4/g VS was obtained in R1 (old CM supplement) at HRT of 150-100 d, and it was decreased further to 0.06 L CH4/g VS at HRT of 80 d. The drop of pH and organic acids accumulation were not observed during the whole operation of R1. Ammonia stripping and pretreatment of CM were found to be not effective to increase CH4 yield. On the other hand, a sudden increase of biogas potential to 0.19-0.22 L CH4/g VS was achieved in R2 after changing feedstock to fresh CM. The expected reason for the low biogas potential of old CM might be related with the composition of organic matters in CM. Easily biodegradable organic matters in the fresh CM were contained in high concentration, butthey were removed by microorganisms during storing CM in a farm, resulting low biogas yield. This study implies that fresh storage is important to make AD process applicable for CM.

Keywords: storage period, cattle manure, biogas potential, microbial analysis

Procedia PDF Downloads 147
238 Phylogenetic Differential Separation of Environmental Samples

Authors: Amber C. W. Vandepoele, Michael A. Marciano

Abstract:

Biological analyses frequently focus on single organisms, however many times, the biological sample consists of more than the target organism; for example, human microbiome research targets bacterial DNA, yet most samples consist largely of human DNA. Therefore, there would be an advantage to removing these contaminating organisms. Conversely, some analyses focus on a single organism but would greatly benefit from the additional information regarding the other organismal components of the sample. Forensic analysis is one such example, wherein most forensic casework, human DNA is targeted; however, it typically exists in complex non-pristine sample substrates such as soil or unclean surfaces. These complex samples are commonly comprised of not just human tissue but also microbial and plant life, where these organisms may help gain more forensically relevant information about a specific location or interaction. This project aims to optimize a ‘phylogenetic’ differential extraction method that will separate mammalian, bacterial and plant cells in a mixed sample. This is accomplished through the use of size exclusion separation, whereby the different cell types are separated through multiple filtrations using 5 μm filters. The components are then lysed via differential enzymatic sensitivities among the cells and extracted with minimal contribution from the preceding component. This extraction method will then allow complex DNA samples to be more easily interpreted through non-targeting sequencing since the data will not be skewed toward the smaller and usually more numerous bacterial DNAs. This research project has demonstrated that this ‘phylogenetic’ differential extraction method successfully separated the epithelial and bacterial cells from each other with minimal cell loss. We will take this one step further, showing that when adding the plant cells into the mixture, they will be separated and extracted from the sample. Research is ongoing, and results are pending.

Keywords: DNA isolation, geolocation, non-human, phylogenetic separation

Procedia PDF Downloads 92
237 Utilization of Extracted Spirogyra sp. Media Fermented by Gluconacetobacter Xylinum for Cellulose Production as Raw Material for Paper Product

Authors: T. S. Desak Ketut, A.n. Isna, A.a. Ayu, D. P. Ririn, Suharjono Hadiatullah

Abstract:

The requirement of paper from year to year rise rapidly. The raising of cellulose requirement in paper production caused increasing of wood requirement with the effect that limited forest areal because of deforestation. Alternative cellulose that can be used for making paper is microbial cellulose. The objective of this research are to know the effectivity fermentation media Spirogyra sp. by Gluconacetobacter xylinum for cellulose production as material for the making of paper and to know effect composition bacterial cellulose composite product of Gluconacetobacter xylinum in Spirogyra sp. The method, was used, is as follow, 1) the effect assay from variation composition of fermentation media to bacterial cellulose production by Gluconacetobacter xylinum. 2) The effect assay of composition bacterial cellulose fermentation producted by Gluconacetobacter xylinum in extracted Spirogyra media to paper quality. The result of this research is variation fermentation media Spirogyra sp. affect to production of cellulose by Gluconacetobacter xylinum. Thus, result showed by the highest value and significantly different in thickness parameter, dry weight and wet weight of nata in sucrose concentration 7,5 % and urea 0,75 %. Composition composite of bacterial cellulose from fermentation product by Gluconacetobacter xylinum in media Spirogyra sp. affect to paper quality from wet nata and dry nata. Parameters thickness, weight, water absorpsion, density and gramatur showed highest result in sucrose concentration 7,5 % and urea concentration 0,75 %, except paper density from dry nata had highest result in sucrose and urea concentration 0%.

Keywords: cellulose, fermentation media, , Gluconacetobacter xylinum, paper, Spirogyra sp.

Procedia PDF Downloads 322
236 Simultaneous Saccharification and Fermentation for D-Lactic Acid Production from Dried Distillers Grains with Solubles

Authors: Nurul Aqilah Mohd Zaini, Afroditi Chatzifragkou, Dimitris Charalampopoulos

Abstract:

D-Lactic acid production is gaining increasing attention due to the thermostable properties of its polymer, Polylactic Acid (PLA). In this study, D-lactic acid was produced in microbial cultures using Lactobacillus coryniformis subsp. torquens as D-lactic acid producer and hydrolysates of Dried Distillers Grains with Solubles (DDGS) as fermentation substrate. Prior to fermentation, DDGS was first alkaline pretreated with 5% (w/v) NaOH, for 15 minutes (121oC/ ~16 psi). This led to the generation of DDGS solid residues, rich in carbohydrates and especially cellulose (~52%). The carbohydrate-rich solids were then subjected to enzymatic hydrolysis with Accellerase® 1500. For Separate Hydrolysis and Fermentation (SHF), enzymatic hydrolysis was carried out at 50oC for 24 hours, followed by fermentation of D-lactic acid at 37oC in controlled pH 6. The obtained hydrolysate contained 24 g/l glucose, 5.4 g/l xylose and 0.6 g/l arabinose. In the case of Simultaneous Saccharification and Fermentation (SSF), hydrolysis and fermentation were conducted in a single step process at 37oC in pH 5. The enzymatic hydrolysis of DGGS pretreated solids took place mostly during lag phase of L. coryniformis fermentation, with only a small amount of glucose consumed during the first 6 h. When exponential phase was started, glucose generation reduced as the microorganism started to consume glucose for D-lactic acid production. Higher concentrations of D-lactic acid were produced when SSF approach was applied, with 28 g/l D-lactic acid after 24 h of fermentation (84.5% yield). In contrast, 21.2 g/l D-lactic acid were produced when SHF was used. The optical pu rity of D-lactic acid produced from both experiments was 99.9%. Besides, approximately 2 g/l acetic acid was also generated due to lactic acid degradation after glucose depletion in SHF. SSF was proved an efficient towards DDGS ulilisation and D-lactic acid production, by reducing the overall processing time, yielding sufficient D-lactic acid concentrations without the generation of fermentation by-products.

Keywords: DDGS, alkaline pretreatment, SSF, D-lactic acid

Procedia PDF Downloads 314
235 A contribution to Phytochemical and Biological Studies of Ailanthus Alitssima Swingle Cultivated in Egypt

Authors: Ahmed Samy Elnoby

Abstract:

Ailanthus altissima native to Asia which belongs to the family Simaroubaceae was subjected to phytochemical screening and biological investigations. Phytochemical screening revealed the presence of carbohydrates, tannins, sterols, flavonoids and traces of saponins. In addition, quantitative determination of phenolics and flavonoid content were performed. The antimicrobial activity of methanolic extract of the leaves was determined against gram-positive, gram-negative bacteria in addition to fungi using a modified Kirby-Bauer disc diffusion method that was compared with standard discs ampicillin which acts as an antibacterial agent and amphotericin B which acts as an antifungal agent. A high potency was observed against gram-positive bacteria mainly staphylococcus aureus, gram-negative bacteria mainly Escherichia coli and showed no potency against fungi mainly Aspergillus flavus and candida albicans. On the other hand, the antioxidant activity of the extract was determined by 1, 1-diphenyl-2- diphenyl-2-picryl-hydrazil (DPPH). A very low potency was shown by using DPPH for the antioxidant effect so IC50 = 0 ug/ml, IC90 =0 ug /ml and remark gave 47.2 % at 100 ug/ml which is very weak. Cytotoxic activity was determined by using MTT assay (3-4, 5-Dimethylthiazol-2-yl)-2, 5-Diphenyltetrazolium Bromide) against MCF7 (Human Caucasian breast adenocarcinoma) cell line. A moderate potency was shown by using MCF7 cell line for cytotoxic effect so LC50= 90.2 ug/ml, LC90=139.9 ug/ml and the remark gave 55.2% at 100 ug/ml which is of moderate activity so, Ailanthus altissima can be considered to be a promising antimicrobial agent from natural origin.

Keywords: Ailanthus altissima, TLC, HPLC, anti-microbial activity, antifungal activity, antioxidant, cytotoxic activity

Procedia PDF Downloads 154
234 Evaluation of Biological Seed Coating Technology On-Field Performance of Wheat in Regenerative Agriculture and Conventional Systems

Authors: S. Brain, P. J. Storer, H. Strydom, Z. M. Solaiman

Abstract:

Increasing farmer awareness of soil health, the impact of agricultural management practices, and the requirement for high-quality agricultural produce are major factors driving the rapid adoption of biological seed treatments - currently valued globally at USD 1.5 billion. Biological seed coatings with multistrain plant beneficial microbial technology have the capability to affect plant establishment, growth, and development positively. These beneficial plant microbes can potentially increase soil health, plant yield, and nutrition – acting as bio fertilisers, rhizoremediators, phytostimulators, and stress modulators, and can ultimately reduce the overall use of agrichemicals. A field trial was conducted on MACE wheat in the central wheat belt of Western Australia to evaluate a proprietary seed coating technology (Langleys Bio-EnergeticTM Microbe blend (BMB)) on a conventional program (+/- BMB microbes) and a Regenerative Biomineral fertiliser program (+/- BMB microbes). The Conventional (+BMB) and Biomineral (+BMB) treated plants had no fungicide treatments and had no disease issues. Control (No fertiliser, No microbes), Conventional (No Microbes), and Biomineral (No Microbes) were treated with fungicides (seed dressing and foliar). From the research findings, compared to control and no microbe treatments, both the Conventional (+ BMB) and Biomineral (+ BMB) showed significant increases in Soil Carbon (SOC), Seed germination, nutrient use efficiency (NUE) of nitrogen, phosphate and mineral nutrients, grain mineral nutrient uptake, protein %, hectolitre weight, and fewer screenings, yield, and gross margins.

Keywords: biological seed coating, biomineral fertiliser, plant nutrition, regenerative and conventional agriculture

Procedia PDF Downloads 55
233 Characterization of the Microorganisms Associated with Pleurotus ostractus and Pleurotus tuber-Regium Spent Mushroom Substrate

Authors: Samuel E. Okere, Anthony E. Ataga

Abstract:

Introduction: The microbial ecology of Pleurotus osteratus and Pleurotus tuber–regium spent mushroom substrate (SMS) were characterized to determine other ways of its utilization. Materials and Methods: The microbiological properties of the spent mushroom substrate were determined using standard methods. This study was carried out at the Microbiology Laboratory University of Port Harcourt, Rivers State, Nigeria. Results: Quantitative microbiological analysis revealed that Pleurotus osteratus spent mushroom substrate (POSMS) contained 7.9x10⁵ and 1.2 x10³ cfu/g of total heterotrophic bacteria and total fungi count respectively while Pleurotus tuber-regium spent mushroom substrate (PTSMS) contained 1.38x10⁶ and 9.0 x10² cfu/g of total heterotrophic bacteria count and total fungi count respectively. The fungi species encountered from Pleurotus tuber-regium spent mushroom substrate (PTSMS) include Aspergillus and Cladosporum species, while Aspergillus and Penicillium species were encountered from Pleurotus osteratus spent mushroom substrate (POSMS). However, the bacteria species encountered from Pleurotus tuber-regium spent mushroom substrate include Bacillus, Acinetobacter, Alcaligenes, Actinobacter, and Pseudomonas species while Bacillus, Actinobacteria, Aeromonas, Lactobacillus and Aerococcus species were encountered from Pleurotus osteratus spent mushroom substrate (POSMS). Conclusion: Therefore based on the findings from this study, it can be concluded that spent mushroom substrate contain microorganisms that can be utilized both in bioremediation of oil-polluted soils as they contain important hydrocarbon utilizing microorganisms such as Penicillium, Aspergillus and Bacillus species and also as sources of plant growth-promoting rhizobacteria (PGPR) such as Pseudomonas and Bacillus species which can induce resistance on plants. However, further studies are recommended, especially to molecularly characterize these microorganisms.

Keywords: characterization, microorganisms, mushroom, spent substrate

Procedia PDF Downloads 138
232 Scalable and Accurate Detection of Pathogens from Whole-Genome Shotgun Sequencing

Authors: Janos Juhasz, Sandor Pongor, Balazs Ligeti

Abstract:

Next-generation sequencing, especially whole genome shotgun sequencing, is becoming a common approach to gain insight into the microbiomes in a culture-independent way, even in clinical practice. It does not only give us information about the species composition of an environmental sample but opens the possibility to detect antimicrobial resistance and novel, or currently unknown, pathogens. Accurately and reliably detecting the microbial strains is a challenging task. Here we present a sensitive approach for detecting pathogens in metagenomics samples with special regard to detecting novel variants of known pathogens. We have developed a pipeline that uses fast, short read aligner programs (i.e., Bowtie2/BWA) and comprehensive nucleotide databases. Taxonomic binning is based on the lowest common ancestor (LCA) principle; each read is assigned to a taxon, covering the most significantly hit taxa. This approach helps in balancing between sensitivity and running time. The program was tested both on experimental and synthetic data. The results implicate that our method performs as good as the state-of-the-art BLAST-based ones, furthermore, in some cases, it even proves to be better, while running two orders magnitude faster. It is sensitive and capable of identifying taxa being present only in small abundance. Moreover, it needs two orders of magnitude less reads to complete the identification than MetaPhLan2 does. We analyzed an experimental anthrax dataset (B. anthracis strain BA104). The majority of the reads (96.50%) was classified as Bacillus anthracis, a small portion, 1.2%, was classified as other species from the Bacillus genus. We demonstrate that the evaluation of high-throughput sequencing data is feasible in a reasonable time with good classification accuracy.

Keywords: metagenomics, taxonomy binning, pathogens, microbiome, B. anthracis

Procedia PDF Downloads 113
231 Interpersonal Variation of Salivary Microbiota Using Denaturing Gradient Gel Electrophoresis

Authors: Manjula Weerasekera, Chris Sissons, Lisa Wong, Sally Anderson, Ann Holmes, Richard Cannon

Abstract:

The aim of this study was to characterize bacterial population and yeasts in saliva by Polymerase chain reaction followed by denaturing gradient gel electrophoresis (PCR-DGGE) and measure yeast levels by culture. PCR-DGGE was performed to identify oral bacteria and yeasts in 24 saliva samples. DNA was extracted and used to generate DNA amplicons of the V2–V3 hypervariable region of the bacterial 16S rDNA gene using PCR. Further universal primers targeting the large subunit rDNA gene (25S-28S) of fungi were used to amplify yeasts present in human saliva. Resulting PCR products were subjected to denaturing gradient gel electrophoresis using Universal mutation detection system. DGGE bands were extracted and sequenced using Sanger method. A potential relationship was evaluated between groups of bacteria identified by cluster analysis of DGGE fingerprints with the yeast levels and with their diversity. Significant interpersonal variation of salivary microbiome was observed. Cluster and principal component analysis of the bacterial DGGE patterns yielded three significant major clusters, and outliers. Seventeen of the 24 (71%) saliva samples were yeast positive going up to 10³ cfu/mL. Predominately, C. albicans, and six other species of yeast were detected. The presence, amount and species of yeast showed no clear relationship to the bacterial clusters. Microbial community in saliva showed a significant variation between individuals. A lack of association between yeasts and the bacterial fingerprints in saliva suggests the significant ecological person-specific independence in highly complex oral biofilm systems under normal oral conditions.

Keywords: bacteria, denaturing gradient gel electrophoresis, oral biofilm, yeasts

Procedia PDF Downloads 201
230 Effect of Fiddler Crab Burrows on Bacterial Communities of Mangrove Sediments

Authors: Mohammad Mokhtari, Gires Usup, Zaidi Che Cob

Abstract:

Bacteria communities as mediators of the biogeochemical process are the main component of the mangrove ecosystems. Crab burrows by increasing oxic-anoxic interfaces and facilitating the flux rate between sediment and tidal water affect biogeochemical properties of sediments. The effect of fiddler crab burrows on the density and diversity of bacteria were investigated to elucidate the effect of burrow on bacterial distribution. Samples collected from the burrow walls of three species of fiddler crabs including Uca paradussumieri, Uca rosea, and Uca forcipata. Sediment properties including grain size, temperature, Redox potential, pH, chlorophyll, water and organic content were measured from the burrow walls to assess the correlation between environmental variables and bacterial communities. Bacteria were enumerated with epifluorescence microscopy after staining with SYBR green. Bacterial DNA extracted from sediment samples and the community profiles of bacteria were determined with Terminal Restriction Fragment Length Polymorphism (T-RFLP). High endemism was observed among bacterial communities. Among the 152 observed OTU’s, 22 were found only in crab burrows. The highest bacterial density and diversity were recorded in burrow wall. The results of ANOSIM indicated a significant difference between the bacterial communities from the three species of fiddler crab burrows. Only 3% of explained bacteria variability in the constrained ordination model of CCA was contributed to depth, while much of the bacteria’s variability was attributed to coarse sand, pH, and chlorophyll content. Our findings suggest that crab burrows by affecting sediment properties such as redox potential, pH, water, and chlorophyll content induce significant effects on the bacterial communities.

Keywords: bioturbation, canonical corresponding analysis, fiddler crab, microbial ecology

Procedia PDF Downloads 138
229 Negative Pressure Wound Therapy in Complex Injuries of the Limbs

Authors: Mihail Nagea, Olivera Lupescu, Nicolae Ciurea, Alexandru Dimitriu, Alina Grosu

Abstract:

Introduction: As severe open injuries are more and more frequent in modern traumatology, threatening not only the integrity of the affected limb but even the life of the patients, new methods desired to cope with the consequences of these traumas were described. Vacuum therapy is one such method which has been described as enhancing healing in trauma with extensive soft-tissue injuries, included those with septic complications. Material and methods: Authors prospectively analyze 15 patients with severe lower limb trauma with MESS less than 6, with considerable soft tissue loss following initial debridement and fracture fixation. The patients needed serial debridements and vacuum therapy was applied after delayed healing due to initial severity of the trauma, for an average period of 12 days (7 - 23 days).In 7 cases vacuum therapy was applied for septic complications. Results: Within the study group, there were no local complications; secondary debridements were performed for all the patients and vacuum system was re-installed after these debridements. No amputations were needed. Medical records were reviewed in order to compare the outcome of the patients: the hospital stay, anti-microbial therapy, time to healing of the bone and soft tissues (there is no standard group to be compared with) and the result showed considerable improvements in the outcome of the patients. Conclusion: Vacuum therapy improves healing of the soft tissues, including those infected; hospital stay and the number of secondary necessary procedures are reduced. Therefore it is considered a valuable support in treating trauma of the limbs with severe soft tissue injuries.

Keywords: complex injuries, negative pressure, open fractures, wound therapy

Procedia PDF Downloads 279
228 Improvement of Resistance Features of Anti- Mic Polyaspartic Coating (DTM) Using Nano Silver Particles by Preventing Biofilm Formation

Authors: Arezoo Assarian, Reza Javaherdashti

Abstract:

Microbiologically influenced corrosion (MIC) is an electrochemical process that can affect both metals and non-metals. The cost of MIC can amount to 40% of the cost of corrosion. MIC is enhanced via factors such as but not limited to the presence of certain bacteria and archaea as well as mechanisms such as external electron transfer. There are five methods by which electrochemical corrosion, including MIC, can be prevented, of which coatings are an effective method due to blinding anode, cathode and, electrolyte from each other. Conventional ordinary coatings may themselves become nutrient sources for the bacteria and therefore show low efficiency in dealing with MIC. Recently our works on polyaspartic coating (DTM) have shown promising results, therefore nominating DTM as the most appropriate coating material to manage both MIC and general electrochemical corrosion very efficiently. Nanosilver particles are known for their antimicrobial properties that make them of desirable distractive impacts on any germs. This coating will be formulated based on Nanosilver phosphate and copper II oxide in the resin network and co-reactant. The nanoparticles are light and heat-sensitive agents. The method which is used to keep nanoparticles in the film coating is the encapsulation of active ingredients. By this method, it will prevent incompatibility between different particles. For producing microcapsules, the interfacial cross-linking method will be used. This is achieved by adding an active ingredient to an aqueous solution of the cross-linkable polymer. In this paper, we will first explain the role of coating materials in controlling and preventing electrochemical corrosion. We will explain MIC and some of its fundamental principles, such as bacteria establishment (biofilm) and the role they play in enhancing corrosion via mechanisms such as the establishment of differential aeration cells. Later we will explain features of DTM coatings that highly contribute to preventing biofilm formation and thus microbial corrosion.

Keywords: biofilm, corrosion, microbiologically influenced corrosion(MIC), nanosilver particles, polyaspartic coating (DTM)

Procedia PDF Downloads 146
227 Degradation of Petroleum Hydrocarbons Using Pseudomonas Aeruginosa Isolated from Oil Contaminated Soil Incorporated into E. coli DH5α Host

Authors: C. S. Jeba Samuel

Abstract:

Soil, especially from oil field has posed a great hazard for terrestrial and marine ecosystems. The traditional treatment of oil contaminated soil cannot degrade the crude oil completely. So far, biodegradation proves to be an efficient method. During biodegradation, crude oil is used as the carbon source and addition of nitrogenous compounds increases the microbial growth, resulting in the effective breakdown of crude oil components to low molecular weight components. The present study was carried out to evaluate the biodegradation of crude oil by hydrocarbon-degrading microorganism Pseudomonas aeruginosa isolated from natural environment like oil contaminated soil. Pseudomonas aeruginosa, an oil degrading microorganism also called as hydrocarbon utilizing microorganism (or “HUM” bug) can utilize crude oil as sole carbon source. In this study, the biodegradation of crude oil was conducted with modified mineral basal salt medium and nitrogen sources so as to increase the degradation. The efficacy of the plasmid from the isolated strain was incorporated into E.coli DH5 α host to speed up the degradation of oil. The usage of molecular techniques has increased oil degradation which was confirmed by the degradation of aromatic and aliphatic rings of hydrocarbons and was inferred by the lesser number of peaks in Fourier Transform Infrared Spectroscopy (FTIR). The gas chromatogram again confirms better degradation by transformed cells by the lesser number of components obtained in the oil treated with transformed cells. This study demonstrated the technical feasibility of using direct inoculation of transformed cells onto the oil contaminated region thereby leading to the achievement of better oil degradation in a shorter time than the degradation caused by the wild strain.

Keywords: biodegradation, aromatic rings, plasmid, hydrocarbon, Fourier Transform Infrared Spectroscopy (FTIR)

Procedia PDF Downloads 346
226 Isolation and Characterisation of Novel Environmental Bacteriophages Which Target the Escherichia coli Lamb Outer Membrane Protein

Authors: Ziyue Zeng

Abstract:

Bacteriophages are viruses which infect bacteria specifically. Over the past decades, phage λ has been extensively studied, especially its interaction with the Escherichia coli LamB (EcLamB) protein receptor. Nonetheless, despite the enormous numbers and near-ubiquity of environmental phages, aside from phage λ, there is a paucity of information on other phages which target EcLamB as a receptor. In this study, to answer the question of whether there are other EcLamB-targeting phages in the natural environment, a simple and convenient method was developed and used for isolating environmental phages which target a particular surface structure of a particular bacterium; in this case, the EcLamB outer membrane protein. From the enrichments with the engineered bacterial hosts, a collection of EcLamB-targeting phages (ΦZZ phages) were easily isolated. Intriguingly, unlike phage λ, an obligate EcLamB-dependent phage in the Siphoviridae family, the newly isolated ΦZZ phages alternatively recognised EcLamB or E. coli OmpC (EcOmpC) as a receptor when infecting E. coli. Furthermore, ΦZZ phages were suggested to represent new species in the Tequatrovirus genus in the Myoviridae family, based on phage morphology and genomic sequences. Most phages are thought to have a narrow host range due to their exquisite specificity in receptor recognition. With the ability to optionally recognise two receptors, ΦZZ phages were considered relatively promiscuous. Via the heterologous expression of EcLamB on the bacterial cell surface, the host range of ΦZZ phages was further extended to three different enterobacterial genera. Besides, an interesting selection of evolved phage mutants with a broader host range was isolated, and the key mutations involved in their evolution to adapt to new hosts were investigated by genomic analysis. Finally, and importantly, two ΦZZ phages were found to be putative generalised transducers, which could be exploited as tools for DNA manipulations.

Keywords: environmental microbiology, phage, microbe-host interactions, microbial ecology

Procedia PDF Downloads 76
225 Evaluation of Entomopathogenic Fungi Strains for Field Persistence and Its Relationship to in Vitro Heat Tolerance

Authors: Mulue Girmay Gebreslasie

Abstract:

Entomopathogenic fungi are naturally safe and eco-friendly biological agents. Their potential of host specificity and ease handling made them appealing options to substitute synthetic pesticides in pest control programs. However, they are highly delicate and unstable under field conditions. Therefore, the current experiment was held to search out persistent fungal strains by defining the relationship between invitro heat tolerance and field persistence. Current results on leaf and soil persistence assay revealed that strains of Metarhizium species, M. pingshaense (F2685), M. pingshaense (MS2) and M. brunneum (F709) exhibit maximum cumulative CFUs count, relative survival rate and least percent of CFUs reductions showed significant difference at 7 days and 28 days post inoculations (dpi) in hot seasons from sampled soils and leaves and in cold season from soil samples. Whereas relative survival of B. brongniartii (TNO6) found significantly higher in cold weather leaf treatment application as compared to hot season and found as persistent as other fungal strains, while higher deterioration of fungal conidia seen with M. pingshaense (MS2). In the current study, strains of Beauveria brongniartii (TNO6) and Cordyceps javanica (Czy-LP) were relatively vulnerable in field condition with utmost colony forming units (CFUs) reduction and least survival rates. Further, the relationship of the two parameters (heat tolerance and field persistence) was seen with strong linear positive correlations elucidated that heat test could be used in selection of field persistent fungal strains for hot season applications.

Keywords: integrated pest management, biopesticides, Insect pathology and microbial control, entomology

Procedia PDF Downloads 64
224 Compost Bioremediation of Oil Refinery Sludge by Using Different Manures in a Laboratory Condition

Authors: O. Ubani, H. I. Atagana, M. S. Thantsha

Abstract:

This study was conducted to measure the reduction in polycyclic aromatic hydrocarbons (PAHs) content in oil sludge by co-composting the sludge with pig, cow, horse and poultry manures under laboratory conditions. Four kilograms of soil spiked with 800 g of oil sludge was co-composted differently with each manure in a ratio of 2:1 (w/w) spiked soil:manure and wood-chips in a ratio of 2:1 (w/v) spiked soil:wood-chips. Control was set up similar as the one above but without manure. Mixtures were incubated for 10 months at room temperature. Compost piles were turned weekly and moisture level was maintained at between 50% and 70%. Moisture level, pH, temperature, CO2 evolution and oxygen consumption were measured monthly and the ash content at the end of experimentation. Bacteria capable of utilizing PAHs were isolated, purified and characterized by molecular techniques using polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE), amplification of the 16S rDNA gene using the specific primers (16S-P1 PCR and 16S-P2 PCR) and the amplicons were sequenced. Extent of reduction of PAHs was measured using automated soxhlet extractor with dichloromethane as the extraction solvent coupled with gas chromatography/mass spectrometry (GC/MS). Temperature did not exceed 27.5O°C in all compost heaps, pH ranged from 5.5 to 7.8 and CO2 evolution was highest in poultry manure at 18.78 µg/dwt/day. Microbial growth and activities were enhanced. Bacteria identified were Bacillus, Arthrobacter and Staphylococcus species. Results from PAH measurements showed reduction between 77 and 99%. The results from the control experiments may be because it was invaded by fungi. Co-composting of spiked soils with animal manures enhanced the reduction in PAHs. Interestingly, all bacteria isolated and identified in this study were present in all treatments, including the control.

Keywords: bioremediation, co-composting, oil refinery sludge, PAHs, bacteria spp, animal manures, molecular techniques

Procedia PDF Downloads 454
223 Assessment of Heavy Metals in Irrigation Water Collected from Various Vegetables Growing Areas of Swat Valley

Authors: Islam Zeb

Abstract:

The water of poor quality used for irrigation purposes has the potential to be the direct source of contamination and a vehicle for spreading contamination in the field. A number of wide-ranging review articles have been published that highlight irrigation water as a source of heavy metals toxicity which leads to chronic diseases in the human body. Here a study was planned to determine the microbial and heavy metals status of irrigation water collected from various locations of district Swat in various months. The analyses were carried out at the Environmental Horticulture Laboratory, Department of Horticulture, The University of Agriculture Peshawar, during the year 2018 – 19. The experiment was laid out in Randomized Complete Block Design (RCBD) with two factors and three replicates. Factor A consist of different locations and factor B represent various months. The result of heavy metals concentration in different regions, maximum Lead, Cadmium, Chromium, Nickel and Copper (4.27, 0.56, 0.81, 1.33 and 1.51 mg L-1 respectively) were noted for the irrigation water samples collected from Mingora while minimum Lead, Cadmium, Chromium, Nickel and Copper concentration (2.59, 0.30, 0.27, 0.40 and 0.54 mg L-1 respectively) were noted for the samples of matta. Whereas results of heavy metals content in irrigation water samples for various months maximum content of Lead, Cadmium, Chromium, Nickel and Copper (4.56, 0.63, 1.15, 1.31 and 1.48 mg L-1 respectively) were noted for the samples collected in Jan/Feb while lowest values for Lead, Cadmium, Chromium, Nickel and Copper (2.38, 0.24, 0.21, 0.41 and 0.52 mg L-1 respectively) were noted in the samples of July/August. A significant interaction was found for all the studied parameters. It was concluded that the concentration of heavy metal was maximum in irrigation water samples collected from the Mingora location during the month of Jan/Feb because Mingora is the most polluted area as compared to other studied regions, whereas the water content in winter goes to freeze and mostly contaminated water is used for irrigation purposes.

Keywords: irrigation water, various months, different regions, heavy metals contamination, Swat

Procedia PDF Downloads 58
222 Achieving Appropriate Use of Antibiotics through Pharmacists’ Intervention at Practice Point: An Indian Study Report

Authors: Parimalakrishnan Sundararjan, Madheswaran Murugan, Dhanya Dharman, Yatindra Kumar, Sudhir Singh Gangwar, Guru Prasad Mohanta

Abstract:

Antibiotic resistance AR is a global issue, India started to redress the issues of antibiotic resistance late and it plans to have: active surveillance of microbial resistance and promote appropriate use of antibiotics. The present study attempted to achieve appropriate use of antibiotics through pharmacists’ intervention at practice point. In a quasi-experimental prospective cohort study, the cases with bacteremia from four hospitals were identified during 2015 and 2016 for intervention. The pharmacists centered intervention: active screening of each prescription and comparing with the selection of antibiotics with susceptibility of the bacteria. Wherever irrationality noticed, it was brought to the notice of the treating physician for making changes. There were two groups: intervention group and control group without intervention. The active screening and intervention in 915 patients has reduced therapeutic regimen time in patients with bacteremia. The intervention group showed the decreased duration of hospital stay 3.4 days from 5.1 days. Further, multivariate modeling of patients who were in control group showed that patients in the intervention group had a significant decrease in both duration of hospital stay and infection-related mortality. Unlike developed countries, pharmacists are not active partners in patient care in India. This unique attempt of pharmacist’ invention was planned in consultation with hospital authorities which proved beneficial in terms of reducing the duration of treatment, hospital stay, and infection-related mortality. This establishes the need for a collaborative decision making among the health workforce in patient care at least for promoting rational use of antibiotics, an attempt to combat resistance.

Keywords: antibiotics resistance, intervention, bacteremia, multivariate modeling

Procedia PDF Downloads 163
221 Bacterial Interactions of Upper Respiratory Tract Microbiota

Authors: Sarah Almuhayya, Andrew Mcbain, Gavin Humphreys

Abstract:

Background. The microbiome of the upper respiratory tract (URT) has received less research attention than other body sites. This study aims to investigate the microbial ecology of the human URT with a focus on the antagonism between the corynebacteria and staphylococci. Methods. Mucosal swabs were collected from the anterior nares and nasal turbinates of 20 healthy adult subjects. Genomic DNA amplification targeting the (V4) of the 16Sr RNA gene was conducted and analyzed using QIIME. Nasal swab isolates were cultured and identified using near full-length sequencing of the 16S rRNA gene. Isolates identified as corynebacteria or staphylococci were typed using (rep-PCR). Antagonism was determined using an agar-based inhibition assay. Results. Four major bacterial phyla (Actinobacteria, Bacteroidetes, Firmicutes, and Proteobacteria) were identified from all volunteers. The typing of cultured staphylococci and corynebacteria suggested that intra-individual strain diversity was limited. Analysis of generated nasal microbiota profiles suggested an inverse correlation in terms of relative abundance between staphylococci and corynebacteria. Despite the apparent antagonism between these genera, it was limited when investigated on agar. Of 1000 pairwise interactions, observable zones of inhibition were only reported between a single strain of C.pseudodiphtheriticum and S.aureus. Imaging under EM revealed this effect to be bactericidal with clear lytic effects on staphylococcal cell morphology. Conclusion. Nasal microbiota is complex, but culturable staphylococci and corynebacteria were limited in terms of clone type. Analysis of generated nasal microbiota profiles suggested an inverse correlation in terms of relative abundance between these genera suggesting an antagonism or competition between these taxonomic groups.

Keywords: nasal, microbiota, S.aureus, microbioal interaction

Procedia PDF Downloads 81
220 A Review on Future of Plant Based Medicine in Treatment of Urolithiatic Disorder

Authors: Gopal Lamichhane, Biswash Sapkota, Grinsun Sharma, Mahendra Adhikari

Abstract:

Urolithiasis is a condition in which insoluble or less soluble salts like oxalate, phosphate etc. precipitate in urinary tract and causes obstruction in ureter resulting renal colic or sometimes haematuria. It is the third most common disorder of urinary tract affecting nearly 2% of world’s population. Poor urinary drainage, microbial infection, oxalate and calcium containing diet, calciferol, hyperparathyroidism, cysteine in urine, gout, dysfunction of intestine, drought environment, lifestyle, exercise, stress etc. are risk factors for urolithiasis. Wide ranges of treatments are available in allopathic system of medicine but reoccurrence is unpreventable even with the surgical removal of stone or lithotripsy. So, people prefer alternative medicinal systems such as Unani, homeopathic, ayurvedic etc. systems of medicine due to their fewer side effects over allopathic counterpart. Different plants based ethnomedicines are being well established by their continuous effective use in human since long time in treatment of urinary problem. Many studies have scientifically proved those ethnomedicines for antiurolithiatic effect in animal and in vitro model. Plant-based remedies were found to be therapeutically effective for both prevention as well as cure of calcium oxalate urolithiasis. Plants were known to show these effects through a combination of many effects such as antioxidant, diuretic, hypocalciuric, urine alkalinizing effect in them. Berberine, triterpenoids, lupeol are the phytochemicals established for antiurolithiatic effect. Hence, plant-based medicine can be the effective herbal alternative as well as means of discovery of novel drug molecule for curing urolithiatic disorder and should be focused on further research to discover their value in coming future.

Keywords: urolithiasis, herbal medicine, ethnomedicine, kidney stone, calcium oxalate

Procedia PDF Downloads 252
219 Isolation and Characterization of an Ethanol Resistant Bacterium from Sap of Saccharum officinarum for Efficient Fermentation

Authors: Rukshika S Hewawasam, Sisira K. Weliwegamage, Sanath Rajapakse, Subramanium Sotheeswaran

Abstract:

Bio fuel is one of the emerging industries around the world due to arise of crisis in petroleum fuel. Fermentation is a cost effective and eco-friendly process in production of bio-fuel. So inventions in microbes, substrates, technologies in fermentation cause new modifications in fermentation. One major problem in microbial ethanol fermentation is the low resistance of conventional microorganisms to the high ethanol concentrations, which ultimately lead to decrease in the efficiency of the process. In the present investigation, an ethanol resistant bacterium was isolated from sap of Saccharum officinarum (sugar cane). The optimal cultural conditions such as pH, temperature, incubation period, and microbiological characteristics, morphological characteristics, biochemical characteristics, ethanol tolerance, sugar tolerance, growth curve assay were investigated. Isolated microorganism was tolerated to 18% (V/V) of ethanol concentration in the medium and 40% (V/V) glucose concentration in the medium. Biochemical characteristics have revealed as Gram negative, non-motile, negative for Indole test ,Methyl Red test, Voges- Proskauer`s test, Citrate Utilization test, and Urease test. Positive results for Oxidase test was shown by isolated bacterium. Sucrose, Glucose, Fructose, Maltose, Dextrose, Arabinose, Raffinose, Lactose, and Sachcharose can be utilized by this particular bacterium. It is a significant feature in effective fermentation. The fermentation process was carried out in glucose medium under optimum conditions; pH 4, temperature 30˚C, and incubated for 72 hours. Maximum ethanol production was recorded as 12.0±0.6% (V/V). Methanol was not detected in the final product of the fermentation process. This bacterium is especially useful in bio-fuel production due to high ethanol tolerance of this microorganism; it can be used to enhance the fermentation process over conventional microorganisms. Investigations are currently conducted on establishing the identity of the bacterium

Keywords: bacterium, bio-fuel, ethanol tolerance, fermentation

Procedia PDF Downloads 314
218 Egyptian Soil Isolate Shows Promise as a Source of a New Broad-spectrum Antimicrobial Agent Against Multidrug-resistant Pathogens

Authors: Norhan H. Mahdally, Bathini Thissera Riham A. ElShiekh, Noha M. Elhosseiny, Mona T. Kashef, Ali M. El Halawany, Mostafa E. Rateb, Ahmed S. Attia

Abstract:

Multidrug-resistant (MDR) pathogens pose a global threat to healthcare settings. The exhaustion of the current antibiotic arsenal and the scarcity of new antimicrobials in the pipeline aggravate this threat and necessitate a prompt and effective response. This study focused on two major pathogens that can cause serious infections: carbapenem-resistant Acinetobacter baumannii (CRAB) and methicillin-resistant Staphylococcus aureus (MRSA). Multiple soil isolates were collected from several locations throughout Egypt and screened for their conventional and non-conventional antimicrobial activities against MDR pathogens. One isolate exhibited potent antimicrobial activity and was subjected to multiple rounds of fractionation. After fermentation and bio-guided fractionation, we identified pure microbial secondary metabolites with two scaffolds that exhibited promising effects against CRAB and MRSA. Scaling up and chemical synthesis of derivatives of the identified metabolite resulted in obtaining a more potent derivative, which we designated as 2HP. Cytotoxicity studies indicated that 2HP is well-tolerated by human cells. Ongoing work is focusing on formulating the new compound into a nano-formulation to enhance its delivery. Also, to have a better idea about how this compound works, a proteomic approach is currently underway. Our findings suggest that 2HP is a potential new broad-spectrum antimicrobial agent. Further studies are needed to confirm these findings and to develop 2HP into a safe and effective treatment for MDR infections.

Keywords: broad-spectrum antimicrobials, carbapenem-resistant acinetobacter baumannii, drug discovery, methicillin-resistant staphylococcus aureus, multidrug-resistant, natural products

Procedia PDF Downloads 53
217 Characterization of Pectinase from Local Microorganisms to Support Industry Based Green Chemistry

Authors: Sasangka Prasetyawan, Anna Roosdiana, Diah Mardiana, Suratmo

Abstract:

Pectinase are enzymes that hydrolyze pectin compounds. The use of this enzyme is primarily to reduce the viscosity of the beverage thus simplifying the purification process. Pectinase activity influenced by microbial sources . Exploration of two types of microbes that Aspergillus spp. and Bacillus spp. pectinase give different performance, but the use of local strain is still not widely studied. The aim of this research is exploration of pectinase from A. niger and B. firmus include production conditions and characterization. Bacillus firmus incubated and shaken at a speed of 200 rpm at pH variation (5, 6, 7, 8, 9, 10), temperature (30, 35, 40, 45, 50) °C and incubation time (6, 12, 18, 24, 30, 36 ) hours. Media was centrifuged at 3000 rpm, pectinase enzyme activity determined. Enzyme production by A. niger determined to variations in temperature and pH were similar to B. firmus, but the variation of the incubation time was 24, 48, 72, 96, 120 hours. Pectinase crude extract was further purified by precipitation using ammonium sulfate saturation in fraction 0-20 %, 20-40 %, 40-60 %, 60-80 %, then dialyzed. Determination of optimum conditions pectinase activity performed by measuring the variation of enzyme activity on pH (4, 6, 7, 8, 10), temperature (30, 35, 40, 45, 50) °C, and the incubation time (10, 20, 30, 40, 50) minutes . Determination of kinetic parameters of pectinase enzyme reaction carried out by measuring the rate of enzyme reactions at the optimum conditions, but the variation of the concentration of substrate (pectin 0.1 % , 0.2 % , 0.3 % , 0.4 % , 0.5 % ). The results showed that the optimum conditions of production of pectinase from B. firmus achieved at pH 7-8.0, 40-50 ⁰C temperature and fermentation time 18 hours. Purification of pectinase showed the highest purity in the 40-80 % ammonium sulfate fraction. Character pectinase obtained : the optimum working conditions of A. niger pectinase at pH 5 , while pectinase from B. firmus at pH 7, temperature and optimum incubation time showed the same value, namely the temperature of 50 ⁰C and incubation time of 30 minutes. The presence of metal ions can affect the activity of pectinase , the concentration of Zn 2 + , Pb 2 + , Ca 2 + and K + and 2 mM Mg 2 + above 6 mM inhibit the activity of pectinase .

Keywords: pectinase, Bacillus firmus, Aspergillus niger, green chemistry

Procedia PDF Downloads 347
216 Effect of Salvadora Persica Gel on Clinical and Microbiological Parameters of Chronic Periodontitis

Authors: Tahira Hyder, Saima Quraeshi, Zohaib Akram

Abstract:

Salvadora Persica (SP) is known to have anti-inflammatory, antioxidant, anti-coagulant and anti-bacterial properties that may provide therapeutic benefits in the treatment of chronic periodontitis (CP). The current clinical trial was designed to investigate the clinical and anti-microbial effects of SP gel as an adjunct to scaling and root planning (SRP) in subjects with generalized CP. Sixty-six subjects with CP were randomized allocated into two groups: SRP + SP gel (test group) and SRP only (control group). Clinical parameters (periodontal pocket depth, gingival recession, clinical attachment level, bleeding score and plaque score) were recorded at baseline before SRP and at 6 weeks. At baseline and 6 weeks subgingival plaque samples were collected and periodontopathogen Porphyromonas Gingivalis (Pg) quantified using Real-time Polymerase Chain Reaction (RT-PCR). Both therapies reduced the mean periodontal pocket depth (PPD), plaque score (PS) and bleeding score (BOP) and improved the mean clinical attachment level (CAL) between baseline and 6 weeks. In subjects receiving adjunctive SP gel a statistically significant improvement was observed in BOP at follow-up compared to control group (15.01±3.47% and 22.81±6.81% respectively, p=0.001), while there was no statistically significant difference in periodontal pocket depth, gingival recession, clinical attachment level and plaque score between both groups. The test group displayed significantly greater Pg reduction compared to the control group after 6 weeks. The current study establishes that local delivery of SP gel into periodontal pocket in CP stimulated a significant reduction in bacteria Pg level and an improvement in gingival health, as evident from a reduced bleeding score, when used as an adjunct to SRP.

Keywords: miswak, scaling and root planing, porphyromonas gingivalis, chronic periodontitis

Procedia PDF Downloads 63
215 Water Resources and Sanitation in Public Schools of Datu Odin Sinsuat, Maguindanao

Authors: Lahaina U. Dilangalen

Abstract:

Using descriptive-experimental research methods, this study aimed to identify the main resources of water, assessed the water quality, sanitation and hygiene practices, and extent of implementation. Complete enumeration was done in 28 elementary public schools of Datu Odin Sinsuat Municipality. Questionnaires were given to the school advisers. Water samples were obtained from the same schools and were submitted to the Department of Science and Technology (DOST) Region XII for microbial analysis, specifically the presence of fecal coliform bacteria. Four water resources such as hand pump, faucet, deep well and spring were found being used in the 28 schools. Of water resources, the only treated was from the faucet. Most of the schools used the water for drinking and washing. Two schools strongly agreed, nine schools agreed and seventeen schools disagreed that they implemented DepEd Order no.56 s. 2009. In addition, two schools strongly agreed and twenty six agreed that they implemented DepEd Order No. 65 s. 2009. Five schools had water supply that were safe to drink while sixteen schools had water supply that were not safe to drink due to high fecal coliform count and did not undergo chemical treatment. The only safe for drinking were water resources that came from faucet because they were chemically treated. Seven out of 28 schools did not have water supply due to their location in mountainous areas. More than half of the schools did not comply with the DepEd Order No. 56 s. 2009 due to the lack of funds and support from the PTA and LGU. It is recommended that the Department of Education must have an urgent assessment of implementing both DepEd Orders No.56 and 65, to assure that the schoolchildren be protected from water and sanitation related ailments. Also, all water resources that are not treated must be used for washing only. Ideally, all the water resources must be treated to assure the safety of all school constituents. Moreover, the school administrators and teachers in the municipality must be provided copies of the results of this study for reference in implementing the said programs.

Keywords: assessment, drinking water, fecal coliform, groundwater

Procedia PDF Downloads 231
214 Bacteriological Quality of Commercially Prepared Fermented Ogi (AKAMU) Sold in Some Parts of South Eastern Nigeria

Authors: Alloysius C. Ogodo, Ositadinma C. Ugbogu, Uzochukwu G. Ekeleme

Abstract:

Food poisoning and infection by bacteria are of public health significance to both developing and developed countries. Samples of ogi (akamu) prepared from white and yellow variety of maize sold in Uturu and Okigwe were analyzed together with the laboratory prepared ogi for microbial quality using the standard microbiological methods. The analyses showed that both white and yellow variety had total bacterial counts (cfu/g) of 4.0 ×107 and 3.9 x 107 for the laboratory prepared ogi while the commercial ogi had 5.2 x 107 and 4.9 x107, 4.9 x107 and 4.5 x107, 5.4 x107 and 5.0 x107 for Eke-Okigwe, Up-gate and Nkwo-Achara market respectively. The Staphylococcal counts ranged from 2.0 x 102 to 5.0 x102 and 1.0 x 102 to 4.0 x102 for the white and yellow variety from the different markets while Staphylococcal growth was not recorded on the laboratory prepared ogi. The laboratory prepared ogi had no Coliform growth while the commercially prepared ogi had counts of 0.5 x103 to 1.6 x 103 for white variety and 0.3 x 103 to 1.1 x103 for yellow variety respectively. The Lactic acid bacterial count of 3.5x106 and 3.0x106 was recorded for the laboratory ogi while the commercially prepared ogi ranged from 3.2x106 to 4.2x106 (white variety) and 3.0 x106 to 3.9 x106 (yellow). The presence of bacteria isolates from the commercial and laboratory fermented ogi showed that Lactobacillus sp, Leuconostoc sp and Citrobacter sp were present in all the samples, Micrococcus sp and Klebsiella sp were isolated from Eke-Okigwe and ABSU-up-gate markets varieties respectively, E. coli and Staphylococcus sp were present in Eke-Okigwe and Nkwo-Achara markets while Salmonella sp were isolated from the three markets. Hence, there are chances of contracting food borne diseases from commercially prepared ogi. Therefore, there is the need for sanitary measures in the production of fermented cereals so as to minimize the rate of food borne pathogens during processing and storage.

Keywords: ogi, fermentation, bacterial quality, lactic acid bacteria, maize

Procedia PDF Downloads 384
213 The Role of the Gut Microbiome of Marine Invertebrates in the Degradation of Complex Algal Substrates

Authors: Yuchen LI, Martyn Kurr, Peter Golyshin

Abstract:

Biological invasion is a global problem. Invasive species can threaten local ecosystems by competing for resources, consuming local species, and reproducing faster than natives. Sargassum muticum is an invasive algae in the UK. It negatively impacts local algae through overshading and can cause reductions in local biodiversity. One possibility for its success is herbivore release. According to the Enemy Release Hypothesis, invasives are less impacted by local herbivores than natives. In many species, gastrointestinal (GI) tract microbes have been found as a key factor in food preference and similar mechanisms may exist in the relationship between local consumers and S. muticum. Some populations of native Littorina snails accept S. muticum as a food source, while others avoid it. This project aims to establish the relationship between GI tract microbes and the feeding preferences of L. littorea, when offered both native algae and S. muticum. Individuals of L. littorea from a site invaded by S. muticum around 18 years ago were compared to those from an un-invaded site nearby. Sargassum-experienced snails are more likely to consume it than those naïve, and pronounced differences were found in the GI-tract microbial communities through 16S (prokaryote) and 18S (eukaryote) sequencing. Sargassum-naïve snails were then exposed to a faecal pellets from experienced snails to ‘inoculate’ them with microbes from the exposed snails. Preliminary results suggest these faecal-pellet-exposed but otherwise Sargassum-naïve snails subsequently begun consuming S. muticum. It is unclear if these results are due to genuine changes in GI-tract microbes or through some other mechanism, such as behavioural responses to chemical cues in the faecal pellets, but these results are nevertheless of significance for invasive ecology, suggesting that foraging preferences for an invasive prey type are malleable and possibly programmable in laboratory settings.

Keywords: invasive algae, sea snails, gut microbiome, biocontrol

Procedia PDF Downloads 57
212 Prospects of Milk Protein as a Potential Alternative of Natural Antibiotic

Authors: Syeda Fahria Hoque Mimmi

Abstract:

Many new and promising treatments for reducing or diminishing the adverse effects of microorganisms are being discovered day by day. On the other hand, the dairy industry is accelerating the economic wheel of Bangladesh. Considering all these facts, new thoughts were developed to isolate milk proteins by the present experiment for opening up a new era of developing natural antibiotics from milk. Lactoferrin, an iron-binding glycoprotein with multifunctional properties, is crucial to strengthening the immune system and also useful for commercial applications. The protein’s iron-binding capacity makes it undoubtedly advantageous to immune system modulation and different bacterial strains. For fulfilling the purpose, 4 of raw and 17 of commercially available milk samples were collected from different farms and stores in Bangladesh (Dhaka, Chittagong, and Cox’s Bazar). Protein quantification by nanodrop technology has confirmed that raw milk samples have better quantities of protein than the commercial ones. All the samples were tested for their antimicrobial activity against 18 pathogens, where raw milk samples showed a higher percentage of antibacterial activity. In addition to this, SDS-PAGE (Sodium Dodecyl Sulfate–Polyacrylamide Gel Electrophoresis) was performed to identify lactoferrin in the milk samples. Lactoferrin was detected in 9 samples from which 4 were raw milk samples. Interestingly, Streptococcus pyogenes, Klebsiella pneumoniae, Bacillus cereus, Pseudomonas aeruginosa, Vibrio cholera, Staphylococcus aureus, and enterotoxigenic E. coli significantly displayed sensitivity against lactoferrin collected from raw milk. Only Bacillus cereus, Pseudomonas aeruginosa, Streptococcus pneumonia, Enterococcus faecalis, and ETEC (Enterotoxigenic Escherichia coli) were susceptible to lactoferrin obtained from a commercial one. This study suggested that lactoferrin might be used as the potential alternative of antibiotics for many diseases and also can be used to reduce microbial deterioration in the food and feed industry.

Keywords: alternative of antibiotics, commercially available milk, lactoferrin, nanodrop technology, pathogens, raw milk

Procedia PDF Downloads 147
211 Evaluation of Chitin Filled Epoxy Coating for Corrosion Protection of Q235 Steel in Saline Environment

Authors: Innocent O. Arukalam, Emeka E. Oguzie

Abstract:

Interest in the development of eco-friendly anti-corrosion coatings using bio-based renewable materials is gaining momentum recently. To this effect, chitin biopolymer, which is non-toxic, biodegradable, and inherently possesses anti-microbial property, was successfully synthesized from snail shells and used as a filler in the preparation of epoxy coating. The chitin particles were characterized with contact angle goniometer, scanning electron microscope (SEM), Fourier transform infrared (FTIR) spectrophotometer, and X-ray diffractometer (XRD). The performance of the coatings was evaluated by immersion and electrochemical impedance spectroscopy (EIS) tests. Electronic structure properties of the coating ingredients and molecular level interaction of the corrodent and coated Q235 steel were appraised by quantum chemical computations (QCC) and molecular dynamics (MD) simulation techniques, respectively. The water contact angle (WCA) measurement of chitin particles was found to be 129.3o while that of chitin particles modified with amino trimethoxy silane (ATMS) was 149.6o, suggesting it is highly hydrophobic. Immersion and EIS analyses revealed that epoxy coating containing silane-modified chitin exhibited lowest water absorption and highest barrier as well as anti-corrosion performances. The QCC showed that quantum parameters for the coating containing silane-modified chitin are optimum and therefore corresponds to high corrosion protection. The high negative value of adsorption energies (Eads) for the coating containing silane-modified chitin indicates the coating molecules interacted and adsorbed strongly on the steel surface. The observed results have shown that silane-modified epoxy-chitin coating would perform satisfactorily for surface protection of metal structures in saline environment.

Keywords: chitin, EIS, epoxy coating, hydrophobic, molecular dynamics simulation, quantum chemical computation

Procedia PDF Downloads 68