Search results for: grain drying pavement
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1582

Search results for: grain drying pavement

892 Investigation of Drought Resistance in Iranian Sesamum Germpelasm

Authors: Fatemeh Najafi

Abstract:

The major stress factor limiting crop growth and development of sesame (Sesamum indicum L.) is drought stress in arid and semiarid regions of the world. For this study the effects of water stress on some qualitative and quantitative traits in sesame germplasm was conducted in the Research Farm of Seed and Plant Improvement Institute, Karaj, in the crop year. Genotypes in a randomized complete block design with three replications in two environments (moisture stress and normal) were studied in regard of the seed weight, capsule weight, grain yield, biomass, plant height, number of capsules per plant, etc. The characteristics were evaluated based on the combined analysis. Irrigation was based on first class evaporation basin. After flowering stage drought stress was applied. The water deficit reduced growth period. Days to reach full ripening decreased so that the reduction was significant at the five percent level. Drought stress reduces yield and plant biomass. Genotypes based on combined analysis of these two traits were significant at the one percent level. Genotypes differ in terms of yield stress in terms of density plots, grain yield, days to first flowering and days to the half of the cap on the confidence level of five percent and traits of days to emergence of the first capsule and days to reach full ripening at the one percent level were significant. Other traits were not significant. The correlation of traits in circumstances of stress the number of seeds per capsule has the greatest impact on performance. The sensitivity and stress tolerance index was calculated. Based on the indicators, (Fars variety) and variety Karaj were identified as the most tolerant genotypes among the studied genotypes to drought stress. The highest sensitivity indicator of stress was related to genotype (FARS).

Keywords: sesamum, drought, stress, germplasm, resistance

Procedia PDF Downloads 72
891 Biochemical Efficacy, Molecular Docking and Inhibitory Effect of 2,3-Dimethylmaleic Anhydride on Acetylcholinesterases

Authors: Kabrambam D. Singh, Dinabandhu Sahoo, Yallappa Rajashekar

Abstract:

Evolution has caused many insects to develop resistance to several synthetic insecticides. This problem along with the persisting concern regarding the health and environmental safety issues of the existing synthetic insecticides has urged the scientific fraternity to look for a new plant-based natural insecticide with inherent eco-friendly nature. Colocasia esculenta var. esculenta (L.) Schott (Araceae family) is widely grown throughout the South- East Asian Countries for its edible corms and leaves. Various physico-chemical and spectroscopic techniques (IR, 1H NMR, 13C NMR and Mass) were used for the isolation and characterization of isolated bioactive molecule named 2, 3-dimethylmaleic anhydride (3, 4-dimethyl-2, 5-furandione). This compound was found to be highly toxic, even at low concentration, against several storage grain pests when used as biofumigant. Experimental studies on the mode of action of 2, 3-dimethylmaleic anhydride revealed that the biofumigant act as inhibitor of acetylcholinesterase enzyme in cockroach and stored grain insects. The knockdown activity of bioactive compound is concurrent with in vivo inhibition of AChE; at KD99 dosage of bioactive molecule showed more than 90% inhibition of AChE activity in test insects. The molecule proved to affect the antioxidant enzyme system; superoxide dismutase (SOD), and catalase (CAT) and also found to decrease reduced glutathione (GSH) level in the treated insects. The above results indicate involvement of inhibition of AChE activity and oxidative imbalance as the potential mode of action of 2, 3-dimethylmaleic anhydride. In addition, the study reveals computational docking programs elaborate the possible interaction of 2, 3-dimethylmaleic anhydride with enzyme acetylcholinesterase (AChE) of Periplaneta americana. Finally, the results represent that toxicity of 2, 3-dimethylmaleic anhydride might be associated with inhibition of AChE activity and oxidative imbalance.

Keywords: 2, 3-dimethylmaleic anhydride, Colocasia esculenta var. esculenta (L.) Schott, Biofumigant, acetylcholinesterase, antioxidant enzyme, molecular docking

Procedia PDF Downloads 160
890 RPM-Synchronous Non-Circular Grinding: An Approach to Enhance Efficiency in Grinding of Non-Circular Workpieces

Authors: Matthias Steffan, Franz Haas

Abstract:

The production process grinding is one of the latest steps in a value-added manufacturing chain. Within this step, workpiece geometry and surface roughness are determined. Up to this process stage, considerable costs and energy have already been spent on components. According to the current state of the art, therefore, large safety reserves are calculated in order to guarantee a process capability. Especially for non-circular grinding, this fact leads to considerable losses of process efficiency. With present technology, various non-circular geometries on a workpiece must be grinded subsequently in an oscillating process where X- and Q-axis of the machine are coupled. With the approach of RPM-Synchronous Noncircular Grinding, such workpieces can be machined in an ordinary plung grinding process. Therefore, the workpieces and the grinding wheels revolutionary rate are in a fixed ratio. A non-circular grinding wheel is used to transfer its geometry onto the workpiece. The authors use a worldwide unique machine tool that was especially designed for this technology. Highest revolution rates on the workpiece spindle (up to 4500 rpm) are mandatory for the success of this grinding process. This grinding approach is performed in a two-step process. For roughing, a highly porous vitrified bonded grinding wheel with medium grain size is used. It ensures high specific material removal rates for efficiently producing the non-circular geometry on the workpiece. This process step is adapted by a force control algorithm, which uses acquired data from a three-component force sensor located in the dead centre of the tailstock. For finishing, a grinding wheel with a fine grain size is used. Roughing and finishing are performed consecutively among the same clamping of the workpiece with two locally separated grinding spindles. The approach of RPM-Synchronous Noncircular Grinding shows great efficiency enhancement in non-circular grinding. For the first time, three-dimensional non-circular shapes can be grinded that opens up various fields of application. Especially automotive industries show big interest in the emerging trend in finishing machining.

Keywords: efficiency enhancement, finishing machining, non-circular grinding, rpm-synchronous grinding

Procedia PDF Downloads 283
889 Characteristics of Asphalt Mixtures with Cocoa Shell Ash as Filler

Authors: Muhammad Nur Hidayat, Muksalmina, Chairul Fajar

Abstract:

An alternative to improve the quality of asphalt as a pavement material is to use modified asphalt with the addition of cocoa shell ash as a filler. This research aims to determine the effect of asphalt mixture and cocoa shell ash after testing the physical properties of asphalt. The method used was experimental by testing the physical properties of asphalt. The results showed that the optimum asphalt content of the cocoa husk ash mixture was 2%, with an asphalt penetration value of 60.03 mm. The result of the asphalt softening point test was 51.0°C. Asphalt ductility test results in 144 cm. Asphalt specific gravity test result 1.076 gr/ml. Asphalt weight loss test results in 0.0183%. In conclusion, cocoa shell ash has an effect on asphalt characteristics, namely increasing stability, flexibility and fatigue resistance.

Keywords: cocoa husk ash, asphalt characteristics, physical properties testing, filler

Procedia PDF Downloads 37
888 The Impact on the Network Deflectometry

Authors: Djamel–Eddine Yassine Boutiba

Abstract:

In this present memory, we present the various impacts deflectometer leading to the sizing by strengthening of existing roadways. It reminds that the road network in Algeria plays a major role with regard to drainage in major strategic areas and especially in the fringe northern Algeria. Heavy traffic passing through the northern fringe (between 25% and 30% heavy vehicles) causes substantial degradations at both the surface layer and base layer. The work on site by means within the laboratory CTTP such as deflectographe Lacroix, allowed us to record a large number of deflection localized bending on RN19A (Carrefour CW73-Ain- Merane), whose analysis of the results led us to opt for a building throughout the band's project . By the recorder against HWD (Heavy Weight déflectometer) allowed us to learn about the behavior of the pavement on the banks. In addition, the Software Alize III has been essential in the verification of the increase in the thickness dimensioned.

Keywords: capacity, deflection, deflectograph lacroix, degradation, hwd

Procedia PDF Downloads 285
887 Impact of aSolar System Designed to Improve the Microclimate of an Agricultural Greenhouse

Authors: Nora Arbaoui, Rachid Tadili, Ilham Ihoume

Abstract:

The improvement of the agricultural production and food preservation processes requires the introduction of heating and cooling techniques in greenhouses. To develop these techniques, our work proposes a design of an integrated and autonomous solar system for heating, cooling, and production conservation in greenhouses. The hot air produced by the greenhouse effect during the day will be evacuated to compartments annexed in the greenhouse to dry the surplus agricultural production that is not sold on the market. In this paper, we will give a description of this solar system and the calculation of the fluid’s volume used for heat storage that will be released during the night.

Keywords: solar system, agricultural greenhouse, heating, cooling, storage, drying

Procedia PDF Downloads 106
886 Swedish–Nigerian Extrusion Research: Channel for Traditional Grain Value Addition

Authors: Kalep Filli, Sophia Wassén, Annika Krona, Mats Stading

Abstract:

Food security challenge and the growing population in Sub-Saharan Africa centers on its agricultural transformation, where about 70% of its population is directly involved in farming. Research input can create economic opportunities, reduce malnutrition and poverty, and generate faster, fairer growth. Africa is discarding $4 billion worth of grain annually due to pre and post-harvest losses. Grains and tubers play a central role in food supply in the region but their production has generally lagged behind because no robust scientific input to meet up with the challenge. The African grains are still chronically underutilized to the detriment of the well-being of the people of Africa and elsewhere. The major reason for their underutilization is because they are under-researched. Any commitment by scientific community to intervene needs creative solutions focused on innovative approaches that will meet the economic growth. In order to mitigate this hurdle, co-creation activities and initiatives are necessary.An example of such initiatives has been initiated through Modibbo Adama University of Technology Yola, Nigeria and RISE (The Research Institutes of Sweden) Gothenburg, Sweden. Exchange of expertise in research activities as a possibility to create channel for value addition to agricultural commodities in the region under the ´Traditional Grain Network programme´ is in place. Process technologies, such as extrusion offers the possibility of creating products in the food and feed sectors, with better storage stability, added value, lower transportation cost and new markets. The Swedish–Nigerian initiative has focused on the development of high protein pasta. Dry microscopy of pasta sample result shows a continuous structural framework of proteins and starch matrix. The water absorption index (WAI) results showed that water was absorbed steadily and followed the master curve pattern. The WAI values ranged between 250 – 300%. In all aspect, the water absorption history was within a narrow range for all the eight samples. The total cooking time for all the eight samples in our study ranged between 5 – 6 minutes with their respective dry sample diameter ranging between 1.26 – 1.35 mm. The percentage water solubility index (WSI) ranged from 6.03 – 6.50% which was within a narrow range and the cooking loss which is a measure of WSI is considered as one of the main parameters taken into consideration during the assessment of pasta quality. The protein contents of the samples ranged between 17.33 – 18.60 %. The value of the cooked pasta firmness ranged from 0.28 - 0.86 N. The result shows that increase in ratio of cowpea flour and level of pregelatinized cowpea tends to increase the firmness of the pasta. The breaking strength represent index of toughness of the dry pasta ranged and it ranged from 12.9 - 16.5 MPa.

Keywords: cowpea, extrusion, gluten free, high protein, pasta, sorghum

Procedia PDF Downloads 196
885 The Study of Genetic Diversity in Canola Cultivars of Kashmar-Iran Region

Authors: Seyed Habib Shojaei, Reza Eivazi, Mir Sajad Shojaei, Alireza Akbari, Pooria Mazloom, Seyede Mitra Sadati, Mir Zeinalabedin Shojaei, Farnaz Farbakhsh

Abstract:

To study the genetic diversity in rapeseeds and agronomic traits, an experiment was conducted using multivariate statistical methods at Agricultural Research Station of Kashmar in 2012-2013.In this experiment, ten genotypes of rapeseed in a Randomized Complete Block designs with three replications were evaluated. The following traits were studied: seed yield, number of days to the fifty percent of flowering, plant height, number of pods on main stem, length of the pod, seed yield per plant, number of seed in pod, harvest index, weight of 100 seeds, number of pods on lateral branch, number of lateral branches. In analyzing the variance, differences between cultivars were significant. The average comparative revealed that the most valuable variety was Licord regarding to the traits while the least valuable variety was Opera. In stepwise regression, harvest index, grain yield per plant and number of pods per lateral branches were entering to model. Correlation analysis showed that the grain yield with the number of pods per lateral branches and seed yield per plant have positive and significant correlation. In the factor analysis, the first five components explained more than 83% of the variance in the data. In the first factor, seed yield and the number of pods per lateral branches were of the highest importance. The traits, seed yield per plant, and pod per main stem were of a great significance in the second factor. Moreover, in the third factor, plant height and the number of lateral branches were more important. In the fourth factor, plant height and one hundred seeds weight were of the highest variance. Finally, days to fifty percent of flowering and one hundred seeds weight were more important in fifth factor.

Keywords: rapeseed, variance analysis, regression, factor analysis

Procedia PDF Downloads 257
884 Assessment of Reservoir Quality and Heterogeneity in Middle Buntsandstein Sandstones of Southern Netherlands for Deep Geothermal Exploration

Authors: Husnain Yousaf, Rudy Swennen, Hannes Claes, Muhammad Amjad

Abstract:

In recent years, the Lower Triassic Main Buntsandstein sandstones in the southern Netherlands Basins have become a point of interest for their deep geothermal potential. To identify the most suitable reservoir for geothermal exploration, the diagenesis and factors affecting reservoir quality, such as porosity and permeability, are assessed. This is done by combining point-counted petrographic data with conventional core analysis. The depositional environments play a significant role in determining the distribution of lithofacies, cement, clays, and grain sizes. The position in the basin and proximity to the source areas determine the lateral variability of depositional environments. The stratigraphic distribution of depositional environments is linked to both local topography and climate, where high humidity leads to fluvial deposition and high aridity periods lead to aeolian deposition. The Middle Buntsandstein Sandstones in the southern part of the Netherlands shows high porosity and permeability in most sandstone intervals. There are various controls on reservoir quality in the examined sandstone samples. Grain sizes and total quartz content are the primary factors affecting reservoir quality. Conversely, carbonate and anhydrite cement, clay clasts, and intergranular clay represent a local control and cannot be applied on a regional scale. Similarly, enhanced secondary porosity due to feldspar dissolution is locally restricted and minor. The analysis of textural, mineralogical, and petrophysical data indicates that the aeolian and fluvial sandstones represent a heterogeneous reservoir system. The ephemeral fluvial deposits have an average porosity and permeability of <10% and <1mD, respectively, while the aeolian sandstones exhibit values of >18% and >100mD.

Keywords: reservoir quality, diagenesis, porosity, permeability, depositional environments, Buntsandstein, Netherlands

Procedia PDF Downloads 63
883 Dynamic Amplification Factors of Some City Bridges

Authors: I. Paeglite, A. Paeglitis

Abstract:

The paper presents a study of dynamic effects obtained from the dynamic load testing of the city highway bridges in Latvia carried out from 2005 to 2012. 9 pre-stressed concrete bridges and 4 composite bridges were considered. 11 of 13 bridges were designed according to the Eurocodes but two according to the previous structural codes used in Latvia (SNIP 2.05.03-84). The dynamic properties of the bridges were obtained by heavy vehicles passing the bridge roadway with different driving speeds and with or without even pavement. The obtained values of the Dynamic amplification factor (DAF) and bridge natural frequency were analyzed and compared to the values of built-in traffic load models provided in Eurocode 1. The actual DAF values for even bridge deck in the most cases are smaller than the value adopted in Eurocode 1. Vehicle speed for uneven pavements significantly influence Dynamic amplification factor values.

Keywords: bridge, dynamic effects, load testing, dynamic amplification factor

Procedia PDF Downloads 383
882 Optimization of Headspace Solid Phase Microextraction (SPME) Technique Coupled with GC MS for Identification of Volatile Organic Compounds Released by Trogoderma Variabile

Authors: Thamer Alshuwaili, Yonglin Ren, Bob Du, Manjree Agarwal

Abstract:

The warehouse beetle, Trogoderma variabile Ballion (Coleoptera: Dermestidae), is a major pest of packaged and processed stored products. Warehouse beetle is the common name which was given by Okumura (1972). This pest has been reported to infest 119 different commodities, and it is distributed throughout the tropical and subtropical parts of the world. Also, it is difficult to control because of the insect's ability to stay without food for long times, and it can survive for years under dry conditions and low-moisture food, and it has also developed resistance to many insecticides. The young larvae of these insects can cause damage to seeds, but older larvae prefer to feed on whole grains. The percentage of damage caused by these insects range between 30-70% in the storage. T. variabile is the species most responsible for causing significant damage in grain stores worldwide. Trogoderma spp. is a huge problem for cereal grains, and there are many countries, such as the USA, Australia, China, Kenya, Uganda and Tanzania who have specific quarantine regulations against possible importation. Also, grain stocks can be almost completely destroyed because of the massive populations the insect may develop. However, the purpose of the current research was to optimize conditions to collect volatile organic compound from Trogoderma variabile at different life stages by using headspace solid phase microextraction (SPME) coupled with gas chromatography-mass spectrometry (GC-MS) and flame ionization detection (FID). Using SPME technique to extract volatile from insects is an efficient, straightforward and nondestructive method. Result of the study shows that 15 insects were optimal number for larvae and adults. Selection of the number of insects depend on the height of the peak area and the number of peaks. Sixteen hours were optimized as the best extraction time for larvae and 8 hours was the optimal number of adults.

Keywords: Trogoderma variabile, warehouse beetle , GC-MS, Solid phase microextraction

Procedia PDF Downloads 129
881 Effect of Temperature and Deformation Mode on Texture Evolution of AA6061

Authors: M. Ghosh, A. Miroux, L. A. I. Kestens

Abstract:

At molecular or micrometre scale, practically all materials are neither homogeneous nor isotropic. The concept of texture is used to identify the structural features that cause the properties of a material to be anisotropic. For metallic materials, the anisotropy of the mechanical behaviour originates from the crystallographic nature of plastic deformation, and is therefore controlled by the crystallographic texture. Anisotropy in mechanical properties often constitutes a disadvantage in the application of materials, as it is often illustrated by the earing phenomena during drawing. However, advantages may also be attained when considering other properties (e.g. optimization of magnetic behaviour to a specific direction) by controlling texture through thermo-mechanical processing). Nevertheless, in order to have better control over the final properties it is essential to relate texture with materials processing route and subsequently optimise their performance. However, up to date, few studies have been reported about the evolution of texture in 6061 aluminium alloy during warm processing (from room temperature to 250ºC). In present investigation, recrystallized 6061 aluminium alloy samples were subjected to tensile and plane strain compression (PSC) at room and warm temperatures. The gradual change of texture following both deformation modes were measured and discussed. Tensile tests demonstrate the mechanism at low strain while PSC does the same at high strain and eventually simulate the condition of rolling. Cube dominated texture of the initial rolled and recrystallized AA6061 sheets were replaced by domination of S and R components after PSC at room temperature, warm temperature (250ºC) though did not reflect any noticeable deviation from room temperature observation. It was also noticed that temperature has no significant effect on the evolution of grain morphology during PSC. The band contrast map revealed that after 30% deformation the substructure inside the grain is mainly made of series of parallel bands. A tendency for decrease of Cube and increase of Goss was noticed after tensile deformation compared to as-received material. Like PSC, texture does not change after deformation at warm temperature though. n-fibre was noticed for all the three textures from Goss to Cube.

Keywords: AA 6061, deformation, temperature, tensile, PSC, texture

Procedia PDF Downloads 484
880 Modeling of a Vehicle Wheel System having a Built-in Suspension Structure Consisted of Radially Deployed Colloidal Spokes between Hub and Rim

Authors: Barenten Suciu

Abstract:

In this work, by replacing the traditional solid spokes with colloidal spokes, a vehicle wheel with a built-in suspension structure is proposed. Following the background and description of the wheel system, firstly, a vibration model of the wheel equipped with colloidal spokes is proposed, and based on such model the equivalent damping coefficients and spring constants are identified. Then, a modified model of a quarter-vehicle moving on a rough pavement is proposed in order to estimate the transmissibility of vibration from the road roughness to vehicle body. In the end, the optimal design of the colloidal spokes and the optimum number of colloidal spokes are decided in order to minimize the transmissibility of vibration, i.e., to maximize the ride comfort of the vehicle.

Keywords: built-in suspension, colloidal spoke, intrinsic spring, vibration analysis, wheel

Procedia PDF Downloads 507
879 Rhizobium leguminosarum: Selecting Strain and Exploring Delivery Systems for White Clover

Authors: Laura Villamizar, David Wright, Claudia Baena, Marie Foxwell, Maureen O'Callaghan

Abstract:

Leguminous crops can be self-sufficient for their nitrogen requirements when their roots are nodulated with an effective Rhizobium strain and for this reason seed or soil inoculation is practiced worldwide to ensure nodulation and nitrogen fixation in grain and forage legumes. The most widely used method of applying commercially available inoculants is using peat cultures which are coated onto seeds prior to sowing. In general, rhizobia survive well in peat, but some species die rapidly after inoculation onto seeds. The development of improved formulation methodology is essential to achieve extended persistence of rhizobia on seeds, and improved efficacy. Formulations could be solid or liquid. Most popular solid formulations or delivery systems are: wettable powders (WP), water dispersible granules (WG), and granules (DG). Liquid formulation generally are: suspension concentrates (SC) or emulsifiable concentrates (EC). In New Zealand, R. leguminosarum bv. trifolii strain TA1 has been used as a commercial inoculant for white clover over wide areas for many years. Seeds inoculation is carried out by mixing the seeds with inoculated peat, some adherents and lime, but rhizobial populations on stored seeds decline over several weeks due to a number of factors including desiccation and antibacterial compounds produced by the seeds. In order to develop a more stable and suitable delivery system to incorporate rhizobia in pastures, two strains of R. leguminosarum (TA1 and CC275e) and several formulations and processes were explored (peat granules, self-sticky peat for seed coating, emulsions and a powder containing spray dried microcapsules). Emulsions prepared with fresh broth of strain TA1 were very unstable under storage and after seed inoculation. Formulations where inoculated peat was used as the active ingredient were significantly more stable than those prepared with fresh broth. The strain CC275e was more tolerant to stress conditions generated during formulation and seed storage. Peat granules and peat inoculated seeds using strain CC275e maintained an acceptable loading of 108 CFU/g of granules or 105 CFU/g of seeds respectively, during six months of storage at room temperature. Strain CC275e inoculated on peat was also microencapsulated with a natural biopolymer by spray drying and after optimizing operational conditions, microparticles containing 107 CFU/g and a mean particle size between 10 and 30 micrometers were obtained. Survival of rhizobia during storage of the microcapsules is being assessed. The development of a stable product depends on selecting an active ingredient (microorganism), robust enough to tolerate some adverse conditions generated during formulation, storage, and commercialization and after its use in the field. However, the design and development of an adequate formulation, using compatible ingredients, optimization of the formulation process and selecting the appropriate delivery system, is possibly the best tool to overcome the poor survival of rhizobia and provide farmers with better quality inoculants to use.

Keywords: formulation, Rhizobium leguminosarum, storage stability, white clover

Procedia PDF Downloads 150
878 Microstructure Dependent Fatigue Crack Growth in Aluminum Alloy

Authors: M. S. Nandana, K. Udaya Bhat, C. M. Manjunatha

Abstract:

In this study aluminum alloy 7010 was subjected to three different ageing treatments i.e., peak ageing (T6), over-ageing (T7451) and retrogression and re ageing (RRA) to study the influence of precipitate microstructure on the fatigue crack growth rate behavior. The microstructural modification was studied by using transmission electron microscope (TEM) to examine the change in the size and morphology of precipitates in the matrix and on the grain boundaries. The standard compact tension (CT) specimens were fabricated and tested under constant amplitude fatigue crack growth tests to evaluate the influence of heat treatment on the fatigue crack growth rate properties. The tests were performed in a computer-controlled servo-hydraulic test machine applying a load ratio, R = 0.1 at a loading frequency of 10 Hz as per ASTM E647. The fatigue crack growth was measured by adopting compliance technique using a CMOD gauge attached to the CT specimen. The average size of the matrix precipitates were found to be of 16-20 nm in T7451, 5-6 nm in RRA and 2-3 nm in T6 conditions respectively. The grain boundary precipitate which was continuous in T6, was disintegrated in RRA and T7451 condition. The PFZ width was lower in RRA compared to T7451 condition. The crack growth rate was higher in T7451 and lowest in RRA treated alloy. The RRA treated alloy also exhibits an increase in threshold stress intensity factor range (∆Kₜₕ). The ∆Kₜₕ measured was 11.1, 10.3 and 5.7 MPam¹/² in RRA, T6 and T7451 alloys respectively. The fatigue crack growth rate in RRA treated alloy was nearly 2-3 times lower than that in T6 and was one order lower than that observed in T7451 condition. The surface roughness of RRA treated alloy was more pronounced when compared to the other conditions. The reduction in fatigue crack growth rate in RRA alloy was majorly due to the increase in roughness and partially due to increase in spacing between the matrix precipitates. The reduction in crack growth rate and increase in threshold stress intensity range is expected to benefit the damage tolerant capability of aircraft structural components under service loads.

Keywords: damage tolerance, fatigue, heat treatment, PFZ, RRA

Procedia PDF Downloads 154
877 Investigation on the Thermal Properties of Magnesium Oxychloride Cement Prepared with Glass Powder

Authors: Rim Zgueb, Noureddine Yacoubi

Abstract:

The objective of this study was to investigate the thermal property of magnesium oxychloride cement (MOC) using glass powder as a substitute. Glass powder by proportion 0%, 5%, 10%, 15% and 20% of cement’s weight was added to specimens. At the end of a drying time of 28 days, thermal properties, compressive strength and bulk density of samples were determined. Thermal property is measured by Photothermal Deflection Technique by comparing the experimental of normalized amplitude and the phase curves of the photothermal signal to the corresponding theoretical ones. The findings indicate that incorporation of glass powder decreases the thermal properties of MOC.

Keywords: magnesium oxychloride cement (MOC), phototharmal deflection technique, thermal properties, Ddensity

Procedia PDF Downloads 354
876 Simulation of Direct Solar Dryer with ANSYS

Authors: Boukhris Lahouari

Abstract:

Simulation of solar dryers with ANSYS has revolutionized the way in which drying processes are optimized and analyzed in various industries. This advanced software allows engineers and researchers to simulate the behavior of a solar dryer under different conditions, helping to improve efficiency and reduce energy consumption. This work presents a numerical study of a direct solar dryer, which uses radiation and natural convection to dry agricultural products. The simulations were made in order to determine the dynamic and thermal fields under the influence of the variation in the size of the inlet and outlet opening. The conservation equations based on the standard k-ε turbulence model are solved by the finite volume method using the ANSYS-Fluent commercial code.

Keywords: solar dryer, CFD, solar radiation, natural convection, turbulent flow

Procedia PDF Downloads 24
875 Evaluation of Durability Performance for Bio-Energy Co-Product

Authors: Bo Yang, Hali̇l Ceylan, Ali Ulvi̇ Uzer

Abstract:

This experimental study was performed to investigate the effect of biofuel co-products (BCPs) with sulfur-free lignin addition on the unconsolidated on strength and durability behavior in pavement soil stabilization subjected to freezing–thawing cycles. For strength behavior, a series of unconfined compression tests were conducted. Mass losses were also calculated after freezing–thawing cycles as criteria for durability behavior. To investigate the effect of the biofuel co-products on the durability behavior of the four type’s soils, mass losses were calculated after 12 freezing–thawing cycles. The co-products tested are promising additives for improving durability under freeze-thaw conditions, and each type has specific advantages.

Keywords: durability, mass lose, freezing–thawing test, bio-energy co-product, soil stabilization

Procedia PDF Downloads 375
874 Mechanical Properties and Characterization of Ti–6Al–4V Alloy Diffused by Molybdenum

Authors: Alaeddine Kaouka

Abstract:

The properties and characterization of Ti-6Al-4V alloys with different contents of Mo were investigated. Microstructure characterization and hardness are considered. The alloy structure was characterized by X-ray diffraction, SEM and optical microscopy. The results showed that the addition of Mo stabilized the β-phase in the treated solution condition. The Mo element added to titanium alloys changes the lattice parameters of phases. Microstructural observations indicate an obvious reduction in the prior grain size. The hardness has increased with the increase in β-phase stability, while Young’s modulus and ductility have decreased.

Keywords: characterization, mechanical properties, molybdenum, titanium alloy

Procedia PDF Downloads 260
873 Realization and Characterizations of Conducting Ceramics Based on ZnO Doped by TiO₂, Al₂O₃ and MgO

Authors: Qianying Sun, Abdelhadi Kassiba, Guorong Li

Abstract:

ZnO with wurtzite structure is a well-known semiconducting oxide (SCO), being applied in thermoelectric devices, varistors, gas sensors, transparent electrodes, solar cells, liquid crystal displays, piezoelectric and electro-optical devices. Intrinsically, ZnO is weakly n-type SCO due to native defects (Znⱼ, Vₒ). However, the substitutional doping by metallic elements as (Al, Ti) gives rise to a high n-type conductivity ensured by donor centers. Under CO+N₂ sintering atmosphere, Schottky barriers of ZnO ceramics will be suppressed by lowering the concentration of acceptors at grain boundaries and then inducing a large increase in the Hall mobility, thereby increasing the conductivity. The presented work concerns ZnO based ceramics, which are fabricated with doping by TiO₂ (0.50mol%), Al₂O₃ (0.25mol%) and MgO (1.00mol%) and sintering in different atmospheres (Air (A), N₂ (N), CO+N₂(C)). We obtained uniform, dense ceramics with ZnO as the main phase and Zn₂TiO₄ spinel as a secondary and minor phase. An important increase of the conductivity was shown for the samples A, N, and C which were sintered under different atmospheres. The highest conductivity (σ = 1.52×10⁵ S·m⁻¹) was obtained under the reducing atmosphere (CO). The role of doping was investigated with the aim to identify the local environment and valence states of the doping elements. Thus, Electron paramagnetic spectroscopy (EPR) determines the concentration of defects and the effects of charge carriers in ZnO ceramics as a function of the sintering atmospheres. The relation between conductivity and defects concentration shows the opposite behavior between these parameters suggesting that defects act as traps for charge carriers. For Al ions, nuclear magnetic resonance (NMR) technique was used to identify the involved local coordination of these ions. Beyond the six and forth coordinated Al, an additional NMR signature of ZnO based TCO requires analysis taking into account the grain boundaries and the conductivity through the Knight shift effects. From the thermal evolution of the conductivity as a function of the sintering atmosphere, we succeed in defining the conditions to realize ZnO based TCO ceramics with an important thermal coefficient of resistance (TCR) which is promising for electrical safety of devices.

Keywords: ceramics, conductivity, defects, TCO, ZnO

Procedia PDF Downloads 196
872 Engineering Properties of Different Lithological Varieties of a Singapore Granite

Authors: Louis Ngai Yuen Wong, Varun Maruvanchery

Abstract:

The Bukit Timah Granite, which is a major rock formation in Singapore, encompasses different rock types such as granite, adamellite, and granodiorite with various hybrid rocks. The present study focuses on the Central Singapore Granite found in the Mandai area. Even within this small aerial extent, lithological variations with respect to the composition, texture as well as the grain size have been recognized in this igneous body. Over the years, the research effort on the Bukit Timah Granite has been focused on achieving a better understanding of its engineering properties in association with civil engineering projects. To our best understanding, a few types of research attempted to systematically investigate the influence of grain size, mineral composition, texture etc. on the strength of Bukit Timah Granite rocks in a comprehensive manner. In typical local industry practices, the different lithological varieties are not differentiated, but all are grouped under Bukit Timah Granite during core logging and the subsequent determination of engineering properties. To address such a major gap in the local engineering geological practice, a preliminary study is conducted on the variations of uniaxial compressive strength (UCS) in seven distinctly different lithological varieties found in the Bukit Timah Granite. Other physical properties including Young’s modulus, P-wave velocity and dry density determined from laboratory testing will also be discussed. The study is supplemented by a petrographical thin section examination. In addition, the specimen failure mode is classified and further correlated with the lithological varieties by carefully observing the details of crack initiation, propagation and coalescence processes in the specimens undergoing loading tests using a high-speed camera. The outcome of this research, which is the first of its type in Singapore, will have a direct implication on the sampling and design practices in the field of civil engineering and particularly underground space development in Singapore.

Keywords: Bukit Timah Granite, lithological variety, thin section study, high speed video, failure mode

Procedia PDF Downloads 322
871 Insight into Localized Fertilizer Placement in Major Cereal Crops

Authors: Solomon Yokamo, Dianjun Lu, Xiaoqin Chen, Huoyan Wang

Abstract:

The current ‘high input-high output’ nutrient management model based on homogenous spreading over the entire soil surface remains a key challenge in China’s farming systems, leading to low fertilizer use efficiency and environmental pollution. Localized placement of fertilizer (LPF) to crop root zones has been proposed as a viable approach to boost crop production while protecting environmental pollution. To assess the potential benefits of LPF on three major crops—wheat, rice, and maize—a comprehensive meta-analysis was conducted, encompassing 85 field studies published from 2002-2023. We further validated the practicability and feasibility of one-time root zone N management based on LPF for the three field crops. The meta-analysis revealed that LPF significantly increased the yields of the selected crops (13.62%) and nitrogen recovery efficiency (REN) (33.09%) while reducing cumulative nitrous oxide (N₂O) emission (17.37%) and ammonia (NH₃) volatilization (60.14%) compared to the conventional surface application (CSA). Higher grain yield and REN were achieved with an optimal fertilization depth (FD) of 5-15 cm, moderate N rates, combined NPK application, one-time deep fertilization, and coarse-textured and slightly acidic soils. Field validation experiments showed that localized one-time root zone N management without topdressing increased maize (6.2%), rice (34.6%), and wheat (2.9%) yields while saving N fertilizer (3%) and also increased the net economic benefits (23.71%) compared to CSA. A soil incubation study further proved the potential of LPF to enhance the retention and availability of mineral N in the root zone over an extended period. Thus, LPF could be an important fertilizer management strategy and should be extended to other less-developed and developing regions to win the triple benefit of food security, environmental quality, and economic gains.

Keywords: grain yield, LPF, NH₃ volatilization, N₂O emission, N recovery efficiency

Procedia PDF Downloads 19
870 Machine That Provides Mineral Fertilizer Equal to the Soil on the Slopes

Authors: Huseyn Nuraddin Qurbanov

Abstract:

The reliable food supply of the population of the republic is one of the main directions of the state's economic policy. Grain growing, which is the basis of agriculture, is important in this area. In the cultivation of cereals on the slopes, the application of equal amounts of mineral fertilizers the under the soil before sowing is a very important technological process. The low level of technical equipment in this area prevents producers from providing the country with the necessary quality cereals. Experience in the operation of modern technical means has shown that, at present, there is a need to provide an equal amount of fertilizer on the slopes to under the soil, fully meeting the agro-technical requirements. No fundamental changes have been made to the industrial machines that fertilize the under the soil, and unequal application of fertilizers under the soil on the slopes has been applied. This technological process leads to the destruction of new seedlings and reduced productivity due to intolerance to frost during the winter for the plant planted in the fall. In special climatic conditions, there is an optimal fertilization rate for each agricultural product. The application of fertilizers to the soil is one of the conditions that increase their efficiency in the field. As can be seen, the development of a new technical proposal for fertilizing and plowing the slopes in equal amounts on the slopes, improving the technological and design parameters, and taking into account the physical and mechanical properties of fertilizers is very important. Taking into account the above-mentioned issues, a combined plough was developed in our laboratory. Combined plough carries out pre-sowing technological operation in the cultivation of cereals, providing a smooth equal amount of mineral fertilizers under the soil on the slopes. Mathematical models of a smooth spreader that evenly distributes fertilizers in the field have been developed. Thus, diagrams and graphs obtained without distribution on the 8 partitions of the smooth spreader are constructed under the inclined angles of the slopes. Percentage and productivity of equal distribution in the field were noted by practical and theoretical analysis.

Keywords: combined plough, mineral fertilizer, equal sowing, fertilizer norm, grain-crops, sowing fertilizer

Procedia PDF Downloads 138
869 Empirical Modeling and Optimization of Laser Welding of AISI 304 Stainless Steel

Authors: Nikhil Kumar, Asish Bandyopadhyay

Abstract:

Laser welding process is a capable technology for forming the automobile, microelectronics, marine and aerospace parts etc. In the present work, a mathematical and statistical approach is adopted to study the laser welding of AISI 304 stainless steel. A robotic control 500 W pulsed Nd:YAG laser source with 1064 nm wavelength has been used for welding purpose. Butt joints are made. The effects of welding parameters, namely; laser power, scanning speed and pulse width on the seam width and depth of penetration has been investigated using the empirical models developed by response surface methodology (RSM). Weld quality is directly correlated with the weld geometry. Twenty sets of experiments have been conducted as per central composite design (CCD) design matrix. The second order mathematical model has been developed for predicting the desired responses. The results of ANOVA indicate that the laser power has the most significant effect on responses. Microstructural analysis as well as hardness of the selected weld specimens has been carried out to understand the metallurgical and mechanical behaviour of the weld. Average micro-hardness of the weld is observed to be higher than the base metal. Higher hardness of the weld is the resultant of grain refinement and δ-ferrite formation in the weld structure. The result suggests that the lower line energy generally produce fine grain structure and improved mechanical properties than the high line energy. The combined effects of input parameters on responses have been analyzed with the help of developed 3-D response surface and contour plots. Finally, multi-objective optimization has been conducted for producing weld joint with complete penetration, minimum seam width and acceptable welding profile. Confirmatory tests have been conducted at optimum parametric conditions to validate the applied optimization technique.

Keywords: ANOVA, laser welding, modeling and optimization, response surface methodology

Procedia PDF Downloads 294
868 Preparation and Characterizations of Natural Material Based Ceramic Membranes

Authors: In-Hyuck Song, Jang-Hoon Ha

Abstract:

Recently, porous ceramic membranes have attracted great interest due to their outstanding thermal and chemical stability. In this paper, we report the results of our efforts to determine whether we could prepare a diatomite-kaolin composite coating to be deposited over a sintered diatomite support layer that could reduce the largest pore size of the sintered diatomite membrane while retaining an acceptable level of permeability. We determined under what conditions such a composite coating over a support layer could be prepared without the generation of micro-cracks during drying and sintering. The pore characteristics of the sintered diatomite membranes were studied by scanning electron microscopy and capillary flow porosimetry.

Keywords: ceramic membrane, diatomite, water treatment, sintering

Procedia PDF Downloads 515
867 Structural Rehabilitation, Retrofitting and Strengthening of Reinforced Concrete Structures

Authors: Manish Kumar

Abstract:

Reinforced cement concrete is getting extensively used for construction of different type of structures for the last one century. During this period, we have constructed many structures like buildings, bridges, industrial structures, pavement, water tanks etc. using this construction material. These structures have been created with huge investment of resources. It is essential to maintain those structures in functional condition. Since deterioration in RCC Structures is a common and natural phenomenon it is required to have a detailed plan, methodology for structural repair and rehabilitation shall be in place for dealing such issues. It is important to know exact reason of distress, type of distress and correct method of repair concrete structures. The different methods of repair are described in paper according to distress category which can be refereed for repair. Major finding of the study is that to protect our structure we need to have maintenance frequency and correct material to be chosen for repair. Also workmanship during repair needs to be taken utmost care for quality repair.

Keywords: deterioration, functional condition, reinforced cement concrete, resources

Procedia PDF Downloads 253
866 Mg AZ31B Alloy Processed through ECASD

Authors: P. Fernández-Morales, D. Peláez, C. Isaza, J. M. Meza, E. Mendoza

Abstract:

Mg AZ31B alloy sheets were processed through equal-channel angular sheet drawing (ECASD) process, following the route A and C at room temperature and varying the processing speed. SEM was used to analyze the microstructure. The grain size was refined and presence of twins was observed. Vickers microhardness and tensile testing were carried out to evaluate the mechanical properties, showing in general; a remarkable increase in the first pass and slight increases during subsequent passes and, that the route C produces better uniform properties distribution through the thickness of the samples.

Keywords: ECASD, Mg Alloy, mechanical properties, microstructure

Procedia PDF Downloads 363
865 Theoretical and Experimental Investigation of Structural, Electrical and Photocatalytic Properties of K₀.₅Na₀.₅NbO₃ Lead- Free Ceramics Prepared via Different Synthesis Routes

Authors: Manish Saha, Manish Kumar Niranjan, Saket Asthana

Abstract:

The K₀.₅Na₀.₅NbO₃ (KNN) system has emerged as one of the most promising lead-free piezoelectric over the years. In this work, we perform a comprehensive investigation of electronic structure, lattice dynamics and dielectric/ferroelectric properties of the room temperature phase of KNN by combining ab-initio DFT-based theoretical analysis and experimental characterization. We assign the symmetry labels to KNN vibrational modes and obtain ab-initio polarized Raman spectra, Infrared (IR) reflectivity, Born-effective charge tensors, oscillator strengths etc. The computed Raman spectrum is found to agree well with the experimental spectrum. In particular, the results suggest that the mode in the range ~840-870 cm-¹ reported in the experimental studies is longitudinal optical (LO) with A_1 symmetry. The Raman mode intensities are calculated for different light polarization set-ups, which suggests the observation of different symmetry modes in different polarization set-ups. The electronic structure of KNN is investigated, and an optical absorption spectrum is obtained. Further, the performances of DFT semi-local, metal-GGA and hybrid exchange-correlations (XC) functionals, in the estimation of KNN band gaps are investigated. The KNN bandgap computed using GGA-1/2 and HSE06 hybrid functional schemes are found to be in excellant agreement with the experimental value. The COHP, electron localization function and Bader charge analysis is also performed to deduce the nature of chemical bonding in the KNN. The solid-state reaction and hydrothermal methods are used to prepare the KNN ceramics, and the effects of grain size on the physical characteristics these ceramics are examined. A comprehensive study on the impact of different synthesis techniques on the structural, electrical, and photocatalytic properties of ferroelectric ceramics KNN. The KNN-S prepared by solid-state method have significantly larger grain size as compared to that for KNN-H prepared by hydrothermal method. Furthermore, the KNN-S is found to exhibit higher dielectric, piezoelectric and ferroelectric properties as compared to KNN-H. On the other hand, the increased photocatalytic activity is observed in KNN-H as compared to KNN-S. As compared to the hydrothermal synthesis, the solid-state synthesis causes an increase in the relative dielectric permittivity (ε^') from 2394 to 3286, remnant polarization (P_r) from 15.38 to 20.41 μC/cm^², planer electromechanical coupling factor (k_p) from 0.19 to 0.28 and piezoelectric coefficient (d_33) from 88 to 125 pC/N. The KNN-S ceramics are also found to have a lower leakage current density, and higher grain resistance than KNN-H ceramic. The enhanced photocatalytic activity of KNN-H is attributed to relatively smaller particle sizes. The KNN-S and KNN-H samples are found to have degradation efficiencies of RhB solution of 20% and 65%, respectively. The experimental study highlights the importance of synthesis methods and how these can be exploited to tailor the dielectric, piezoelectric and photocatalytic properties of KNN. Overall, our study provides several bench-mark important results on KNN that have not been reported so far.

Keywords: lead-free piezoelectric, Raman intensity spectrum, electronic structure, first-principles calculations, solid state synthesis, photocatalysis, hydrothermal synthesis

Procedia PDF Downloads 49
864 Engineering Microstructural Evolution during Arc Wire Directed Energy Deposition of Magnesium Alloy (AZ31)

Authors: Nivatha Elangovan, Lakshman Neelakantan, Murugaiyan Amirthalingam

Abstract:

Magnesium and its alloys are widely used for various lightweight engineering and biomedical applications as they render high strength to low weight ratio and excellent corrosion resistance. These alloys possess good bio-compatibility and similar mechanical properties to natural bone. However, manufacturing magnesium alloy components by conventional formative and subtractive methods is challenging due to their poor castability, oxidation potential, and machinability. Therefore, efforts are made to produce complex-design containing magnesium alloy components by additive manufacturing (AM). Arc-wire directed energy deposition (AW-DED), also known as wire arc additive manufacturing (WAAM), is more attractive to produce large volume components with increased productivity than any other AM technique. In this research work, efforts were made to optimise the deposition parameters to build thick-walled (about 10 mm) AZ31 magnesium alloy components by a gas metal arc (GMA) based AW-DED process. By using controlled dip short-circuiting metal transfer in a GMA process, depositions were carried out without defects and spatter formation. Current and voltage waveforms were suitably modified to achieve stable metal transfer. Moreover, the droplet transfer behaviour was analysed using high-speed image analysis and correlated with arc energy. Optical and scanning electron microscopy analyses were carried out to correlate the influence of deposition parameters with the microstructural evolution during deposition. The investigation reveals that by carefully controlling the current-voltage waveform and droplet transfer behaviour, it is possible to stabilise equiaxed grain microstructures in the deposited AZ31 components. The printed component exhibited an improved mechanical property as equiaxed grains improve the ductility and enhance the toughness. The equiaxed grains in the component improved the corrosion-resistant behaviour of other conventionally manufactured components.

Keywords: arc wire directed energy deposition, AZ31 magnesium alloy, equiaxed grain, corrosion

Procedia PDF Downloads 124
863 Index and Mechanical Geotechnical Properties and Their Control on the Strength and Durability of the Cainozoic Calcarenites in KwaZulu-Natal, South Africa

Authors: Luvuno N. Jele, Warwick W. Hastie, Andrew Green

Abstract:

Calcarenite is a clastic sedimentary beach rock composed of more than 50% sand sized (0.0625 – 2 mm) carbonate grains. In South Africa, these rocks occur as a narrow belt along most of the coast of KwaZulu-Natal and sporadically along the coast of the Eastern Cape. Calcarenites contain a high percentage of calcium carbonate, and due to a number of its physical and structural features, like porosity, cementing material, sedimentary structures, grain shape, and grain size; they are more prone to chemical and mechanical weathering. The objective of the research is to study the strength and compressibility characteristics of the calcarenites along the coast of KwaZulu-Natal to be able to better understand the geotechnical behaviour of these rocks, which may help to predict areas along the coast which may be potentially susceptible to failure/differential settling resulting in damage to property. A total of 148 cores were prepared and analyzed. Cores were analyzed perpendicular and parallel to bedding. Tests were carried out in accordance with the relevant codes and recommendations of the International Society for Rock Mechanics, American Standard Testing Methods, and Committee of Land and Transport Standard Specifications for Road and Bridge Works for State Road Authorities. Test carried out included: x-ray diffraction, petrography, shape preferred orientation (SPO), 3-D Tomography, rock porosity, rock permeability, ethylene glycol, slake durability, rock water absorption, Duncan swelling index, triaxial compressive strength, Brazilian tensile strength and uniaxial compression test with elastic modulus. The beach-rocks have a uniaxial compressive strength (UCS) ranging from 17,84Mpa to 287,35Mpa and exhibit three types of failure; (1) single sliding shear failure, (2) complete cone development, and (3) splitting failure. Brazilian tensile strength of the rocks ranges from 2.56 Mpa to 12,40 Ma, with those tested perpendicular to bedding showing lower tensile strength. Triaxial compressive tests indicate calcarenites have strength ranging from 86,10 Mpa to 371,85 Mpa. Common failure mode in the triaxial test is a single sliding shear failure. Porosity of the rocks varies from 1.25 % to 26.52 %. Rock tests indicate that the direction of loading, whether it be parallel to bedding or perpendicular to bedding, plays no significantrole in the strength and durability of the calcarenites. Porosity, cement type, and grain texture play major roles.UCS results indicate that saturated cores are weaker in strength compared to dry samples. Thus, water or moisture content plays a significant role in the strength and durability of the beach-rock. Loosely packed, highly porous and low magnesian-calcite bearing calcarenites show a decrease in strength compared to the densely packed, low porosity and high magnesian-calcite bearing calcarenites.

Keywords: beach-rock, calcarenite, cement, compressive, failure, porosity, strength, tensile, grains

Procedia PDF Downloads 94