Search results for: seasonal unit root
3133 Drippers Scaling Inhibition of the Localized Irrigation System by Green Inhibitors Based on Plant Extracts
Authors: Driouiche Ali, Karmal Ilham
Abstract:
The Agadir region is characterized by a dry climate, ranging from arid attenuated by oceanic influences to hyper-arid. The water mobilized in the agricultural sector of greater Agadir is 95% of underground origin and comes from the water table of Chtouka. The rest represents the surface waters of the Youssef Ben Tachfine dam. These waters are intended for the irrigation of 26880 hectares of modern agriculture. More than 120 boreholes and wells are currently exploited. Their depth varies between 10 m and 200 m and the unit flow rates of the boreholes are 5 to 50 l/s. A drop in the level of the water table of about 1.5 m/year, on average, has been observed during the last five years. Farmers are thus called upon to improve irrigation methods. Thus, localized or drip irrigation is adopted to allow rational use of water. The importance of this irrigation system is due to the fact that water is applied directly to the root zone and its compatibility with fertilization. However, this irrigation system faces a thorny problem which is the clogging of pipes and drippers. This leads to a lack of uniformity of irrigation over time. This so-called scaling phenomenon, the consequences of which are harmful (cleaning or replacement of pipes), leads to considerable unproductive expenditure. The objective set by this work is the search for green inhibitors likely to prevent this phenomenon of scaling. This study requires a better knowledge of these waters, their physico-chemical characteristics and their scaling power. Thus, using the "LCGE" controlled degassing technique, we initially evaluated, on pure calco-carbonic water at 30°F, the scaling-inhibiting power of some available plant extracts in our region of Souss-Massa. We then carried out a comparative study of the efficacy of these green inhibitors. The action of the most effective green inhibitor on real agricultural waters was then studied.Keywords: green inhibitors, localized irrigation, plant extracts, scaling inhibition
Procedia PDF Downloads 803132 Antimicrobial Activity of Fatty Acid Salts against Microbes for Food Safety
Authors: Aya Tanaka, Mariko Era, Manami Masuda, Yui Okuno, Takayoshi Kawahara, Takahide Kanyama, Hiroshi Morita
Abstract:
Objectives— Fungi and bacteria are present in a wide range of natural environments. They are breed in the foods such as vegetables and fruit, causing corruption and deterioration of these foods in some cases. Furthermore, some species of fungi and bacteria are known to cause food intoxication or allergic reactions in some individuals. To prevent fungal and bacterial contamination, various fungicides and bactericidal have been developed that inhibit fungal and bacterial growth. Fungicides and bactericides must show high antifungal and antibacterial activity, sustainable activity, and a high degree of safety. Therefore, we focused on the fatty acid salt which is the main component of soap. We focused on especially C10K and C12K. This study aimed to find the effectiveness of the fatty acid salt as antimicrobial agents for food safety. Materials and Methods— Cladosporium cladosporioides NBRC 30314, Penicillium pinophilum NBRC 6345, Aspergillus oryzae (Akita Konno store), Rhizopus oryzae NBRC 4716, Fusarium oxysporum NBRC 31631, Escherichia coli NBRC 3972, Bacillus subtilis NBRC 3335, Staphylococcus aureus NBRC 12732, Pseudomonas aenuginosa NBRC 13275 and Serratia marcescens NBRC 102204 were chosen as tested fungi and bacteria. Hartmannella vermiformis NBRC 50599 and Acanthamoeba castellanii NBRC 30010 were chosen as tested amoeba. Nine fatty acid salts including potassium caprate (C10K) and laurate (C12K) at 350 mM and pH 10.5 were used as antifungal activity. The spore suspension of each fungus (3.0×10⁴ spores/mL) or the bacterial suspension (3.0×10⁵ or 3.0×10⁶ or 3.0×10⁷ CFU/mL) was mixed with each of the fatty acid salts (final concentration of 175 mM). Samples were counted at 0, 10, 60, and 180 min by plating (100 µL) on potato dextrose agar or nutrient agar. Fungal and bacterial colonies were counted after incubation for 1 or 2 days at 30 °C. Results— C10K was antifungal activity of 4 log-unit incubated time for 10 min against fungi other than A. oryzae. C12K was antifungal activity of 4 log-unit incubated time for 10 min against fungi other than P. pinophilum and A. oryzae. C10K and C12K did not show high anti-yeast activity. C10K was antibacterial activity of 6 or 7 log-unit incubated time for 10 min against bacteria other than B. subtilis. C12K was antibacterial activity of 5 to 7 log-unit incubated time for 10 min against bacteria other than S. marcescens. C12K was anti-amoeba activity of 4 log-unit incubated time for 10 min against H. vermiformis. These results suggest C10K and C12K have potential in the field of food safety.Keywords: food safety, microbes, antimicrobial, fatty acid salts
Procedia PDF Downloads 4843131 Climate Species Lists: A Combination of Methods for Urban Areas
Authors: Andrea Gion Saluz, Tal Hertig, Axel Heinrich, Stefan Stevanovic
Abstract:
Higher temperatures, seasonal changes in precipitation, and extreme weather events are increasingly affecting trees. To counteract the increasing challenges of urban trees, strategies are increasingly being sought to preserve existing tree populations on the one hand and to prepare for the coming years on the other. One such strategy lies in strategic climate tree species selection. The search is on for species or varieties that can cope with the new climatic conditions. Many efforts in German-speaking countries deal with this in detail, such as the tree lists of the German Conference of Garden Authorities (GALK), the project Stadtgrün 2021, or the instruments of the Climate Species Matrix by Prof. Dr. Roloff. In this context, different methods for a correct species selection are offered. One possibility is to select certain physiological attributes that indicate the climate resilience of a species. To calculate the dissimilarity of the present climate of different geographic regions in relation to the future climate of any city, a weighted (standardized) Euclidean distance (SED) for seasonal climate values is calculated for each region of the Earth. The calculation was performed in the QGIS geographic information system, using global raster datasets on monthly climate values in the 1981-2010 standard period. Data from a European forest inventory were used to identify tree species growing in the calculated analogue climate regions. The inventory used is the compilation of georeferenced point data at a 1 km grid resolution on the occurrence of tree species in 21 European countries. In this project, the results of the methodological application are shown for the city of Zurich for the year 2060. In the first step, analog climate regions based on projected climate values for the measuring station Kirche Fluntern (ZH) were searched for. In a further step, the methods mentioned above were applied to generate tree species lists for the city of Zurich. These lists were then qualitatively evaluated with respect to the suitability of the different tree species for the Zurich area to generate a cleaned and thus usable list of possible future tree species.Keywords: climate change, climate region, climate tree, urban tree
Procedia PDF Downloads 1043130 Numerical Investigation of the Integration of a Micro-Combustor with a Free Piston Stirling Engine in an Energy Recovery System
Authors: Ayodeji Sowale, Athanasios Kolios, Beatriz Fidalgo, Tosin Somorin, Aikaterini Anastasopoulou, Alison Parker, Leon Williams, Ewan McAdam, Sean Tyrrel
Abstract:
Recently, energy recovery systems are thriving and raising attention in the power generation sector, due to the request for cleaner forms of energy that are friendly and safe for the environment. This has created an avenue for cogeneration, where Combined Heat and Power (CHP) technologies have been recognised for their feasibility, and use in homes and small-scale businesses. The efficiency of combustors and the advantages of the free piston Stirling engines over other conventional engines in terms of output power and efficiency, have been observed and considered. This study presents the numerical analysis of a micro-combustor with a free piston Stirling engine in an integrated model of a Nano Membrane Toilet (NMT) unit. The NMT unit will use the micro-combustor to produce waste heat of high energy content from the combustion of human waste and the heat generated will power the free piston Stirling engine which will be connected to a linear alternator for electricity production. The thermodynamic influence of the combustor on the free piston Stirling engine was observed, based on the heat transfer from the flue gas to working gas of the free piston Stirling engine. The results showed that with an input of 25 MJ/kg of faecal matter, and flue gas temperature of 773 K from the micro-combustor, the free piston Stirling engine generates a daily output power of 428 W, at thermal efficiency of 10.7% with engine speed of 1800 rpm. An experimental investigation into the integration of the micro-combustor and free piston Stirling engine with the NMT unit is currently underway.Keywords: free piston stirling engine, micro-combustor, nano membrane toilet, thermodynamics
Procedia PDF Downloads 2573129 Root Cause Analysis of Excessive Vibration in a Feeder Pump of a Large Thermal Electric Power Plant: A Simulation Approach
Authors: Kavindan Balakrishnan
Abstract:
Root cause Identification of the Vibration phenomenon in a feedwater pumping station was the main objective of this research. First, the mode shapes of the pumping structure were investigated using numerical and analytical methods. Then the flow pressure and streamline distribution in the pump sump were examined using C.F.D. simulation, which was hypothesized can be a cause of vibration in the pumping station. As the problem specification of this research states, the vibration phenomenon in the pumping station, with four parallel pumps operating at the same time and heavy vibration recorded even after several maintenance steps. They also specified that a relatively large amplitude of vibration exited by pumps 1 and 4 while others remain normal. As a result, the focus of this research was on determining the cause of such a mode of vibration in the pump station with the assistance of Finite Element Analysis tools and Analytical methods. Major outcomes were observed in structural behavior which is favorable to the vibration pattern phenomenon in the pumping structure as a result of this research. Behaviors of the numerical and analytical models of the pump structure have similar characteristics in their mode shapes, particularly in their 2nd mode shape, which is considerably related to the exact cause of the research problem statement. Since this study reveals several possible points of flow visualization in the pump sump model that can be a favorable cause of vibration in the system, there is more room for improved investigation on flow conditions relating to pump vibrations.Keywords: vibration, simulation, analysis, Ansys, Matlab, mode shapes, pressure distribution, structure
Procedia PDF Downloads 1233128 West Nile Virus in North-Eastern Italy: Overview of Integrated Surveillance Activities
Authors: Laura Amato, Paolo Mulatti, Fabrizio Montarsi, Matteo Mazzucato, Laura Gagliazzo, Michele Brichese, Manlio Palei, Gioia Capelli, Lebana Bonfanti
Abstract:
West Nile virus (WNV) re-emerged in north-eastern Italy in 2008, after ten years from its first appearance in Tuscany. In 2009, a national surveillance programme was implemented, and re-modulated in north-eastern Italy in 2011. Hereby, we present the results of surveillance activities in 2008-2016 in the north-eastern Italian regions, with inferences on WNV epidemiological trend in the area. The re-modulated surveillance programmes aimed at early detecting WNV seasonal reactivation by searching IgM antibodies in horses. In 2013, the surveillance plans were further modified including a risk-based approach. Spatial analysis techniques, including Bernoulli space-time scan-statistics, were applied to the results of 2010–2012 surveillance on mosquitoes, equines, and humans to identify areas where WNV reactivation was more likely to occur. From 2008 to 2016, residential horses tested positive for anti-WNV antibodies on a yearly basis (503 cases), also in areas where WNV circulation was not detected in mosquito populations. Surveillance activities detected 26 syndromic cases in horses, 102 infected mosquito pools and WNV in 18 dead wild birds. Human cases were also recurrently detected in the study area during the surveillance period (68 cases of West Nile neuroinvasive disease). The recurrent identification of WNV in animals, mosquitoes, and humans indicates the virus has likely become endemic in the area. In 2016, findings of WNV positives in horses or mosquitoes were included as triggers for enhancing screening activities in humans. The evolution of the epidemiological situation prompts for continuous and accurate surveillance measures. The results of the 2013-2016 surveillance indicate that the risk-based approach was effective in early detecting seasonal reactivation of WNV, key factor of the integrated surveillance strategy in endemic areas.Keywords: arboviruses, horses, Italy, surveillance, west nile virus, zoonoses
Procedia PDF Downloads 3553127 Portable and Parallel Accelerated Development Method for Field-Programmable Gate Array (FPGA)-Central Processing Unit (CPU)- Graphics Processing Unit (GPU) Heterogeneous Computing
Authors: Nan Hu, Chao Wang, Xi Li, Xuehai Zhou
Abstract:
The field-programmable gate array (FPGA) has been widely adopted in the high-performance computing domain. In recent years, the embedded system-on-a-chip (SoC) contains coarse granularity multi-core CPU (central processing unit) and mobile GPU (graphics processing unit) that can be used as general-purpose accelerators. The motivation is that algorithms of various parallel characteristics can be efficiently mapped to the heterogeneous architecture coupled with these three processors. The CPU and GPU offload partial computationally intensive tasks from the FPGA to reduce the resource consumption and lower the overall cost of the system. However, in present common scenarios, the applications always utilize only one type of accelerator because the development approach supporting the collaboration of the heterogeneous processors faces challenges. Therefore, a systematic approach takes advantage of write-once-run-anywhere portability, high execution performance of the modules mapped to various architectures and facilitates the exploration of design space. In this paper, A servant-execution-flow model is proposed for the abstraction of the cooperation of the heterogeneous processors, which supports task partition, communication and synchronization. At its first run, the intermediate language represented by the data flow diagram can generate the executable code of the target processor or can be converted into high-level programming languages. The instantiation parameters efficiently control the relationship between the modules and computational units, including two hierarchical processing units mapping and adjustment of data-level parallelism. An embedded system of a three-dimensional waveform oscilloscope is selected as a case study. The performance of algorithms such as contrast stretching, etc., are analyzed with implementations on various combinations of these processors. The experimental results show that the heterogeneous computing system with less than 35% resources achieves similar performance to the pure FPGA and approximate energy efficiency.Keywords: FPGA-CPU-GPU collaboration, design space exploration, heterogeneous computing, intermediate language, parameterized instantiation
Procedia PDF Downloads 1163126 Defining the Customers' Color Preference for the Apparel Industry in Terms of Chromaticity Coordinates
Authors: Banu Hatice Gürcüm, Pınar Arslan, Mahmut Yalçın
Abstract:
Fashion designers create lots of dresses, suits, shoes, and other clothing and accessories, which are purchased every year by consumers. Fashion trends, sketches of designs, accessories affect the apparel goods, but colors make the finishing touches to an outfit. In all fields of apparel men's, women's, and children's wear, including casual wear, suits, sportswear, formal wear, outerwear, maternity, and intimate apparel, color sells. Thus, specialization in color in apparel is a basic concern each season. The perception of color is the key to sales for every sector in textile business. Mechanism of color perception, cognition in brain and color emotion are unique subjects, which scientists have been investigating for many years. The parameters of color may not be corresponding to visual scales since human emotions induced by color are completely subjective. However, with a very few exception each manufacturer concern their top selling colors for each season through seasonal sales reports of apparel companies. This paper examines sensory and instrumental methods for quantifying color of fabrics and investigates the relationship between fabric color and sale numbers. 5 top selling colors for each season from 10 leading apparel companies in the same segment are taken. The compilation is based according to the sales of the companies for 5 to 10 years. The research’s main concern is the corelation with the magnitude of seasonal color selling figures and the CIE chromaticity coordinates. The colors are chosen from the globally accepted Pantone Textile Color System and the three-dimentional measurement system CIE L*a*b* (CIELAB) is used, L* representing the degree of lightness of color, a* the degree of color ranging from magenta to green, and b* the degree of color ranging from blue to yellow. The objective of this paper is to demonstrate the feasibility of relating color perceptance to a laboratory instrument yielding measurements in the CIELAB system. Our approach is to obtain a total of a hundred reference fabrics to be measured on a laboratory spectrophotometer calibrated to the CIELAB color system. Relationships between the CIE tristimulus (X, Y, Z) and CIELAB (L*, a*, b*) are examined and are reported herein.Keywords: CIELAB, CIE tristimulus, color preference, fashion
Procedia PDF Downloads 3343125 Construction and Evaluation of Soybean Thresher
Authors: Oladimeji Adetona Adeyeye, Emmanuel Rotimi Sadiku, Oluwaseun Olayinka Adeyeye
Abstract:
In order to resuscitate soybean production and post-harvest processing especially, in term of threshing, there is need to develop an affordable threshing machine which will reduce drudgery associated with manual soybean threshing. Soybean thresher was fabricated and evaluated at Institute of Agricultural Research and Training IAR&T Apata Ibadan. The machine component includes; hopper, threshing unit, shaker, cleaning unit and the seed outlet, all working together to achieve the main objective of threshing and cleaning. TGX1835 - 10E variety was used for evaluation because of its high resistance to pests, rust and pustules. The final moisture content of the used sample was about 15%. The sample was weighed and introduced into the machine. The parameters evaluated includes moisture content, threshing efficiency, cleaning efficiency, machine capacity and speed. The threshing efficiency and capacity are 74% and 65.9kg/hr respectively. All materials used were sourced locally which makes the cost of production of the machine extremely cheaper than the imported soybean thresher.Keywords: efficiency, machine capacity, speed, soybean, threshing
Procedia PDF Downloads 4833124 The Role of Fluid Catalytic Cracking in Process Optimisation for Petroleum Refineries
Authors: Chinwendu R. Nnabalu, Gioia Falcone, Imma Bortone
Abstract:
Petroleum refining is a chemical process in which the raw material (crude oil) is converted to finished commercial products for end users. The fluid catalytic cracking (FCC) unit is a key asset in refineries, requiring optimised processes in the context of engineering design. Following the first stage of separation of crude oil in a distillation tower, an additional 40 per cent quantity is attainable in the gasoline pool with further conversion of the downgraded product of crude oil (residue from the distillation tower) using a catalyst in the FCC process. Effective removal of sulphur oxides, nitrogen oxides, carbon and heavy metals from FCC gasoline requires greater separation efficiency and involves an enormous environmental significance. The FCC unit is primarily a reactor and regeneration system which employs cyclone systems for separation. Catalyst losses in FCC cyclones lead to high particulate matter emission on the regenerator side and fines carryover into the product on the reactor side. This paper aims at demonstrating the importance of FCC unit design criteria in terms of technical performance and compliance with environmental legislation. A systematic review of state-of-the-art FCC technology was carried out, identifying its key technical challenges and sources of emissions. Case studies of petroleum refineries in Nigeria were assessed against selected global case studies. The review highlights the need for further modelling investigations to help improve FCC design to more effectively meet product specification requirements while complying with stricter environmental legislation.Keywords: design, emission, fluid catalytic cracking, petroleum refineries
Procedia PDF Downloads 1363123 Comparing the Gap Formation around Composite Restorations in Three Regions of Tooth Using Optical Coherence Tomography (OCT)
Authors: Rima Zakzouk, Yasushi Shimada, Yuan Zhou, Yasunori Sumi, Junji Tagami
Abstract:
Background and Purpose: Swept source optical coherence tomography (OCT) is an interferometric imaging technique that has been recently used in cariology. In spite of progress made in adhesive dentistry, the composite restoration has been failing due to secondary caries which occur due to environmental factors in oral cavities. Therefore, a precise assessment to effective marginal sealing of restoration is highly required. The aim of this study was evaluating gap formation at composite/cavity walls interface with or without phosphoric acid etching using SS-OCT. Materials and Methods: Round tapered cavities (2×2 mm) were prepared in three locations, mid-coronal, cervical, and root of bovine incisors teeth in two groups (SE and PA Groups). While self-etching adhesive (Clearfil SE Bond) was applied for the both groups, Group PA had been already pretreated with phosphoric acid etching (K-Etchant gel). Subsequently, both groups were restored by Estelite Flow Quick Flowable Composite Resin. Following 5000 thermal cycles, three cross-sectionals were obtained from each cavity using OCT at 1310-nm wavelength at 0°, 60°, 120° degrees. Scanning was repeated after two months to monitor the gap progress. Then the average percentage of gap length was calculated using image analysis software, and the difference of mean between both groups was statistically analyzed by t-test. Subsequently, the results were confirmed by sectioning and observing representative specimens under Confocal Laser Scanning Microscope (CLSM). Results: The results showed that pretreatment with phosphoric acid etching, Group PA, led to significantly bigger gaps in mid-coronal and cervical compared to SE group, while in the root cavity no significant difference was observed between both groups. On the other hand, the gaps formed in root’s cavities were significantly bigger than those in mid-coronal and cervical within the same group. This study investigated the effect of phosphoric acid on gap length progress on the composite restorations. In conclusions, phosphoric acid etching treatment did not reduce the gap formation even in different regions of the tooth. Significance: The cervical region of tooth was more exposing to gap formation than mid-coronal region, especially when we added pre-etching treatment.Keywords: image analysis, optical coherence tomography, phosphoric acid etching, self-etch adhesives
Procedia PDF Downloads 2193122 Multi-Indicator Evaluation of Agricultural Drought Trends in Ethiopia: Implications for Dry Land Agriculture and Food Security
Authors: Dawd Ahmed, Venkatesh Uddameri
Abstract:
Agriculture in Ethiopia is the main economic sector influenced by agricultural drought. A simultaneous assessment of drought trends using multiple drought indicators is useful for drought planning and management. Intra-season and seasonal drought trends in Ethiopia were studied using a suite of drought indicators. Standardized Precipitation Index (SPI), Standardized Precipitation Evapotranspiration Index (SPEI), Palmer Drought Severity Index (PDSI), and Z-index for long-rainy, dry, and short-rainy seasons are used to identify drought-causing mechanisms. The Statistical software package R version 3.5.2 was used for data extraction and data analyses. Trend analysis indicated shifts in late-season long-rainy season precipitation into dry in the southwest and south-central portions of Ethiopia. Droughts during the dry season (October–January) were largely temperature controlled. Short-term temperature-controlled hydrologic processes exacerbated rainfall deficits during the short rainy season (February–May) and highlight the importance of temperature- and hydrology-induced soil dryness on the production of short-season crops such as tef. Droughts during the long-rainy season (June–September) were largely driven by precipitation declines arising from the narrowing of the intertropical convergence zone (ITCZ). Increased dryness during long-rainy season had severe consequences on the production of corn and sorghum. PDSI was an aggressive indicator of seasonal droughts suggesting the low natural resilience to combat the effects of slow-acting, moisture-depleting hydrologic processes. The lack of irrigation systems in the nation limits the ability to combat droughts and improve agricultural resilience. There is an urgent need to monitor soil moisture (a key agro-hydrologic variable) to better quantify the impacts of meteorological droughts on agricultural systems in Ethiopia.Keywords: autocorrelation, climate change, droughts, Ethiopia, food security, palmer z-index, PDSI, SPEI, SPI, trend analysis
Procedia PDF Downloads 1403121 Estimating the Properties of Polymer Concrete Using the Response Surface Method
Authors: Oguz Ugurkan Akkaya, Alpaslan Sipahi, Ozgur Firat Pamukcu, Murat Yasar, Tolga Guler, Arif Ulu, Ferit Cakir
Abstract:
With the increase in human population, expansion, and renovation of cities, infrastructure systems today need to be manufactured to be more durable and long-lasting. The most cost-effective and durable manufacturing of components is a general problem of all engineering disciplines. Therefore, it is important to determine the most optimal components. This study mainly focuses on the most optimal component design of the polymer concrete. For this purpose, the lower and upper limits of the three main components of the polymer concrete are determined. The effects of these three principal components on the compressive strength, tensile strength, and unit price of polymer concrete are estimated using the response surface method. Box-Behnken Design is used in designing the experiments. Compressive strength, tensile strength, and unit prices are successfully estimated with variance ratios (R²) of 0.82, 0.92, and 0.90, respectively, and the optimum mixture quantity is determined.Keywords: Box-Behnken Design, compressive strength, mechanical tests, polymer concrete, tensile strength
Procedia PDF Downloads 1693120 Production of Bioethanol from Oil PalmTrunk by Cocktail Carbohydrases Enzyme Produced by Thermophilic Bacteria Isolated from Hot spring in West Sumatera, Indonesia
Authors: Yetti Marlida, Syukri Arif, Nadirman Haska
Abstract:
Recently, alcohol fuels have been produced on industrial scales by fermentation of sugars derived from wheat, corn, sugar beets, sugar cane etc. The enzymatic hydrolysis of cellulosic materials to produce fermentable sugars has an enormous potential in meeting global bioenergy demand through the biorefinery concept, since agri-food processes generate millions of tones of waste each year (Xeros and Christakopoulos 2009) such as sugar cane baggase , wheat straw, rice straw, corn cob, and oil palm trunk. In fact oil palm trunk is one of the most abundant lignocellulosic wastes by-products worldwide especially come from Malaysia, Indonesia and Nigeria and provides an alternative substrate to produce useful chemicals such as bioethanol. Usually, from the ages 3 years to 25 years, is the economical life of oil palm and after that, it is cut for replantation. The size of trunk usually is 15-18 meters in length and 46-60 centimeters in diameter. The trunk after cutting is agricultural waste causing problem in elimination but due to the trunk contains about 42% cellulose, 34.4%hemicellulose, 17.1% lignin and 7.3% other compounds,these agricultural wastes could make value added products (Pumiput, 2006).This research was production of bioethanol from oil palm trunk via saccharafication by cocktail carbohydrases enzymes. Enzymatic saccharification of acid treated oil palm trunk was carried out in reaction mixture containing 40 g treated oil palm trunk in 200 ml 0.1 M citrate buffer pH 4.8 with 500 unit/kg amylase for treatment A: Treatment B: Treatment A + 500 unit/kg cellulose; C: treatment B + 500 unit/kgg xylanase: D: treatment D + 500 unit/kg ligninase and E: OPT without treated + 500 unit/kg amylase + 500 unit/kg cellulose + 500 unit/kg xylanase + 500 unit/kg ligninase. The reaction mixture was incubated on a water bath rotary shaker adjusted to 600C and 75 rpm. The samples were withdraw at intervals 12 and 24, 36, 48,60, and 72 hr. For bioethanol production in biofermentor of 5L the hydrolysis product were inoculated a loop of Saccharomyces cerevisiae and then incubated at 34 0C under static conditions. Samples are withdraw after 12, 24, 36, 48 and 72 hr for bioethanol and residual glucose. The results of the enzymatic hidrolysis (Figure1) showed that the treatment B (OPT hydrolyzed with amylase and cellulase) have optimum condition for glucose production, where was both of enzymes can be degraded OPT perfectly. The same results also reported by Primarini et al., (2012) reported the optimum conditions the hydrolysis of OPT was at concentration of 25% (w /v) with 0.3% (w/v) amylase, 0.6% (w /v) glucoamylase and 4% (w/v) cellulase. In the Figure 2 showed that optimum bioethanol produced at 48 hr after incubation,if time increased the biothanol decreased. According Roukas (1996), a decrease in the concentration of ethanol occur at excess glucose as substrate and product inhibition effects. Substrate concentration is too high reduces the amount of dissolved oxygen, although in very small amounts, oxygen is still needed in the fermentation by Saccaromyces cerevisiae to keep life in high cell concentrations (Nowak 2000, Tao et al. 2005). The results of the research can be conluded that the optimum enzymatic hydrolysis occured when the OPT added with amylase and cellulase and optimum bioethanol produced at 48 hr incubation using Saccharomyses cerevicea whereas 18.08 % bioethanol produced from glucose conversion. This work was funded by Directorate General of Higher Education (DGHE), Ministry of Education and Culture, contract no.245/SP2H/DIT.LimtabMas/II/2013Keywords: oil palm trunk, enzymatic hydrolysis, saccharification
Procedia PDF Downloads 5133119 Rice Area Determination Using Landsat-Based Indices and Land Surface Temperature Values
Authors: Burçin Saltık, Levent Genç
Abstract:
In this study, it was aimed to determine a route for identification of rice cultivation areas within Thrace and Marmara regions of Turkey using remote sensing and GIS. Landsat 8 (OLI-TIRS) imageries acquired in production season of 2013 with 181/32 Path/Row number were used. Four different seasonal images were generated utilizing original bands and different transformation techniques. All images were classified individually using supervised classification techniques and Land Use Land Cover Maps (LULC) were generated with 8 classes. Areas (ha, %) of each classes were calculated. In addition, district-based rice distribution maps were developed and results of these maps were compared with Turkish Statistical Institute (TurkSTAT; TSI)’s actual rice cultivation area records. Accuracy assessments were conducted, and most accurate map was selected depending on accuracy assessment and coherency with TSI results. Additionally, rice areas on over 4° slope values were considered as mis-classified pixels and they eliminated using slope map and GIS tools. Finally, randomized rice zones were selected to obtain maximum-minimum value ranges of each date (May, June, July, August, September images separately) NDVI, LSWI, and LST images to test whether they may be used for rice area determination via raster calculator tool of ArcGIS. The most accurate classification for rice determination was obtained from seasonal LSWI LULC map, and considering TSI data and accuracy assessment results and mis-classified pixels were eliminated from this map. According to results, 83151.5 ha of rice areas exist within study area. However, this result is higher than TSI records with an area of 12702.3 ha. Use of maximum-minimum range of rice area NDVI, LSWI, and LST was tested in Meric district. It was seen that using the value ranges obtained from July imagery, gave the closest results to TSI records, and the difference was only 206.4 ha. This difference is normal due to relatively low resolution of images. Thus, employment of images with higher spectral, spatial, temporal and radiometric resolutions may provide more reliable results.Keywords: landsat 8 (OLI-TIRS), LST, LSWI, LULC, NDVI, rice
Procedia PDF Downloads 2273118 Informational Support, Anxiety and Satisfaction with Care among Family Caregivers of Patients Admitted in Critical Care Units of B.P. Koirala Institute of Health Sciences, Nepal
Authors: Rosy Chaudhary, Pushpa Parajuli
Abstract:
Background and Objectives: Informational support to family members has a significant potential for reducing this distress related to hospitalization of their patient into the critical care unit, enabling them to cope better and support the patient. The objective of the study is to assess family members’ perception of informational support, anxiety, satisfaction with care and to reveal the association with selected socio-demographic variables and to investigate the correlation between informational support, anxiety and satisfaction with care. Materials and Methods: A descriptive cross-sectional study was conducted in 39 family caregivers of patients admitted in critical care unit of BPKIHS(B.P. Koirala Institute of Health Sciences). Consecutive sampling technique was used wherein data was collected over duration of one month using interview schedule. Descriptive and inferential statistics were used. Results: The mean age of the respondents was 34.97 ± 10.64 and two third (66.70%) were male. Mean score for informational support was 25.72(SD = 5.66; theoretical range of 10 - 40). Mean anxiety was 10.41 (SD = 5.02; theoretical range of 7 - 21). Mean score for satisfaction with care was 40.77 (SD = 6.77; theoretical range of 14 - 64). A moderate positive correlation was found between informational support and satisfaction with care (r = 0.551, p < .001) and a moderate negative correlation was found between anxiety and satisfaction with care (r = -0.590; p = 0.000). No relationship was noted between informational support and anxiety. Conclusion: The informational support and satisfaction of the family caregivers with the care provided to their patients was satisfactory. More than three fourth of the family caregivers had anxiety; the factors associated being educational status of the caregivers, the family income and duration of visiting hours. There was positive correlation between informational support and satisfaction with care provided justifying the need for comprehensive information to the family caregivers by the health personnel. There was negative correlation between anxiety and satisfaction with care.Keywords: anxiety, caregivers, critical care unit, informational support, family
Procedia PDF Downloads 3513117 Garment Industry Development in South East Asia and Competitiveness
Authors: P. Nayak, Shakeel Shaikh
Abstract:
In this paper, we analyse the apparel export performance of Southeast Asian Nations (ASEAN) in the world market. The study covers the 2003-2012 period at the sector as well as product levels (6 digit HS) and analysis is based HS 2002 nomenclature. We measure export similarity among Southeast Asian nations for the apparel sector (two digit HS-61 & 62), besides analysing the products performance in the world through Revealed Comparative Advantage (RCA) technique. Coupled with RCA, the price as a factor of competitiveness was examined from the available Unit Value Realizations (UVR). Further to this, the resource availability or outsourced from the region was considered as an extension to the analysis of competitiveness between the nations. With the help of these methodologies, we examine the degree of competition between the exports of southeast nations in the world market. Our results show that Cambodia, Indonesia, Thailand, and Vietnam are well performing states within ASEAN. The paper further delves into sustainability of the export performing countries within ASEAN.Keywords: export competitiveness, export similarity index, revealed comparative advantage, unit value realisation
Procedia PDF Downloads 2833116 Wireless Based System for Continuous Electrocardiography Monitoring during Surgery
Authors: K. Bensafia, A. Mansour, G. Le Maillot, B. Clement, O. Reynet, P. Ariès, S. Haddab
Abstract:
This paper presents a system designed for wireless acquisition, the recording of electrocardiogram (ECG) signals and the monitoring of the heart’s health during surgery. This wireless recording system allows us to visualize and monitor the state of the heart’s health during a surgery, even if the patient is moved from the operating theater to post anesthesia care unit. The acquired signal is transmitted via a Bluetooth unit to a PC where the data are displayed, stored and processed. To test the reliability of our system, a comparison between ECG signals processed by a conventional ECG monitoring system (Datex-Ohmeda) and by our wireless system is made. The comparison is based on the shape of the ECG signal, the duration of the QRS complex, the P and T waves, as well as the position of the ST segments with respect to the isoelectric line. The proposed system is presented and discussed. The results have confirmed that the use of Bluetooth during surgery does not affect the devices used and vice versa. Pre- and post-processing steps are briefly discussed. Experimental results are also provided.Keywords: electrocardiography, monitoring, surgery, wireless system
Procedia PDF Downloads 3693115 Exploration for Magnetic Minerals Using Geophysical Logging Techniques in the Northwestern Part of Bangladesh
Authors: Md. Selim Reza, Mohammad Zohir Uddin
Abstract:
Geophysical logging technique was conducted in a borehole in the north-western part of Bangladesh. The main objectives of this study were to identify the subsurface lithology and the presence of magnetic minerals within the basement complex. In this survey, full waveform sonic, magnetic susceptibility and natural gamma logs were conducted up to the depth of 660 m. From sonic log, three distinct velocity zones were observed at depths ranging from 20 m to 81 m, 81m to 360 m and 420 m to 660 m having the average velocity of 1600 m/s indicating unconsolidated sediment, 2500 m/s indicating hard, compact and matured sediments and 6300 m/s indicating basement complex respectively. Some low-velocity zones within the basement were identified as fractures/fissures. Natural gamma log was carried out only in the basement complex. According to magnetic susceptibility log, broadly three important zones were identified which had good agreement with the natural gamma, sonic as well as geological logs. The zone at the depth from 460 m to 470 m had the average susceptibility value of 3445 cgs unit. The average natural gamma value and sonic velocity in this zone are 150 cps and 3000 m/s respectively. The zone at the depth from 571 m to 598 m had the average susceptibility value of 5158 cgs unit with the average natural gamma value and sonic velocity are 160 cps and 6000 m/s respectively. On the other hand, the zone at the depth from 598 m to 620 m had the average susceptibility value of 1998 cgs unit with the average natural gamma value and sonic velocity show 200 cps and 3000 m/s respectively. From the interpretation of geophysical logs the 1st and 3rd zones within the basement complex are considered to be less significant whereas the 2nd zone is described as the most significant for magnetic minerals. Therefore, more drill holes are recommended on the anomalous body to delineate the extent, thickness and reserve of the magnetic body and further research are needed to determine the quality of mineral resources.Keywords: basement complex, fractures/fissures, geophysical logging, lithology, magnetic susceptibility
Procedia PDF Downloads 2883114 Effect of Silver Nanoparticles on Seed Germination of Crop Plants
Authors: Zainab M. Almutairi, Amjad Alharbi
Abstract:
The use of engineered nanomaterials has increased as a result of their positive impact on many sectors of the economy, including agriculture. Silver nanoparticles (AgNPs) are now used to enhance seed germination, plant growth, and photosynthetic quantum efficiency and as antimicrobial agents to control plant diseases. In this study, we examined the effect of AgNP dosage on the seed germination of three plant species: corn (Zea mays L.), watermelon (Citrullus lanatus [Thunb.] Matsum. & Nakai) and zucchini (Cucurbita pepo L.). This experiment was designed to study the effect of AgNPs on germination percentage, germination rate, mean germination time, root length and fresh and dry weight of seedlings for the three species. Seven concentrations (0.05, 0.1, 0.5, 1, 1.5, 2, and 2.5 mg/ml) of AgNPs were examined at the seed germination stage. The three species had different dose responses to AgNPs in terms of germination parameters and the measured growth characteristics. The germination rates of the three plants were enhanced in response to AgNPs. Significant enhancement of the germination percentage values was observed after treatment of the watermelon and zucchini plants with AgNPs in comparison with untreated seeds. AgNPs showed a toxic effect on corn root elongation, whereas watermelon and zucchini seedling growth were positively affected by certain concentrations of AgNPs. This study showed that exposure to AgNPs caused both positive and negative effects on plant growth and germination.Keywords: citrullus lanatus, cucurbita pepo, seed germination, seedling growth, silver nanoparticles, zea mays
Procedia PDF Downloads 3073113 Remaining Useful Life Estimation of Bearings Based on Nonlinear Dimensional Reduction Combined with Timing Signals
Authors: Zhongmin Wang, Wudong Fan, Hengshan Zhang, Yimin Zhou
Abstract:
In data-driven prognostic methods, the prediction accuracy of the estimation for remaining useful life of bearings mainly depends on the performance of health indicators, which are usually fused some statistical features extracted from vibrating signals. However, the existing health indicators have the following two drawbacks: (1) The differnet ranges of the statistical features have the different contributions to construct the health indicators, the expert knowledge is required to extract the features. (2) When convolutional neural networks are utilized to tackle time-frequency features of signals, the time-series of signals are not considered. To overcome these drawbacks, in this study, the method combining convolutional neural network with gated recurrent unit is proposed to extract the time-frequency image features. The extracted features are utilized to construct health indicator and predict remaining useful life of bearings. First, original signals are converted into time-frequency images by using continuous wavelet transform so as to form the original feature sets. Second, with convolutional and pooling layers of convolutional neural networks, the most sensitive features of time-frequency images are selected from the original feature sets. Finally, these selected features are fed into the gated recurrent unit to construct the health indicator. The results state that the proposed method shows the enhance performance than the related studies which have used the same bearing dataset provided by PRONOSTIA.Keywords: continuous wavelet transform, convolution neural net-work, gated recurrent unit, health indicators, remaining useful life
Procedia PDF Downloads 1323112 Inverterless Grid Compatible Micro Turbine Generator
Authors: S. Ozeri, D. Shmilovitz
Abstract:
Micro‐Turbine Generators (MTG) are small size power plants that consist of a high speed, gas turbine driving an electrical generator. MTGs may be fueled by either natural gas or kerosene and may also use sustainable and recycled green fuels such as biomass, landfill or digester gas. The typical ratings of MTGs start from 20 kW up to 200 kW. The primary use of MTGs is for backup for sensitive load sites such as hospitals, and they are also considered a feasible power source for Distributed Generation (DG) providing on-site generation in proximity to remote loads. The MTGs have the compressor, the turbine, and the electrical generator mounted on a single shaft. For this reason, the electrical energy is generated at high frequency and is incompatible with the power grid. Therefore, MTGs must contain, in addition, a power conditioning unit to generate an AC voltage at the grid frequency. Presently, this power conditioning unit consists of a rectifier followed by a DC/AC inverter, both rated at the full MTG’s power. The losses of the power conditioning unit account to some 3-5%. Moreover, the full-power processing stage is a bulky and costly piece of equipment that also lowers the overall system reliability. In this study, we propose a new type of power conditioning stage in which only a small fraction of the power is processed. A low power converter is used only to program the rotor current (i.e. the excitation current which is substantially lower). Thus, the MTG's output voltage is shaped to the desired amplitude and frequency by proper programming of the excitation current. The control is realized by causing the rotor current to track the electrical frequency (which is related to the shaft frequency) with a difference that is exactly equal to the line frequency. Since the phasor of the rotation speed and the phasor of the rotor magnetic field are multiplied, the spectrum of the MTG generator voltage contains the sum and the difference components. The desired difference component is at the line frequency (50/60 Hz), whereas the unwanted sum component is at about twice the electrical frequency of the stator. The unwanted high frequency component can be filtered out by a low-pass filter leaving only the low-frequency output. This approach allows elimination of the large power conditioning unit incorporated in conventional MTGs. Instead, a much smaller and cheaper fractional power stage can be used. The proposed technology is also applicable to other high rotation generator sets such as aircraft power units.Keywords: gas turbine, inverter, power multiplier, distributed generation
Procedia PDF Downloads 2373111 Field Effects on Seed Germination of Phaseolus Vulgaris, Early Seedling Growth and Chemical Composition
Authors: Najafi S., Heidai R., Jamei R., Tofigh F.
Abstract:
In order to study the effects of magnetic field on the root system and growth of Phaseolus vulgaris, an experiment was conducted in 2012. The possible involvement of magnetic field (MF) pretreatment in physiological factors of Phaseolus vulgaris was investigated. Seeds were subjected to 10 days with 1.8 mT of magnetic field for 1h per day. MF pretreatment decreased the plant height, fresh and dry weight, length of root and length of shoot, Chlorophyll a, Chlorophyll b and carotenoid in 10 days old seedling. In addition, activity of enzymes such as Catalase and Guaiacol peroxidase was decreased due to MF exposure. Also, the total Protein and DPPH content of the treated by magnetic field was not significantly changed in compare to control groups, while the flavonoid, Phenol and prolin content of the treated of the treated by magnetic field was significantly changed in compare to control groups. Lateral branches of roots and secondary roots increased with MF. The results suggest that pretreatment of this MF plays important roles in changes in crop productivity. In all cases there was observed a slight stimulating effect of the factors examined. The growth dynamics were weakened. The plants were shorter. Moreover, the effect of a magnetic field on the crop of Phaseolus vulgaris and its structure was small.Keywords: carotenoid, Chlorophyll a, Chlorophyll b, DPPH, enzymes, flavonoid, germination, growth, phenol, proline, protein, magnetic field, phaseolus vulgaris
Procedia PDF Downloads 5763110 Advancing Phenological Understanding of Plants/Trees Through Phenocam Digital Time-lapse Images
Authors: Siddhartha Khare, Suyash Khare
Abstract:
Phenology, a crucial discipline in ecology, offers insights into the seasonal dynamics of organisms within natural ecosystems and the underlying environmental triggers. Leveraging the potent capabilities of digital repeat photography, PhenoCams capture invaluable data on the phenology of crops, plants, and trees. These cameras yield digital imagery in Red Green Blue (RGB) color channels, and some advanced systems even incorporate Near Infrared (NIR) bands. This study presents compelling case studies employing PhenoCam technology to unravel the phenology of black spruce trees. Through the analysis of RGB color channels, a range of essential color metrics including red chromatic coordinate (RCC), green chromatic coordinate (GCC), blue chromatic coordinate (BCC), vegetation contrast index (VCI), and excess green index (ExGI) are derived. These metrics illuminate variations in canopy color across seasons, shedding light on bud and leaf development. This, in turn, facilitates a deeper understanding of phenological events and aids in delineating the growth periods of trees and plants. The initial phase of this study addresses critical questions surrounding the fidelity of continuous canopy greenness records in representing bud developmental phases. Additionally, it discerns which color-based index most accurately tracks the seasonal variations in tree phenology within evergreen forest ecosystems. The subsequent section of this study delves into the transition dates of black spruce (Picea mariana (Mill.) B.S.P.) phenology. This is achieved through a fortnightly comparative analysis of the MODIS normalized difference vegetation index (NDVI) and the enhanced vegetation index (EVI). By employing PhenoCam technology and leveraging advanced color metrics, this study significantly advances our comprehension of black spruce tree phenology, offering valuable insights for ecological research and management.Keywords: phenology, remote sensing, phenocam, color metrics, NDVI, GCC
Procedia PDF Downloads 583109 Formal Verification of Cache System Using a Novel Cache Memory Model
Authors: Guowei Hou, Lixin Yu, Wei Zhuang, Hui Qin, Xue Yang
Abstract:
Formal verification is proposed to ensure the correctness of the design and make functional verification more efficient. As cache plays a vital role in the design of System on Chip (SoC), and cache with Memory Management Unit (MMU) and cache memory unit makes the state space too large for simulation to verify, then a formal verification is presented for such system design. In the paper, a formal model checking verification flow is suggested and a new cache memory model which is called “exhaustive search model” is proposed. Instead of using large size ram to denote the whole cache memory, exhaustive search model employs just two cache blocks. For cache system contains data cache (Dcache) and instruction cache (Icache), Dcache memory model and Icache memory model are established separately using the same mechanism. At last, the novel model is employed to the verification of a cache which is module of a custom-built SoC system that has been applied in practical, and the result shows that the cache system is verified correctly using the exhaustive search model, and it makes the verification much more manageable and flexible.Keywords: cache system, formal verification, novel model, system on chip (SoC)
Procedia PDF Downloads 4933108 Air Pollution Control from Rice Shellers - a Case Study
Authors: S. M. Ahuja
Abstract:
A Rice Sheller is used for obtaining polished white rice from paddy. There are about 3000 Rice Shellers in Punjab and 50000 in India. During the process of shelling lot of dust is emitted from different unit operations like paddy silo, paddy shaker, bucket elevators, huskers, paddy separator etc. These dust emissions have adverse effect on the health of the workers and the wear and tear of the shelling machinery is also fast. All the dust emissions spewing out of these unit operations of a rice Sheller were contained by providing suitable hoods and enclosures while ensuring their workability. These were sucked by providing an induced draft fan followed by a high efficiency cyclone separator that has got an overall dust collection efficiency of more than 90 %. This cyclone separator replaced two cyclone separators and a filter bag house, which the Rice Sheller was already having. The dust concentration in the stack after the installation of cyclone separator is well within the stipulated standards. Besides controlling pollution there is improvement in the quality of products like bran and the life of shelling machinery has also enhanced. The payback period of this technology is less than four shelling months.Keywords: air pollution, cyclone separator, pneumatic conveying, rice shellers
Procedia PDF Downloads 2973107 Latitudinal Impact on Spatial and Temporal Variability of 7Be Activity Concentrations in Surface Air along Europe
Authors: M. A. Hernández-Ceballos, M. Marín-Ferrer, G. Cinelli, L. De Felice, T. Tollefsen, E. Nweke, P. V. Tognoli, S. Vanzo, M. De Cort
Abstract:
This study analyses the latitudinal impact of the spatial and temporal distribution on the cosmogenic isotope 7Be in surface air along Europe. The long-term database of the 6 sampling sites (Ivalo, Helsinki, Berlin, Freiburg, Sevilla and La Laguna), that regularly provide data to the Radioactivity Environmental Monitoring (REM) network managed by the Joint Research Centre (JRC) in Ispra, were used. The selection of the stations was performed attending to different factors, such as 1) heterogeneity in terms of latitude and altitude, and 2) long database coverage. The combination of these two parameters ensures a high degree of representativeness of the results. In the later, the temporal coverage varies between stations, being used in the present study sampling stations with a database more or less continuously from 1984 to 2011. The mean values of 7Be activity concentration presented a spatial distribution value ranging from 2.0 ± 0.9 mBq/m3 (Ivalo, north) to 4.8 ± 1.5 mBq/m3 (La Laguna, south). An increasing gradient with latitude was observed from the north to the south, 0.06 mBq/m3. However, there was no correlation with altitude, since all stations are sited within the atmospheric boundary layer. The analyses of the data indicated a dynamic range of 7Be activity for solar cycle and phase (maximum or minimum), having been observed different impact on stations according to their location. The results indicated a significant seasonal behavior, with the maximum concentrations occurring in the summer and minimum in the winter, although with differences in the values reached and in the month registered. Due to the large heterogeneity in the temporal pattern with which the individual radionuclide analyses were performed in each station, the 7Be monthly index was calculated to normalize the measurements and perform the direct comparison of monthly evolution among stations. Different intensity and evolution of the mean monthly index were observed. The knowledge of the spatial and temporal distribution of this natural radionuclide in the atmosphere is a key parameter for modeling studies of atmospheric processes, which are important phenomena to be taken into account in the case of a nuclear accident.Keywords: Berilium-7, latitudinal impact in Europe, seasonal and monthly variability, solar cycle
Procedia PDF Downloads 3363106 The Diurnal and Seasonal Relationships of Pedestrian Injuries Secondary to Motor Vehicles in Young People
Authors: Amina Akhtar, Rory O'Connor
Abstract:
Introduction: There remains significant morbidity and mortality in young pedestrians hit by motor vehicles, even in the era of pedestrian crossings and speed limits. The aim of this study was to compare incidence and injury severity of motor vehicle-related pedestrian trauma according to time of day and season in a young population, based on the supposition that injuries would be more prevalent during dusk and dawn and during autumn and winter. Methods: Data was retrieved for patients between 10-25 years old from the National Trauma Audit and Research Network (TARN) database who had been involved as pedestrians in motor vehicle accidents between 2015-2020. The incidence of injuries, their severity (using the Injury Severity Score [ISS]), hospital transfer time, and mortality were analysed according to the hours of daylight, darkness, and season. Results: The study identified a seasonal pattern, showing that autumn was the predominant season and led to 34.9% of injuries, with a further 25.4% in winter in comparison to spring and summer, with 21.4% and 18.3% of injuries, respectively. However, visibility alone was not a sufficient factor as 49.5% of injuries occurred during the time of darkness, while 50.5% occurred during daylight. Importantly, the greatest injury rate (number of injuries/hour) occurred between 1500-1630, correlating to school pick-up times. A further significant relationship between injury severity score (ISS) and daylight was demonstrated (p-value= 0.0124), with moderate injuries (ISS 9-14) occurring most commonly during the day (72.7%) and more severe injuries (ISS>15) occurred during the night (55.8%). Conclusion: We have identified a relationship between time of day and the frequency and severity of pedestrian trauma in young people. In addition, particular time groupings correspond to the greatest injury rate, suggesting that reduced visibility coupled with school pick-up times may play a significant role. This could be addressed through a targeted public health approach to implementing change. We recommend targeted public health measures to improve road safety that focus on these times and that increase the visibility of children combined with education for drivers.Keywords: major trauma, paediatric trauma, road traffic accidents, diurnal pattern
Procedia PDF Downloads 1003105 Performance Analysis of Arithmetic Units for IoT Applications
Authors: Nithiya C., Komathi B. J., Praveena N. G., Samuda Prathima
Abstract:
At present, the ultimate aim in digital system designs, especially at the gate level and lower levels of design abstraction, is power optimization. Adders are a nearly universal component of today's integrated circuits. Most of the research was on the design of high-speed adders to execute addition based on various adder structures. This paper discusses the ideal path for selecting an arithmetic unit for IoT applications. Based on the analysis of eight types of 16-bit adders, we found out Carry Look-ahead (CLA) produces low power. Additionally, multiplier and accumulator (MAC) unit is implemented with the Booth multiplier by using the low power adders in the order of preference. The design is synthesized and verified using Synopsys Design Compiler and VCS. Then it is implemented by using Cadence Encounter. The total power consumed by the CLA based booth multiplier is 0.03527mW, the total area occupied is 11260 um², and the speed is 2034 ps.Keywords: carry look-ahead, carry select adder, CSA, internet of things, ripple carry adder, design rule check, power delay product, multiplier and accumulator
Procedia PDF Downloads 1153104 Integrated Design of Froth Flotation Process in Sludge Oil Recovery Using Cavitation Nanobubbles for Increase the Efficiency and High Viscose Compatibility
Authors: Yolla Miranda, Marini Altyra, Karina Kalmapuspita Imas
Abstract:
Oily sludge wastes always fill in upstream and downstream petroleum industry process. Sludge still contains oil that can use for energy storage. Recycling sludge is a method to handling it for reduce the toxicity and very probable to get the remaining oil around 20% from its volume. Froth flotation, a common method based on chemical unit for separate fine solid particles from an aqueous suspension. The basic composition of froth flotation is the capture of oil droplets or small solids by air bubbles in an aqueous slurry, followed by their levitation and collection in a froth layer. This method has been known as no intensive energy requirement and easy to apply. But the low efficiency and unable treat the high viscosity become the biggest problem in froth flotation unit. This study give the design to manage the high viscosity of sludge first and then entering the froth flotation including cavitation tube on it to change the bubbles into nano particles. The recovery in flotation starts with the collision and adhesion of hydrophobic particles to the air bubbles followed by transportation of the hydrophobic particle-bubble aggregate from the collection zone to the froth zone, drainage and enrichment of the froth, and finally by its overflow removal from the cell top. The effective particle separation by froth flotation relies on the efficient capture of hydrophobic particles by air bubbles in three steps. The important step is collision. Decreasing the bubble particles will increasing the collision effect. It cause the process more efficient. The pre-treatment, froth flotation, and cavitation tube integrated each other. The design shows the integrated unit and its process.Keywords: sludge oil recovery, froth flotation, cavitation tube, nanobubbles, high viscosity
Procedia PDF Downloads 377