Search results for: protein structure classification
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 11770

Search results for: protein structure classification

11140 Effect of Supplemental Phytase on the Digestibility of Crude Protein and Phosphorus of Rice Husk in Broiler Chicken

Authors: Ibinabo I. Ilaboya, Eustace A. Iyayi

Abstract:

Phosphorus (P) is an indispensable mineral in broiler diets. Rice husk contains phytate-P and other nutrients like protein, carbohydrates, which are poorly digested in broiler chickens. Broiler chickens (BC) lacks sufficient phytase to help hydrolyse phytate-bound P. Hence excess of P is excreted by these chickens into the environment causing environmental pollution. Supplementation of such diets with microbial phytase helps to improve the digestibility of these nutrients. The study was conducted to determine the effect of phytase supplementation on the digestibility of crude protein (CP) and P of rice husk in BC. Six semi-purified diets of three levels of total P (3.46, 4.91 and 6.37g/kg) without and with 1,000 units of phytase per kg were formulated. Titanium dioxide was added to the diets at the rate of 5g/kg as an indigestible marker. At 20dposthatch, 288 broilers (Abor Acre) were weighed and allotted to the diets with 6 replicates of 8 birds each in a randomized complete block design. The birds had free access to the experimental diets until day 26 post-hatch. Phytase supplementation increased (p < 0.05) digestibility of P from 75-93%. Rice husk and its interaction with phytase had no significant (p > 0.05) effect on P digestibility, whereas there was significant (p < 0.01) effect on the interaction of rice husk with phytase on CP digestibility. There were linear increases (p < 0.01) in digested P and CP with phytase supplementation. The P and CP losses from the BC was reduced with the addition of phytase. Results suggest that supplementation of rice husk-based diets with microbial phytase improved pre-caecal digestibility of P and CP in broilers.

Keywords: crude protein, phosphorus, phytase, rice husk

Procedia PDF Downloads 143
11139 Common Orthodontic Indices and Classification in the United Kingdom

Authors: Ashwini Mohan, Haris Batley

Abstract:

An orthodontic index is used to rate or categorise an individual’s occlusion using a numeric or alphanumeric score. Indexing of malocclusions and their correction is important in epidemiology, diagnosis, communication between clinicians as well as their patients and assessing treatment outcomes. Many useful indices have been put forward, but to the author’s best knowledge, no one method to this day appears to be equally suitable for the use of epidemiologists, public health program planners and clinicians. This article describes the common clinical orthodontic indices and classifications used in United Kingdom.

Keywords: classification, indices, orthodontics, validity

Procedia PDF Downloads 151
11138 Detection and Classification of Myocardial Infarction Using New Extracted Features from Standard 12-Lead ECG Signals

Authors: Naser Safdarian, Nader Jafarnia Dabanloo

Abstract:

In this paper we used four features i.e. Q-wave integral, QRS complex integral, T-wave integral and total integral as extracted feature from normal and patient ECG signals to detection and localization of myocardial infarction (MI) in left ventricle of heart. In our research we focused on detection and localization of MI in standard ECG. We use the Q-wave integral and T-wave integral because this feature is important impression in detection of MI. We used some pattern recognition method such as Artificial Neural Network (ANN) to detect and localize the MI. Because these methods have good accuracy for classification of normal and abnormal signals. We used one type of Radial Basis Function (RBF) that called Probabilistic Neural Network (PNN) because of its nonlinearity property, and used other classifier such as k-Nearest Neighbors (KNN), Multilayer Perceptron (MLP) and Naive Bayes Classification. We used PhysioNet database as our training and test data. We reached over 80% for accuracy in test data for localization and over 95% for detection of MI. Main advantages of our method are simplicity and its good accuracy. Also we can improve accuracy of classification by adding more features in this method. A simple method based on using only four features which extracted from standard ECG is presented which has good accuracy in MI localization.

Keywords: ECG signal processing, myocardial infarction, features extraction, pattern recognition

Procedia PDF Downloads 456
11137 Domain-Specific Deep Neural Network Model for Classification of Abnormalities on Chest Radiographs

Authors: Nkechinyere Joy Olawuyi, Babajide Samuel Afolabi, Bola Ibitoye

Abstract:

This study collected a preprocessed dataset of chest radiographs and formulated a deep neural network model for detecting abnormalities. It also evaluated the performance of the formulated model and implemented a prototype of the formulated model. This was with the view to developing a deep neural network model to automatically classify abnormalities in chest radiographs. In order to achieve the overall purpose of this research, a large set of chest x-ray images were sourced for and collected from the CheXpert dataset, which is an online repository of annotated chest radiographs compiled by the Machine Learning Research Group, Stanford University. The chest radiographs were preprocessed into a format that can be fed into a deep neural network. The preprocessing techniques used were standardization and normalization. The classification problem was formulated as a multi-label binary classification model, which used convolutional neural network architecture to make a decision on whether an abnormality was present or not in the chest radiographs. The classification model was evaluated using specificity, sensitivity, and Area Under Curve (AUC) score as the parameter. A prototype of the classification model was implemented using Keras Open source deep learning framework in Python Programming Language. The AUC ROC curve of the model was able to classify Atelestasis, Support devices, Pleural effusion, Pneumonia, A normal CXR (no finding), Pneumothorax, and Consolidation. However, Lung opacity and Cardiomegaly had a probability of less than 0.5 and thus were classified as absent. Precision, recall, and F1 score values were 0.78; this implies that the number of False Positive and False Negative is the same, revealing some measure of label imbalance in the dataset. The study concluded that the developed model is sufficient to classify abnormalities present in chest radiographs into present or absent.

Keywords: transfer learning, convolutional neural network, radiograph, classification, multi-label

Procedia PDF Downloads 129
11136 Anti-inflammatory Effect of Wild Indigo (Baptisia tinctoria) Root on Raw 264.7 Cells with Stimulated Lipopolysaccharide

Authors: Akhmadjon Sultanov, Eun-Ho Lee, Hye-Jin Park, Young-Je Cho

Abstract:

This study tested the anti-inflammatory effect of wild indigo (Baptisia tinctoria) root in Raw 264.7 cells. We prepared two extracts of B. tinctoria; one in water and the other in 50% ethanol. Then we evaluated the toxicities of the B. tinctoria root extracts at 10 to 100 mg mL-1 concentrations in raw 264.7 cells and observed 80% cell viability. The anti-inflammatory effect of B. tinctoria root extract in lipopolysaccharide (LPS)-stimulated Raw 264.7 cells were observed with concentrations at 10, 30, and 50 μg mL-1. The results showed that 77.27-66.82% of nitric oxide (NO) production was inhibited by 50 μg mL-1 B. tinctoria root extract. The protein expression of Inducible NO synthase (iNOS) expression dramatically decreased by 93.14% and 52.65% in raw 264.7 cells treated with water and ethanol extracts of B. tinctoria root, respectively. Moreover, cyclooxygenase-2 (COX-2) protein expression decreased by 42.85% and 69.70% in raw 264.7 cells treated with water and ethanol extracts of B. tinctoria root, respectively. Furthermore, the mRNA expression of pro-inflammatory markers, such as tumor necrosis factor-alpha, interleukin-1β, interleukin-6, monocyte chemoattractant protein-1, and prostaglandin E synthase 2, was significantly suppressed in a concentration-dependent manner. Additionally, the B. tinctoria root extracts effectively inhibited enzymes involved in physiological activities. The B. tinctoria root extracts showed excellent anti-inflammatory effects and can be used as a functional material for biological activities.

Keywords: cytokine, macrophage, pro-inflammatory, protein expression, real-time PCR

Procedia PDF Downloads 71
11135 Fragility Analysis of Weir Structure Subjected to Flooding Water Damage

Authors: Oh Hyeon Jeon, WooYoung Jung

Abstract:

In this study, seepage analysis was performed by the level difference between upstream and downstream of weir structure for safety evaluation of weir structure against flooding. Monte Carlo Simulation method was employed by considering the probability distribution of the adjacent ground parameter, i.e., permeability coefficient of weir structure. Moreover, by using a commercially available finite element program (ABAQUS), modeling of the weir structure is carried out. Based on this model, the characteristic of water seepage during flooding was determined at each water level with consideration of the uncertainty of their corresponding permeability coefficient. Subsequently, fragility function could be constructed based on this response from numerical analysis; this fragility function results could be used to determine the weakness of weir structure subjected to flooding disaster. They can also be used as a reference data that can comprehensively predict the probability of failur,e and the degree of damage of a weir structure.

Keywords: weir structure, seepage, flood disaster fragility, probabilistic risk assessment, Monte-Carlo simulation, permeability coefficient

Procedia PDF Downloads 352
11134 Reducing Support Structures in Design for Additive Manufacturing: A Neural Networks Approach

Authors: Olivia Borgue, Massimo Panarotto, Ola Isaksson

Abstract:

This article presents a neural networks-based strategy for reducing the need for support structures when designing for additive manufacturing (AM). Additive manufacturing is a relatively new and immature industrial technology, and the information to make confident decisions when designing for AM is limited. This lack of information impacts especially the early stages of engineering design, for instance, it is difficult to actively consider the support structures needed for manufacturing a part. This difficulty is related to the challenge of designing a product geometry accounting for customer requirements, manufacturing constraints and minimization of support structure. The approach presented in this article proposes an automatized geometry modification technique for reducing the use of the support structures while designing for AM. This strategy starts with a neural network-based strategy for shape recognition to achieve product classification, using an STL file of the product as input. Based on the classification, an automatic part geometry modification based on MATLAB© is implemented. At the end of the process, the strategy presents different geometry modification alternatives depending on the type of product to be designed. The geometry alternatives are then evaluated adopting a QFD-like decision support tool.

Keywords: additive manufacturing, engineering design, geometry modification optimization, neural networks

Procedia PDF Downloads 253
11133 One Dimensional Magneto-Plasmonic Structure Based On Metallic Nano-Grating

Authors: S. M. Hamidi, M. Zamani

Abstract:

Magneto-plasmonic (MP) structures have turned into essential tools for the amplification of magneto-optical (MO) responses via the combination of MO activity and surface Plasmon resonance (SPR). Both the plasmonic and the MO properties of the resulting MP structure become interrelated because the SPR of the metallic medium. This interconnection can be modified the wave vector of surface plasmon polariton (SPP) in MP multilayer [1] or enhanced the MO activity [2- 3] and also modified the sensor responses [4]. There are several types of MP structures which are studied to enhance MO response in miniaturized configuration. In this paper, we propose a new MP structure based on the nano-metal grating and we investigate the MO and optical properties of this new structure. Our new MP structure fabricate by DC magnetron sputtering method and our home made MO experimental setup use for characterization of the structure.

Keywords: Magneto-plasmonic structures, magneto-optical effect, nano-garting

Procedia PDF Downloads 563
11132 The Features of Formation of Russian Agriculture’s Sectoral Structure

Authors: Natalya G. Filimonova, Mariya G. Ozerova, Irina N. Ermakova

Abstract:

The long-term strategy of the economic development of Russia up to 2030 is based on the concept of sustainable growth. The determining factor of such development is complex changes in the economic system which may be achieved by making progressive changes in its structure. The structural changes determine the character and the direction of economic development, as well as they include all elements of this system without exception, and their regulated character ensures the most rapid aim achievement. This article has discussed the industrial structure of the agriculture in Russia. With the use of the system of indexes, the article has determined the directions, intensity, and speed of structural shifts. The influence of structural changes on agricultural production development has been found out. It is noticed that the changes in the industrial structure are synchronized with the changes in the organisation and economic structure. Efficiency assessment of structural changes allowed to trace the efficiency of structural changes and elaborate the main directions for agricultural policy improvement.

Keywords: Russian agricultural sectors, sectoral structure, organizational and economic structure, structural changes

Procedia PDF Downloads 170
11131 Using Deep Learning for the Detection of Faulty RJ45 Connectors on a Radio Base Station

Authors: Djamel Fawzi Hadj Sadok, Marrone Silvério Melo Dantas Pedro Henrique Dreyer, Gabriel Fonseca Reis de Souza, Daniel Bezerra, Ricardo Souza, Silvia Lins, Judith Kelner

Abstract:

A radio base station (RBS), part of the radio access network, is a particular type of equipment that supports the connection between a wide range of cellular user devices and an operator network access infrastructure. Nowadays, most of the RBS maintenance is carried out manually, resulting in a time consuming and costly task. A suitable candidate for RBS maintenance automation is repairing faulty links between devices caused by missing or unplugged connectors. A suitable candidate for RBS maintenance automation is repairing faulty links between devices caused by missing or unplugged connectors. This paper proposes and compares two deep learning solutions to identify attached RJ45 connectors on network ports. We named connector detection, the solution based on object detection, and connector classification, the one based on object classification. With the connector detection, we get an accuracy of 0:934, mean average precision 0:903. Connector classification, get a maximum accuracy of 0:981 and an AUC of 0:989. Although connector detection was outperformed in this study, this should not be viewed as an overall result as connector detection is more flexible for scenarios where there is no precise information about the environment and the possible devices. At the same time, the connector classification requires that information to be well-defined.

Keywords: radio base station, maintenance, classification, detection, deep learning, automation

Procedia PDF Downloads 201
11130 A Similarity Measure for Classification and Clustering in Image Based Medical and Text Based Banking Applications

Authors: K. P. Sandesh, M. H. Suman

Abstract:

Text processing plays an important role in information retrieval, data-mining, and web search. Measuring the similarity between the documents is an important operation in the text processing field. In this project, a new similarity measure is proposed. To compute the similarity between two documents with respect to a feature the proposed measure takes the following three cases into account: (1) The feature appears in both documents; (2) The feature appears in only one document and; (3) The feature appears in none of the documents. The proposed measure is extended to gauge the similarity between two sets of documents. The effectiveness of our measure is evaluated on several real-world data sets for text classification and clustering problems, especially in banking and health sectors. The results show that the performance obtained by the proposed measure is better than that achieved by the other measures.

Keywords: document classification, document clustering, entropy, accuracy, classifiers, clustering algorithms

Procedia PDF Downloads 518
11129 Board of Directors' Structure and Corporate Restructuring: A Preliminary Evidences

Authors: Norazlan Alias, Mohd. Hasimi Yaacob

Abstract:

This study examines the impact of governance structure via corporate restructuring decision on selected firm characteristics and performance. Results of selected ratios that represent corporate decision, governance structure and performance in pre and post restructuring are analyzed for some conclusions. This study uses annual data of companies that are consistently listed on the Main Board of Bursa Malaysia and announced completed corporate restructuring. The results show that only debt ratio is significantly different before and after asset restructuring. This study concludes that firms do not view corporate restructuring namely asset restructuring as an opportunity to simultaneous enhance governance structure that could also contribute enhance firm performance and board of directors’ structure subsequent to asset restructuring only has significantly influence on changing capital structure but not on firm performance.

Keywords: board of directors, capital structure, corporate restructuring, performance

Procedia PDF Downloads 403
11128 Delicate Balance between Cardiac Stress and Protection: Role of Mitochondrial Proteins

Authors: Zuzana Tatarkova, Ivana Pilchova, Michal Cibulka, Martin Kolisek, Peter Racay, Peter Kaplan

Abstract:

Introduction: Normal functioning of mitochondria is crucial for cardiac performance. Mitochondria undergo mitophagy and biogenesis, and mitochondrial proteins are subject to extensive post-translational modifications. The state of mitochondrial homeostasis reflects overall cellular fitness and longevity. Perturbed mitochondria produce less ATP, release greater amounts of reactive molecules, and are more prone to apoptosis. Therefore mitochondrial turnover is an integral aspect of quality control in which dysfunctional mitochondria are selectively eliminated through mitophagy. Currently, the progressive deterioration of physiological functions is seen as accumulation of modified/damaged proteins with limiting regenerative ability and disturbance of such affected protein-protein communication throughout aging in myocardial cells. Methodologies: For our study was used immunohistochemistry, biochemical methods: spectrophotometry, western blotting, immunodetection as well as more sophisticated 2D electrophoresis and mass spectrometry for evaluation protein-protein interactions and specific post-translational modification. Results and Discussion: Mitochondrial stress response to reactive species was evaluated as electron transport chain (ETC) complexes, redox-active molecules, and their possible communication. Protein-protein interactions revealed a strong linkage between age and ETC protein subunits. Redox state was strongly affected in senescent mitochondria with shift in favor of more pro-oxidizing condition within cardiomyocytes. Acute myocardial ischemia and ischemia-reperfusion (IR) injury affected ETC complexes I, II and IV with no change in complex III. Ischemia induced decrease in total antioxidant capacity, MnSOD, GSH and catalase activity with recovery in some extent during reperfusion. While MnSOD protein content was higher in IR group, activity returned to 95% of control. Nitric oxide is one of the biological molecules that can out compete MnSOD for superoxide and produce peroxynitrite. This process is faster than dismutation and led to the 10-fold higher production of nitrotyrosine after IR injury in adult with higher protection in senescent ones. 2D protein profiling revealed 140 mitochondrial proteins, 12 of them with significant changes after IR injury and 36 individual nitrotyrosine-modified proteins further identified by mass spectrometry. Linking these two groups, 5 proteins were altered after IR as well as nitrated, but only one showed massive nitration per lowering content of protein after IR injury in adult. Conclusions: Senescent cells have greater proportion of protein content, which might be modulated by several post-translational modifications. If these protein modifications are connected to functional consequences and protein-protein interactions are revealed, link may lead to the solution. Assume all together, dysfunctional proteostasis can play a causative role and restoration of protein homeostasis machinery is protective against aging and possibly age-related disorders. This work was supported by the project VEGA 1/0018/18 and by project 'Competence Center for Research and Development in the field of Diagnostics and Therapy of Oncological diseases', ITMS: 26220220153, co-financed from EU sources.

Keywords: aging heart, mitochondria, proteomics, redox state

Procedia PDF Downloads 167
11127 Identification of High-Rise Buildings Using Object Based Classification and Shadow Extraction Techniques

Authors: Subham Kharel, Sudha Ravindranath, A. Vidya, B. Chandrasekaran, K. Ganesha Raj, T. Shesadri

Abstract:

Digitization of urban features is a tedious and time-consuming process when done manually. In addition to this problem, Indian cities have complex habitat patterns and convoluted clustering patterns, which make it even more difficult to map features. This paper makes an attempt to classify urban objects in the satellite image using object-oriented classification techniques in which various classes such as vegetation, water bodies, buildings, and shadows adjacent to the buildings were mapped semi-automatically. Building layer obtained as a result of object-oriented classification along with already available building layers was used. The main focus, however, lay in the extraction of high-rise buildings using spatial technology, digital image processing, and modeling, which would otherwise be a very difficult task to carry out manually. Results indicated a considerable rise in the total number of buildings in the city. High-rise buildings were successfully mapped using satellite imagery, spatial technology along with logical reasoning and mathematical considerations. The results clearly depict the ability of Remote Sensing and GIS to solve complex problems in urban scenarios like studying urban sprawl and identification of more complex features in an urban area like high-rise buildings and multi-dwelling units. Object-Oriented Technique has been proven to be effective and has yielded an overall efficiency of 80 percent in the classification of high-rise buildings.

Keywords: object oriented classification, shadow extraction, high-rise buildings, satellite imagery, spatial technology

Procedia PDF Downloads 155
11126 Computational Approach to Identify Novel Chemotherapeutic Agents against Multiple Sclerosis

Authors: Syed Asif Hassan, Tabrej Khan

Abstract:

Multiple sclerosis (MS) is a chronic demyelinating autoimmune disorder, of the central nervous system (CNS). In the present scenario, the current therapies either do not halt the progression of the disease or have side effects which limit the usage of current Disease Modifying Therapies (DMTs) for a longer period of time. Therefore, keeping the current treatment failure schema, we are focusing on screening novel analogues of the available DMTs that specifically bind and inhibit the Sphingosine1-phosphate receptor1 (S1PR1) thereby hindering the lymphocyte propagation toward CNS. The novel drug-like analogs molecule will decrease the frequency of relapses (recurrence of the symptoms associated with MS) with higher efficacy and lower toxicity to human system. In this study, an integrated approach involving ligand-based virtual screening protocol (Ultrafast Shape Recognition with CREDO Atom Types (USRCAT)) to identify the non-toxic drug like analogs of the approved DMTs were employed. The potency of the drug-like analog molecules to cross the Blood Brain Barrier (BBB) was estimated. Besides, molecular docking and simulation using Auto Dock Vina 1.1.2 and GOLD 3.01 were performed using the X-ray crystal structure of Mtb LprG protein to calculate the affinity and specificity of the analogs with the given LprG protein. The docking results were further confirmed by DSX (DrugScore eXtented), a robust program to evaluate the binding energy of ligands bound to the ligand binding domain of the Mtb LprG lipoprotein. The ligand, which has a higher hypothetical affinity, also has greater negative value. Further, the non-specific ligands were screened out using the structural filter proposed by Baell and Holloway. Based on the USRCAT, Lipinski’s values, toxicity and BBB analysis, the drug-like analogs of fingolimod and BG-12 showed that RTL and CHEMBL1771640, respectively are non-toxic and permeable to BBB. The successful docking and DSX analysis showed that RTL and CHEMBL1771640 could bind to the binding pocket of S1PR1 receptor protein of human with greater affinity than as compared to their parent compound (Fingolimod). In this study, we also found that all the drug-like analogs of the standard MS drugs passed the Bell and Holloway filter.

Keywords: antagonist, binding affinity, chemotherapeutics, drug-like, multiple sclerosis, S1PR1 receptor protein

Procedia PDF Downloads 256
11125 Predicting High-Risk Endometrioid Endometrial Carcinomas Using Protein Markers

Authors: Yuexin Liu, Gordon B. Mills, Russell R. Broaddus, John N. Weinstein

Abstract:

The lethality of endometrioid endometrial cancer (EEC) is primarily attributable to the high-stage diseases. However, there are no available biomarkers that predict EEC patient staging at the time of diagnosis. We aim to develop a predictive scheme to help in this regards. Using reverse-phase protein array expression profiles for 210 EEC cases from The Cancer Genome Atlas (TCGA), we constructed a Protein Scoring of EEC Staging (PSES) scheme for surgical stage prediction. We validated and evaluated its diagnostic potential in an independent cohort of 184 EEC cases obtained at MD Anderson Cancer Center (MDACC) using receiver operating characteristic curve analyses. Kaplan-Meier survival analysis was used to examine the association of PSES score with patient outcome, and Ingenuity pathway analysis was used to identify relevant signaling pathways. Two-sided statistical tests were used. PSES robustly distinguished high- from low-stage tumors in the TCGA cohort (area under the ROC curve [AUC]=0.74; 95% confidence interval [CI], 0.68 to 0.82) and in the validation cohort (AUC=0.67; 95% CI, 0.58 to 0.76). Even among grade 1 or 2 tumors, PSES was significantly higher in high- than in low-stage tumors in both the TCGA (P = 0.005) and MDACC (P = 0.006) cohorts. Patients with positive PSES score had significantly shorter progression-free survival than those with negative PSES in the TCGA (hazard ratio [HR], 2.033; 95% CI, 1.031 to 3.809; P = 0.04) and validation (HR, 3.306; 95% CI, 1.836 to 9.436; P = 0.0007) cohorts. The ErbB signaling pathway was most significantly enriched in the PSES proteins and downregulated in high-stage tumors. PSES may provide clinically useful prediction of high-risk tumors and offer new insights into tumor biology in EEC.

Keywords: endometrial carcinoma, protein, protein scoring of EEC staging (PSES), stage

Procedia PDF Downloads 220
11124 Design and Implementation of Generative Models for Odor Classification Using Electronic Nose

Authors: Kumar Shashvat, Amol P. Bhondekar

Abstract:

In the midst of the five senses, odor is the most reminiscent and least understood. Odor testing has been mysterious and odor data fabled to most practitioners. The delinquent of recognition and classification of odor is important to achieve. The facility to smell and predict whether the artifact is of further use or it has become undesirable for consumption; the imitation of this problem hooked on a model is of consideration. The general industrial standard for this classification is color based anyhow; odor can be improved classifier than color based classification and if incorporated in machine will be awfully constructive. For cataloging of odor for peas, trees and cashews various discriminative approaches have been used Discriminative approaches offer good prognostic performance and have been widely used in many applications but are incapable to make effectual use of the unlabeled information. In such scenarios, generative approaches have better applicability, as they are able to knob glitches, such as in set-ups where variability in the series of possible input vectors is enormous. Generative models are integrated in machine learning for either modeling data directly or as a transitional step to form an indeterminate probability density function. The algorithms or models Linear Discriminant Analysis and Naive Bayes Classifier have been used for classification of the odor of cashews. Linear Discriminant Analysis is a method used in data classification, pattern recognition, and machine learning to discover a linear combination of features that typifies or divides two or more classes of objects or procedures. The Naive Bayes algorithm is a classification approach base on Bayes rule and a set of qualified independence theory. Naive Bayes classifiers are highly scalable, requiring a number of restraints linear in the number of variables (features/predictors) in a learning predicament. The main recompenses of using the generative models are generally a Generative Models make stronger assumptions about the data, specifically, about the distribution of predictors given the response variables. The Electronic instrument which is used for artificial odor sensing and classification is an electronic nose. This device is designed to imitate the anthropological sense of odor by providing an analysis of individual chemicals or chemical mixtures. The experimental results have been evaluated in the form of the performance measures i.e. are accuracy, precision and recall. The investigational results have proven that the overall performance of the Linear Discriminant Analysis was better in assessment to the Naive Bayes Classifier on cashew dataset.

Keywords: odor classification, generative models, naive bayes, linear discriminant analysis

Procedia PDF Downloads 387
11123 Preparation of Bead-On-String Alginate/Soy Protein Isolated Nanofibers via Water-Based Electrospinning and Its Application for Drug Loading

Authors: Patcharakamon Nooeaid, Piyachat Chuysrinuan

Abstract:

Electrospun natural polymers-based nanofibers are one of the most interesting materials used in tissue engineering and drug delivery applications. Bead-on-string nanofibers have gained considerable interest for sustained drug release. Vancomycin was used as the model drug and sodium alginate (SA)/soy protein isolated (SPI) as the polymer blend to fabricate the bead-on-string nanofibers by aqueous-based electrospinning. The bead-on-string SA/SPI nanofibers were successfully fabricated by the addition of poly(ethylene oxide) (PEO) as a co-blending polymer. SA-PEO with mass ratio of 70/30 showed the best spinnability with continuous nanofibers without the occurrence of beads. Bead structure formed with the addition of SPI and bead number increased with increasing SPI content. The electrospinning of 80/20 SA-PEO/SPI was obtained as a great promising bead-on-string nanofibers for drug loading, while the solution of 50/50 was not able to obtain continuous fibers. In vitro release tests showed that a more sustainable release profile up to 14 days with less initial burst release on day 1 could be obtained from the bead-on-string fibers than from smooth fibers with uniform diameter. In addition, vancomycin-loaded beaded fibers inhibited the growth of Staphylococcus aureus (S. aureus) bacteria. Therefore, the SA-PEO/SPI nanofibers showed the potential to be used as biomaterials for tissue engineering and drug delivery.

Keywords: bead-on-string fibers, electrospinning, drug delivery, tissue engineering

Procedia PDF Downloads 334
11122 Production and Evaluation of Enriched Aadun (a Local Maize Snack)

Authors: E. Oluwasola, E. Bamidele, E. Ogunbusola

Abstract:

Enriched “aadun” was produced from maize with, supplemented with cray fish and beans. Sodium chloride (Nacl) was also added to the product which acts as preservatives. The produced enriched “aadun” was compared with commercial “aadun” organoleptically the result of the sensory evaluation carried out on the product showed that there is a statistical significant difference between the mouth feel of enriched and commercial “aadun” at 0.05 level of significance (t=5.499, P<0.05) Similarly, the mean difference between enriched and commercial “aadun” in terms of aroma (t=4.403, P<0.05), taste (t=4.592, P<0.05) colour (t=2.788, P<0.05) and general acceptability (t=3.894, P<0.05) is statistically significant at 95% confidence level in each case, therefore, it is clearly revealed that product 321 (Enriched “aadun”) is more acceptable and significant better than product 432 (commercial “aadun”) in all the attributes evaluated. The proximate analysis using standard methods of analysis was carried out which include the moisture content, ash and protein content for both the enriched aadun and commercial aadun the result showed moisture content 9%, ash 6.2%, protein 19.6% and 12.9% moisture content, 4%ash content, 8.75% protein for the commercial and improved aadun respectively.

Keywords: aadun, enriched, maize, supplemented

Procedia PDF Downloads 556
11121 A Comparative Study for Various Techniques Using WEKA for Red Blood Cells Classification

Authors: Jameela Ali, Hamid A. Jalab, Loay E. George, Abdul Rahim Ahmad, Azizah Suliman, Karim Al-Jashamy

Abstract:

Red blood cells (RBC) are the most common types of blood cells and are the most intensively studied in cell biology. The lack of RBCs is a condition in which the amount of hemoglobin level is lower than normal and is referred to as “anemia”. Abnormalities in RBCs will affect the exchange of oxygen. This paper presents a comparative study for various techniques for classifyig the red blood cells as normal, or abnormal (anemic) using WEKA. WEKA is an open source consists of different machine learning algorithms for data mining applications. The algorithm tested are Radial Basis Function neural network, Support vector machine, and K-Nearest Neighbors algorithm. Two sets of combined features were utilized for classification of blood cells images. The first set, exclusively consist of geometrical features, was used to identify whether the tested blood cell has a spherical shape or non-spherical cells. While the second set, consist mainly of textural features was used to recognize the types of the spherical cells. We have provided an evaluation based on applying these classification methods to our RBCs image dataset which were obtained from Serdang Hospital-Malaysia, and measuring the accuracy of test results. The best achieved classification rates are 97%, 98%, and 79% for Support vector machines, Radial Basis Function neural network, and K-Nearest Neighbors algorithm respectively

Keywords: red blood cells, classification, radial basis function neural networks, suport vector machine, k-nearest neighbors algorithm

Procedia PDF Downloads 480
11120 Ethanol Extract of Potentilla pradoxa Nutt Inhibits LPS-induced Inflammatory Responses via NF-κB and AP-1 Inactivation

Authors: Hae-Jun Lee, Ji-Sun Shin, Kyung-Tae Lee

Abstract:

Potentilla species (Rosasease) have been used in traditional medicine to treat different ailment, disease or malady. In this study, we investigated the anti-inflammatory effects of ethanol extracts of NUTT (EPP) in lipopolysaccharide (LPS)-induced Raw 264.7 macrophages and septic mice. EPP suppressed LPS-induced nitric oxide (NO) and prostaglandin E2 (PGE2) production in LPS-induced Raw 264.7 macrophages. Consistent with these observations, EPP reduced the expressions of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) by downregulation of their promoter activities. EPP inhibited tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6) and interleukin-1β (IL-1β) at production and mRNA levels. Molecularly, EPP attenuated the LPS-induced transcriptional activity, and DNA-binding activity of nuclear factor-κB (NF-κB), and this was associated with a decrease of translocation and phosphorylation of p65 NF-κB by inhibiting the inhibitory κB-α (IκB-α) degradation and IκB kinase-α/β (IKK-α/β) phosphorylation. Furthermore, EPP suppressed the LPS-induced activation of activator protein-1 (AP-1) by reducing the expression of c-Fos and c-Jun in nuclear. EPP also reduced the phosphorylation of mitogen-activated protein kinase (MAPK), such as p38 MAPK and c-Jun N-terminal kinase/stress-activated protein kinase (JNK). In a sepsis model, pretreatment with EPP reduced the LPS-induced lethality. Collectively, these results suggest that the anti-inflammatory effects of EPP were associated with the suppression of NF-κB and AP-1 activation, and support its possible therapeutic role for the treatment of sepsis.

Keywords: anti-inflammation, activator protein-1, nuclear factor κB, Potentilla paradoxa Nutt

Procedia PDF Downloads 334
11119 Board Structure, Composition, and Firm Performance: A Theoretical and Empirical Review

Authors: Suleiman Ahmed Badayi

Abstract:

Corporate governance literature is very wide and involves several empirical studies conducted on the relationship between board structure, composition and firm performance. The separation of ownership and control in organizations were aimed at reducing the losses suffered by the investors in the event of financial scandals. This paper reviewed the theoretical and empirical literature on the relationship between board composition and its impact on firm performance. The findings from the studies provide different results while some are of the view that board structure is related to firm performance, many empirical studies indicates no relationship. However, others found a U-shape relationship between firm performance and board structure. Therefore, this study argued that board structure is not much significant to determine the financial performance of a firm.

Keywords: board structure, composition, firm performance, corporate governance

Procedia PDF Downloads 566
11118 Growth Response and Nutrient Utilization of African Mud Catfish Clarias gariepinus (Burchell, 1822) Fingerlings Fed Processed Macroalgae and Macroalgae-Based Formulated Feeds

Authors: A. O Amosu, A. M Hammed, G. W. Maneveldt, D. V. Robertson-Andersson

Abstract:

In aquaculture, feed utilization is an important factor affecting growth of the target species, and thus the success of the aquaculture operation. Growth of C. gariepinus fingerlings (weight 1.60 ± 0.05 g; length 4.50 ± 0.07cm) was monitored in a closed door hatchery for a period of 21 days in an experiment consisting of 4 treatments stocked at 20 fish/10 litre tanks, fed in triplicate twice daily (08:30, 17:30) at 4% body weight with weight changes recorded every 3 days. Treatments were: 1) FeedX; 2) 35% crude protein diet + non enriched Ulva spp (11.18% crude protein) (CD + NEU); 3) 35% crude protein diet + enriched Ulva spp (11.98% crude protein)(CD +EU) and 4) control diet of 35% crude protein (CD). The production of Ulva spp. biomass was cultivated for a period of 3 months. The result shows that the fish fed macroalgal enriched diet had good growth, though no significant difference (p > 0.05) was recorded amongst the weight gain, %weight gain, specific growth rates and nitrogen metabolism of diets CD + NEU, CD + EU and CD. Significant differences (p < 0.05), were, however, found in the food conversion ratio (FCR) and gross food conversion ratio (gFCR) among the fingerlings across all the different experimental diets. The best FCRs were recorded for control diet (0.79 ± 2.39) and the Ulva enriched (1.75 ± 1.34) diets. The results suggest that the fingerlings were able to utilize Ulva supplemented with control diet better than the FeedX. We have shown that Ulva supplemented diets are good substitutes for formulated and commercial feeds, with potential to be successful fish feed in aquaculture systems.

Keywords: aquaculture, clarias gariepinus, growth, macroalgae, nutrient, ulva

Procedia PDF Downloads 701
11117 A Spatial Hypergraph Based Semi-Supervised Band Selection Method for Hyperspectral Imagery Semantic Interpretation

Authors: Akrem Sellami, Imed Riadh Farah

Abstract:

Hyperspectral imagery (HSI) typically provides a wealth of information captured in a wide range of the electromagnetic spectrum for each pixel in the image. Hence, a pixel in HSI is a high-dimensional vector of intensities with a large spectral range and a high spectral resolution. Therefore, the semantic interpretation is a challenging task of HSI analysis. We focused in this paper on object classification as HSI semantic interpretation. However, HSI classification still faces some issues, among which are the following: The spatial variability of spectral signatures, the high number of spectral bands, and the high cost of true sample labeling. Therefore, the high number of spectral bands and the low number of training samples pose the problem of the curse of dimensionality. In order to resolve this problem, we propose to introduce the process of dimensionality reduction trying to improve the classification of HSI. The presented approach is a semi-supervised band selection method based on spatial hypergraph embedding model to represent higher order relationships with different weights of the spatial neighbors corresponding to the centroid of pixel. This semi-supervised band selection has been developed to select useful bands for object classification. The presented approach is evaluated on AVIRIS and ROSIS HSIs and compared to other dimensionality reduction methods. The experimental results demonstrate the efficacy of our approach compared to many existing dimensionality reduction methods for HSI classification.

Keywords: dimensionality reduction, hyperspectral image, semantic interpretation, spatial hypergraph

Procedia PDF Downloads 306
11116 Government (Big) Data Ecosystem: Definition, Classification of Actors, and Their Roles

Authors: Syed Iftikhar Hussain Shah, Vasilis Peristeras, Ioannis Magnisalis

Abstract:

Organizations, including governments, generate (big) data that are high in volume, velocity, veracity, and come from a variety of sources. Public Administrations are using (big) data, implementing base registries, and enforcing data sharing within the entire government to deliver (big) data related integrated services, provision of insights to users, and for good governance. Government (Big) data ecosystem actors represent distinct entities that provide data, consume data, manipulate data to offer paid services, and extend data services like data storage, hosting services to other actors. In this research work, we perform a systematic literature review. The key objectives of this paper are to propose a robust definition of government (big) data ecosystem and a classification of government (big) data ecosystem actors and their roles. We showcase a graphical view of actors, roles, and their relationship in the government (big) data ecosystem. We also discuss our research findings. We did not find too much published research articles about the government (big) data ecosystem, including its definition and classification of actors and their roles. Therefore, we lent ideas for the government (big) data ecosystem from numerous areas that include scientific research data, humanitarian data, open government data, industry data, in the literature.

Keywords: big data, big data ecosystem, classification of big data actors, big data actors roles, definition of government (big) data ecosystem, data-driven government, eGovernment, gaps in data ecosystems, government (big) data, public administration, systematic literature review

Procedia PDF Downloads 162
11115 Towards a Balancing Medical Database by Using the Least Mean Square Algorithm

Authors: Kamel Belammi, Houria Fatrim

Abstract:

imbalanced data set, a problem often found in real world application, can cause seriously negative effect on classification performance of machine learning algorithms. There have been many attempts at dealing with classification of imbalanced data sets. In medical diagnosis classification, we often face the imbalanced number of data samples between the classes in which there are not enough samples in rare classes. In this paper, we proposed a learning method based on a cost sensitive extension of Least Mean Square (LMS) algorithm that penalizes errors of different samples with different weight and some rules of thumb to determine those weights. After the balancing phase, we applythe different classifiers (support vector machine (SVM), k- nearest neighbor (KNN) and multilayer neuronal networks (MNN)) for balanced data set. We have also compared the obtained results before and after balancing method.

Keywords: multilayer neural networks, k- nearest neighbor, support vector machine, imbalanced medical data, least mean square algorithm, diabetes

Procedia PDF Downloads 532
11114 Establishment of Reference Interval for Serum Protein Electrophoresis of Apparently Healthy Adults in Addis Ababa, Ethiopia

Authors: Demiraw Bikila, Tadesse Lejisa, Yosef Tolcha, Chala Bashea, Mehari Meles Tigist Getahun Genet Ashebir, Wossene Habtu, Feyissa Challa, Ousman Mohammed, Melkitu Kassaw, Adisu Kebede, Letebrhan G. Egzeabher, Endalkachew Befekadu, Mistire Wolde, Aster Tsegaye

Abstract:

Background: Even though several factors affect reference intervals (RIs), the company-derived values are currently in use in many laboratories worldwide. However, little or no data is available regarding serum protein RIs, mainly in resource-limited setting countries like Ethiopia. Objective: To establish a reference interval for serum protein electrophoresis of apparently healthy adults in Addis Ababa, Ethiopia. Method: A cross-sectional study was conducted on a total of 297 apparently healthy adults from April-October 2019 in four selected sub-cities (Akaki, Kirkos, Arada, Yeka) of Addis Ababa, Ethiopia. Laboratory analysis of collected samples was performed using Capillarys 2 Flex Piercing analyzer, while statistical analysis was done using SPSS version 23 and med-cal software. Mann-Whitney test was used to check Partitions. Non-parametric method of reference range establishment was performed as per CLSI guideline EP28A3C. Result: The established RIs were: Albumin 53.83-64.59%, 52.24-63.55%; Alpha-1 globulin 3.04-5.40%, 3.44-5.60%; Alpha-2 globulin 8.0-12.67%, 8.44-12.87%; and Beta-1 globulin 5.01-7.38%, 5.14-7.86%. Moreover, Albumin to globulin ratio was 1.16-1.8, 1.09-1.74 for males and females, respectively. The combined RIs for Beta-2 globulin and Gamma globulin were 2.54-4.90% and 12.40-21.66%, respectively. Conclusion: The established reference interval for serum protein fractions revealed gender-specific differences except for Beta-2 globulin and Gamma globulin.

Keywords: serum protein electrophoresis, reference interval, Addis Ababa, Ethiopia

Procedia PDF Downloads 238
11113 Enhanced Arabic Semantic Information Retrieval System Based on Arabic Text Classification

Authors: A. Elsehemy, M. Abdeen , T. Nazmy

Abstract:

Since the appearance of the Semantic web, many semantic search techniques and models were proposed to exploit the information in ontology to enhance the traditional keyword-based search. Many advances were made in languages such as English, German, French and Spanish. However, other languages such as Arabic are not fully supported yet. In this paper we present a framework for ontology based information retrieval for Arabic language. Our system consists of four main modules, namely query parser, indexer, search and a ranking module. Our approach includes building a semantic index by linking ontology concepts to documents, including an annotation weight for each link, to be used in ranking the results. We also augmented the framework with an automatic document categorizer, which enhances the overall document ranking. We have built three Arabic domain ontologies: Sports, Economic and Politics as example for the Arabic language. We built a knowledge base that consists of 79 classes and more than 1456 instances. The system is evaluated using the precision and recall metrics. We have done many retrieval operations on a sample of 40,316 documents with a size 320 MB of pure text. The results show that the semantic search enhanced with text classification gives better performance results than the system without classification.

Keywords: Arabic text classification, ontology based retrieval, Arabic semantic web, information retrieval, Arabic ontology

Procedia PDF Downloads 525
11112 Effect of Composition and Cooling Rate on the Solidification Structure of Al-Er Alloy

Authors: Jing Ning, Kunyuan Gao

Abstract:

The microstructure and phase structure of Al-Er alloys with Er content of 10, 20, 30wt% at cooling rate of 60, 40 and 5℃/h were analyzed using scanning electron microscope (SEM) and X-ray diffraction (XRD). Experimental results showed that for solidification of the hypereutectic Al-Er alloys at different conditions, a halo of α-Al appeared around the primary Al₃Er phase. Analysis of the solidification process indicated that after the primary Al₃Er phase formed, the composition of supercooled liquid phase located outside the coupled zone of eutectic growth below the eutectic line, which leaded to the formation of Al halo. With the increase of Er content, the blocky primary Al₃Er phase expanded from 200μm to 1mm in size. With the decrease of cooling rate, the morphology and phase structure of alloy were different. At the cooling rate of 60℃/h, it was obtained the primary Al3Er phase with L1₂ structure, whose profile was straight. Meanwhile, the eutectic structure was flocculent. At the quite slow cooling rate of 5℃/h, it was obtained the primary Al₃Er phase with hR20 structure with irregular jagged profile, and the eutectic structure was approximately strip-shaped. These characteristics were closely related to the cooling rate of solidification. The XRD analysis showed that for Al₃Er phase, the lattice constant a of L1₂ structure was 4.2158Å, and a, c of hR20 structure were 6.0321Å and 35.6290Å, respectively.

Keywords: Al-Er alloy, composition, cooling rate, microstructure

Procedia PDF Downloads 108
11111 Band Structure Computation of GaMnAs Using the Multiband k.p Theory

Authors: Khadijah B. Alziyadi, Khawlh A. Alzubaidi, Amor M. Alsayari

Abstract:

Recently, GaMnAs diluted magnetic semiconductors(DMSs) have received considerable attention because they combine semiconductor and magnetic properties. GaMnAs has been used as a model DMS and as a test bed for many concepts and functionalities of spintronic devices. In this paper, a theoretical study on the band structure ofGaMnAswill be presented. The model that we used in this study is the 8-band k.p methodwherespin-orbit interaction, spin splitting, and strain are considered. The band structure of GaMnAs will be calculated in different directions in the reciprocal space. The effect of manganese content on the GaMnAs band structure will be discussed. Also, the influence of strain, which varied continuously from tensile to compressive, on the different bands will be studied.

Keywords: band structure, diluted magnetic semiconductor, k.p method, strain

Procedia PDF Downloads 152