Search results for: multi-modality brain stimulation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1534

Search results for: multi-modality brain stimulation

904 Defining Death and Dying in Relation to Information Technology and Advances in Biomedicine

Authors: Evangelos Koumparoudis

Abstract:

The definition of death is a deep philosophical question, and no single meaning can be ascribed to it. This essay focuses on the ontological, epistemological, and ethical aspects of death and dying in view of technological progress in information technology and biomedicine. It starts with the ad hoc 1968 Harvard committee that proposed that the criterion for the definition of death be irreversible coma and then refers to the debate over the whole brain death formula, emphasizing the integrated function of the organism and higher brain formula, taking consciousness and personality as essential human characteristics. It follows with the contribution of information technology in personalized and precision medicine and anti-aging measures aimed at life prolongation. It also touches on the possibility of the creation of human-machine hybrids and how this raises ontological and ethical issues that concern the “cyborgization” of human beings and the conception of the organism and personhood based on a post/transhumanist essence, and, furthermore, if sentient AI capable of autonomous decision-making that might even surpass human intelligence (singularity, superintelligence) deserves moral or legal personhood. Finally, there is the question as to whether death and dying should be redefined at a transcendent level, which is reinforced by already-existing technologies of “virtual after-” life and the possibility of uploading human minds. In the last section, I refer to the current (and future) applications of nanomedicine in diagnostics, therapeutics, implants, and tissue engineering as well as the aspiration to “immortality” by cryonics. The definition of death is reformulated since age and disease elimination may be realized, and the criterion of irreversibility may be challenged.

Keywords: death, posthumanism, infomedicine, nanomedicine, cryonics

Procedia PDF Downloads 70
903 A Linear Regression Model for Estimating Anxiety Index Using Wide Area Frontal Lobe Brain Blood Volume

Authors: Takashi Kaburagi, Masashi Takenaka, Yosuke Kurihara, Takashi Matsumoto

Abstract:

Major depressive disorder (MDD) is one of the most common mental illnesses today. It is believed to be caused by a combination of several factors, including stress. Stress can be quantitatively evaluated using the State-Trait Anxiety Inventory (STAI), one of the best indices to evaluate anxiety. Although STAI scores are widely used in applications ranging from clinical diagnosis to basic research, the scores are calculated based on a self-reported questionnaire. An objective evaluation is required because the subject may intentionally change his/her answers if multiple tests are carried out. In this article, we present a modified index called the “multi-channel Laterality Index at Rest (mc-LIR)” by recording the brain activity from a wider area of the frontal lobe using multi-channel functional near-infrared spectroscopy (fNIRS). The presented index aims to measure multiple positions near the Fpz defined by the international 10-20 system positioning. Using 24 subjects, the dependencies on the number of measuring points used to calculate the mc-LIR and its correlation coefficients with the STAI scores are reported. Furthermore, a simple linear regression was performed to estimate the STAI scores from mc-LIR. The cross-validation error is also reported. The experimental results show that using multiple positions near the Fpz will improve the correlation coefficients and estimation than those using only two positions.

Keywords: frontal lobe, functional near-infrared spectroscopy, state-trait anxiety inventory score, stress

Procedia PDF Downloads 250
902 Design and Development of Ssvep-Based Brain-Computer Interface for Limb Disabled Patients

Authors: Zerihun Ketema Tadesse, Dabbu Suman Reddy

Abstract:

Brain-Computer Interfaces (BCIs) give the possibility for disabled people to communicate and control devices. This work aims at developing steady-state visual evoked potential (SSVEP)-based BCI for patients with limb disabilities. In hospitals, devices like nurse emergency call devices, lights, and TV sets are what patients use most frequently, but these devices are operated manually or using the remote control. Thus, disabled patients are not able to operate these devices by themselves. Hence, SSVEP-based BCI system that can allow disabled patients to control nurse calling device and other devices is proposed in this work. Portable LED visual stimulator that flickers at specific frequencies of 7Hz, 8Hz, 9Hz and 10Hz were developed as part of this project. Disabled patients can stare at specific flickering LED of visual stimulator and Emotiv EPOC used to acquire EEG signal in a non-invasive way. The acquired EEG signal can be processed to generate various control signals depending upon the amplitude and duration of signal components. MATLAB software is used for signal processing and analysis and also for command generation. Arduino is used as a hardware interface device to receive and transmit command signals to the experimental setup. Therefore, this study is focused on the design and development of Steady-state visually evoked potential (SSVEP)-based BCI for limb disabled patients, which helps them to operate and control devices in the hospital room/wards.

Keywords: SSVEP-BCI, Limb Disabled Patients, LED Visual Stimulator, EEG signal, control devices, hospital room/wards

Procedia PDF Downloads 221
901 Practical Problems as Tools for the Development of Secondary School Students’ Motivation to Learn Mathematics

Authors: M. Rodionov, Z. Dedovets

Abstract:

This article discusses plausible reasoning use for solution to practical problems. Such reasoning is the major driver of motivation and implementation of mathematical, scientific and educational research activity. A general, practical problem solving algorithm is presented which includes an analysis of specific problem content to build, solve and interpret the underlying mathematical model. The author explores the role of practical problems such as the stimulation of students' interest, the development of their world outlook and their orientation in the modern world at the different stages of learning mathematics in secondary school. Particular attention is paid to the characteristics of those problems which were systematized and presented in the conclusions.

Keywords: mathematics, motivation, secondary school, student, practical problem

Procedia PDF Downloads 299
900 Mapping the Neurotoxic Effects of Sub-Toxic Manganese Exposure: Behavioral Outcomes, Imaging Biomarkers, and Dopaminergic System Alterations

Authors: Katie M. Clark, Adriana A. Tienda, Krista C. Paffenroth, Lindsey N. Brigante, Daniel C. Colvin, Jose Maldonado, Erin S. Calipari, Fiona E. Harrison

Abstract:

Manganese (Mn) is an essential trace element required for human health and is important in antioxidant defenses, as well as in the development and function of dopaminergic neurons. However, chronic low-level Mn exposure, such as through contaminated drinking water, poses risks that may contribute to neurodevelopmental and neurodegenerative conditions, including attention deficit hyperactivity disorder (ADHD). Pharmacological inhibition of the dopamine transporter (DAT) blocks reuptake, elevates synaptic dopamine, and alleviates ADHD symptoms. This study aimed to determine whether Mn exposure in juvenile mice modifies their response to DAT blockers, amphetamine, and methylphenidate and utilize neuroimaging methods to visualize and quantify Mn distribution across dopaminergic brain regions. Male and female heterozygous DATᵀ³⁵⁶ᴹ and wild-type littermates were randomly assigned to receive control (2.5% Stevia) or high Manganese (2.5 mg/ml Mn + 2.5% Stevia) via water ad libitum from weaning (21-28 days) for 4-5 weeks. Mice underwent repeated testing in locomotor activity chambers for three consecutive days (60 mins.) to ensure that they were fully habituated to the environments. On the fourth day, a 3-hour activity session was conducted following treatment with amphetamine (3 mg/kg) or methylphenidate (5 mg/kg). The second drug was administered in a second 3-hour activity session following a 1-week washout period. Following the washout, the mice were given one last injection of amphetamine and euthanized one hour later. Using the ex-vivo brains, magnetic resonance relaxometry (MRR) was performed on a 7Telsa imaging system to map T1- and T2-weighted (T1W, T2W) relaxation times. Mn inherent paramagnetic properties shorten both T1W and T2W times, which enhances the signal intensity and contrast, enabling effective visualization of Mn accumulation in the entire brain. A subset of mice was treated with amphetamine 1 hour before euthanasia. SmartSPIM light sheet microscopy with cleared whole brains and cFos and tyrosine hydroxylase (TH) labeling enabled an unbiased automated counting and densitometric analysis of TH and cFos positive cells. Immunohistochemistry was conducted to measure synaptic protein markers and quantify changes in neurotransmitter regulation. Mn exposure elevated Mn brain levels and potentiated stimulant effects in males. The globus pallidus, substantia nigra, thalamus, and striatum exhibited more pronounced T1W shortening, indicating regional susceptibility to Mn accumulation (p<0.0001, 2-Way ANOVA). In the cleared whole brains, initial analyses suggest that TH and c-Fos co-staining mirrors behavioral data with decreased co-staining in DATT356M+/- mice. Ongoing studies will identify the molecular basis of the effect of Mn, including changes to DAergic metabolism and transport and post-translational modification to the DAT. These findings demonstrate that alterations in T1W relaxation times, as measured by MRR, may serve as an early biomarker for Mn neurotoxicity. This neuroimaging approach exhibits remarkable accuracy in identifying Mn-susceptible brain regions, with a spatial resolution and sensitivity that surpasses current conventional dissection and mass spectrometry approaches. The capability to label and map TH and cFos expression across the entire brain provides insights into whole-brain neuronal activation and its connections to functional neural circuits and behavior following amphetamine and methylphenidate administration.

Keywords: manganese, environmental toxicology, dopamine dysfunction, biomarkers, drinking water, light sheet microscopy, magnetic resonance relaxometry (MRR)

Procedia PDF Downloads 9
899 The Bacteriocin Produced by Lactic Acid Bacteria as an Antibacterial of Sub Clinic Mastitis on Dairy Cows

Authors: Nenny Harijani, Dhandy Koesoemo Wardhana

Abstract:

The aim of this study is to know the bacteriocin as antimicrobial activity produced by Lactic Acid Bacteria (LAB) as Antibacterial of Sub Clinic Mastitis on Dairy Cows. The antimicrobial is produced by LAB which isolates from cattle intestine can inhibit the growth Staphylococcus aureus, Steptocococcus agalactiae an Escherichia coli which were caused by dairy cattle subclinical mastitis. The failure of this bacteria growth was indicated by the formation of a clear zone surrounding the colonies on Brain Heart Infusion Agar plate. The bacteriocin was produced by Lactic Acid Bacteria (LAB) as antimicrobial, which could inhibit the growth of indicator bacteria Staphylococcus aureus, S.aglactiae and E.coli. This study was also developed bacteriocin to be used as a therapeutic of subclinical mastitis on dairy cows. The method used in this study was isolation, selection and identification of LAB using Mann Rogosa Sharp Medium, followed by characterization of the bacteriocin produced by LAB. The result of the study showed that bacteriocin isolated from beef cattle’s intestine could inhibit the growth Staphylococcus aureus, S. agalactiae, an Escherichia coli, which was indicated by clear zone surrounding the colonies on Brain Heart Infusion Agar plate. Characteristics of bacteriocin were heat-stable exposed to 80 0C for 30 minutes and 100 ⁰C for 15 minutes and inactivated by proteolytic enzymes such as trypsin. This approach has suggested the development of bacteriocin as a therapeutic agent for subclinical mastitis in dairy cattle.

Keywords: lactic acid bacteria, bacteriocin, staphylococcus aureus, S. agalactiae, E. coli, sub

Procedia PDF Downloads 134
898 A Pink-Pigmented Facultative Methylobacterium sp Isolated from Retama monosperma Root Nodules

Authors: N. Selami, M. Kaid Harche

Abstract:

A pink-pigmented, aerobic, facultatively methylotrophic bacterium, was isolated from Retama monosperma root nodules and identified as a member of the genus Methylobacterium. Inoculation of R. monosperma plants by a pure culture of isolate strain under a hydroponic condition, resulted, 10 dpi, the puffiness at lateral roots. The observation in detail the anatomy and ultra-structure of infection sites by light and electron microscopy show that the bacteria induce stimulation of the division of cortical cells and digestion of epidermis cells then, Methylobacterium was observed in the inter and intracellular spaces of the outer cortex root. These preliminary results allow us to suggest the establishment of an epi-endosymbiotic interaction between Methylobacterium sp and R. monosperma.

Keywords: endophytic colonization, Methylobacterium, microscopy, nodule, pink pigmented, Retama monosperma

Procedia PDF Downloads 364
897 EEG Correlates of Trait and Mathematical Anxiety during Lexical and Numerical Error-Recognition Tasks

Authors: Alexander N. Savostyanov, Tatiana A. Dolgorukova, Elena A. Esipenko, Mikhail S. Zaleshin, Margherita Malanchini, Anna V. Budakova, Alexander E. Saprygin, Tatiana A. Golovko, Yulia V. Kovas

Abstract:

EEG correlates of mathematical and trait anxiety level were studied in 52 healthy Russian-speakers during execution of error-recognition tasks with lexical, arithmetic and algebraic conditions. Event-related spectral perturbations were used as a measure of brain activity. The ERSP plots revealed alpha/beta desynchronizations within a 500-3000 ms interval after task onset and slow-wave synchronization within an interval of 150-350 ms. Amplitudes of these intervals reflected the accuracy of error recognition, and were differently associated with the three conditions. The correlates of anxiety were found in theta (4-8 Hz) and beta2 (16-20 Hz) frequency bands. In theta band the effects of mathematical anxiety were stronger expressed in lexical, than in arithmetic and algebraic condition. The mathematical anxiety effects in theta band were associated with differences between anterior and posterior cortical areas, whereas the effects of trait anxiety were associated with inter-hemispherical differences. In beta1 and beta2 bands effects of trait and mathematical anxiety were directed oppositely. The trait anxiety was associated with increase of amplitude of desynchronization, whereas the mathematical anxiety was associated with decrease of this amplitude. The effect of mathematical anxiety in beta2 band was insignificant for lexical condition but was the strongest in algebraic condition. EEG correlates of anxiety in theta band could be interpreted as indexes of task emotionality, whereas the reaction in beta2 band is related to tension of intellectual resources.

Keywords: EEG, brain activity, lexical and numerical error-recognition tasks, mathematical and trait anxiety

Procedia PDF Downloads 561
896 Design, Synthesis and Evaluation of 4-(Phenylsulfonamido)Benzamide Derivatives as Selective Butyrylcholinesterase Inhibitors

Authors: Sushil Kumar Singh, Ashok Kumar, Ankit Ganeshpurkar, Ravi Singh, Devendra Kumar

Abstract:

In spectrum of neurodegenerative diseases, Alzheimer’s disease (AD) is characterized by the presence of amyloid β plaques and neurofibrillary tangles in the brain. It results in cognitive and memory impairment due to loss of cholinergic neurons, which is considered to be one of the contributing factors. Donepezil, an acetylcholinesterase (AChE) inhibitor which also inhibits butyrylcholinesterase (BuChE) and improves the memory and brain’s cognitive functions, is the most successful and prescribed drug to treat the symptoms of AD. The present work is based on designing of the selective BuChE inhibitors using computational techniques. In this work, machine learning models were trained using classification algorithms followed by screening of diverse chemical library of compounds. The various molecular modelling and simulation techniques were used to obtain the virtual hits. The amide derivatives of 4-(phenylsulfonamido) benzoic acid were synthesized and characterized using 1H & 13C NMR, FTIR and mass spectrometry. The enzyme inhibition assays were performed on equine plasma BuChE and electric eel’s AChE by method developed by Ellman et al. Compounds 31, 34, 37, 42, 49, 52 and 54 were found to be active against equine BuChE. N-(2-chlorophenyl)-4-(phenylsulfonamido)benzamide and N-(2-bromophenyl)-4-(phenylsulfonamido)benzamide (compounds 34 and 37) displayed IC50 of 61.32 ± 7.21 and 42.64 ± 2.17 nM against equine plasma BuChE. Ortho-substituted derivatives were more active against BuChE. Further, the ortho-halogen and ortho-alkyl substituted derivatives were found to be most active among all with minimal AChE inhibition. The compounds were selective toward BuChE.

Keywords: Alzheimer disease, butyrylcholinesterase, machine learning, sulfonamides

Procedia PDF Downloads 139
895 Unraveling the Gut-Brain Connection in Alcohol Use Disorder: Microbiome Dysbiosis and Probiotic Therapy as Emerging Treatment Pathways

Authors: Noah Emil Glisik

Abstract:

Alcohol use disorder (AUD) presents significant health challenges worldwide and is particularly concerning in Slovenia, where high alcohol consumption contributes to elevated rates of comorbidities, including depression and suicide. This review examines emerging evidence linking gut microbiome dysbiosis to AUD, exploring whether gut microbiome alterations merely result from alcohol use or actively contribute to the persistence of addiction. Additionally, it discusses how microbial changes may influence psychological symptoms, including anxiety and depressive states, which are closely associated with suicidality in this population. To address gaps in existing research, a systematic literature search was conducted through PubMed, Web of Science, and ScienceDirect. Inclusion criteria focused on studies examining gut microbiome changes in AUD, particularly those assessing gut-brain axis interactions and microbial species impacting inflammation and neurotransmitter pathways. Studies were excluded if they lacked peer review or did not specifically assess microbiome effects on mental health outcomes. A qualitative literature review approach was applied, synthesizing findings into key themes on microbial changes, neuroinflammatory pathways, and treatment implications. Data were organized into tables to provide a clear comparison of microbiota alterations across studies, highlighting specific bacterial species and their potential effects on AUD. This review emphasizes patterns in AUD patients, where reductions in anti-inflammatory species, such as Faecalibacterium prausnitzii and Roseburia intestinalis, coincide with increases in pro-inflammatory bacteria like Enterococcus faecalisand Lactobacillus rhamnosus. These shifts contribute to increased gut permeability and systemic inflammation, potentially influencing the kynurenine pathway, which is linked to depressive symptoms and elevated alcohol cravings. Furthermore, the review explores the potential of probiotic therapies targeting these microbial imbalances as adjunctive treatments for AUD, particularly those focusing on strains that support anti-inflammatory pathways and gut barrier integrity. Restoring microbial homeostasis through probiotics or fecal microbiota transplantation may not only reduce inflammation but also alleviate mental health symptoms associated with addiction, including suicidality. The findings underscore the need for further clinical trials assessing microbiome-targeted therapies as innovative, multifaceted approaches to AUD treatment in Slovenia and beyond.

Keywords: alcohol use disorder, gut-brain axis, microbiome dysbiosis, probiotic therapy.

Procedia PDF Downloads 9
894 Enhancement Effect of Compound 4-Hydroxybenzoic Acid from Petung Bamboo (Dendrocalamus Asper) Shoots on α1β2γ2S of GABA (A) Receptor Expressed in Xenopus laevis Oocytes- Preliminary Study on Its Anti-Epileptic Potential

Authors: Muhammad Bilal, Amelia Jane Llyod, Habsah Mohamad, Jia Hui Wong, Abdul Aziz Mohamed Yusoff, Jafri Malin Abdullah, Jingli Zhang

Abstract:

Epilepsy is one of the major brain afflictions occurs with uncontrolled excitation of cortex; disturbed 50 million of world’s population. About 25 percent of patients subjected to adverse effects from antiepileptic drugs (AEDs) such as depression, nausea, tremors, gastrointestinal symptoms, osteoporosis, dizziness, weight change, drowsiness, fatigue are commonly observed indications; therefore, new drugs are required to cure epilepsy. GABA is principle inhibitory neurotransmitter, control excitation of the brain. Mutation or dysfunction of GABA receptor is one of the primary causes of epilepsy, which is confirmed from many acquired models of epilepsy like traumatic brain injury, kindling, and status epilepticus models of epilepsy. GABA receptor has 3 distinct types such as GABA (A), GABA (B), GABA(C).GABA (A) receptor has 20 different subunits, α1β2γ2 subunits composition of GABA (A) receptor is the most used combination of subunits for screening of compounds against epilepsy. We expressed α1β2γ2s subunits of GABA (A) Receptor in Xenopus leavis oocytes and examined the enhancement potential of 4-Hydroxybenzoic acid compound on GABA (A) receptor via two-electrode voltage clamp current recording technique. Bamboo shoots are the young, tender offspring of bamboo, which are usually harvested after a cultivating period of 2 weeks. Proteins, acids, fat, starch, carbohydrate, fatty acid, vitamin, dietary fiber, and minerals are the major constituent found systematically in bamboo shoots. These shoots reported to have anticancer, antiviral, antibacterial activity, also possess antioxidant properties due to the presence of phenolic compounds. Student t-test analysis suggested that 4- hydroxybenzoic acid positively allosteric GABA (A) receptor, increased normalized current amplitude to 1.0304±0.0464(p value 0.032) compared with vehicle. 4-Hydrobenzoic acid, a compound from Dendrocalamus Asper bamboo shoot gives new insights for future studies on bamboo shoots with motivation for extraction of more compounds to investigate their effects on human and rodents against epilepsy, insomnia, and anxiety.

Keywords: α1β2γ2S, antiepileptic, bamboo shoots, epilepsy GABA (A) receptor, two-microelectrode voltage clamp, xenopus laevis oocytes

Procedia PDF Downloads 405
893 Plasmonic Nanoshells Based Metabolite Detection for in-vitro Metabolic Diagnostics and Therapeutic Evaluation

Authors: Deepanjali Gurav, Kun Qian

Abstract:

In-vitro metabolic diagnosis relies on designed materials-based analytical platforms for detection of selected metabolites in biological samples, which has a key role in disease detection and therapeutic evaluation in clinics. However, the basic challenge deals with developing a simple approach for metabolic analysis in bio-samples with high sample complexity and low molecular abundance. In this work, we report a designer plasmonic nanoshells based platform for direct detection of small metabolites in clinical samples for in-vitro metabolic diagnostics. We first synthesized a series of plasmonic core-shell particles with tunable nanoshell structures. The optimized plasmonic nanoshells as new matrices allowed fast, multiplex, sensitive, and selective LDI MS (Laser desorption/ionization mass spectrometry) detection of small metabolites in 0.5 μL of bio-fluids without enrichment or purification. Furthermore, coupling with isotopic quantification of selected metabolites, we demonstrated the use of these plasmonic nanoshells for disease detection and therapeutic evaluation in clinics. For disease detection, we identified patients with postoperative brain infection through glucose quantitation and daily monitoring by cerebrospinal fluid (CSF) analysis. For therapeutic evaluation, we investigated drug distribution in blood and CSF systems and validated the function and permeability of blood-brain/CSF-barriers, during therapeutic treatment of patients with cerebral edema for pharmacokinetic study. Our work sheds light on the design of materials for high-performance metabolic analysis and precision diagnostics in real cases.

Keywords: plasmonic nanoparticles, metabolites, fingerprinting, mass spectrometry, in-vitro diagnostics

Procedia PDF Downloads 138
892 Blood Flow Simulations to Understand the Role of the Distal Vascular Branches of Carotid Artery in the Stroke Prediction

Authors: Muhsin Kizhisseri, Jorg Schluter, Saleh Gharie

Abstract:

Atherosclerosis is the main reason of stroke, which is one of the deadliest diseases in the world. The carotid artery in the brain is the prominent location for atherosclerotic progression, which hinders the blood flow into the brain. The inclusion of computational fluid dynamics (CFD) into the diagnosis cycle to understand the hemodynamics of the patient-specific carotid artery can give insights into stroke prediction. Realistic outlet boundary conditions are an inevitable part of the numerical simulations, which is one of the major factors in determining the accuracy of the CFD results. The Windkessel model-based outlet boundary conditions can give more realistic characteristics of the distal vascular branches of the carotid artery, such as the resistance to the blood flow and compliance of the distal arterial walls. This study aims to find the most influential distal branches of the carotid artery by using the Windkessel model parameters in the outlet boundary conditions. The parametric study approach to Windkessel model parameters can include the geometrical features of the distal branches, such as radius and length. The incorporation of the variations of the geometrical features of the major distal branches such as the middle cerebral artery, anterior cerebral artery, and ophthalmic artery through the Windkessel model can aid in identifying the most influential distal branch in the carotid artery. The results from this study can help physicians and stroke neurologists to have a more detailed and accurate judgment of the patient's condition.

Keywords: stroke, carotid artery, computational fluid dynamics, patient-specific, Windkessel model, distal vascular branches

Procedia PDF Downloads 215
891 Epilepsy Seizure Prediction by Effective Connectivity Estimation Using Granger Causality and Directed Transfer Function Analysis of Multi-Channel Electroencephalogram

Authors: Mona Hejazi, Ali Motie Nasrabadi

Abstract:

Epilepsy is a persistent neurological disorder that affects more than 50 million people worldwide. Hence, there is a necessity to introduce an efficient prediction model for making a correct diagnosis of the epileptic seizure and accurate prediction of its type. In this study we consider how the Effective Connectivity (EC) patterns obtained from intracranial Electroencephalographic (EEG) recordings reveal information about the dynamics of the epileptic brain and can be used to predict imminent seizures, as this will enable the patients (and caregivers) to take appropriate precautions. We use this definition because we believe that effective connectivity near seizures begin to change, so we can predict seizures according to this feature. Results are reported on the standard Freiburg EEG dataset which contains data from 21 patients suffering from medically intractable focal epilepsy. Six channels of EEG from each patients are considered and effective connectivity using Directed Transfer Function (DTF) and Granger Causality (GC) methods is estimated. We concentrate on effective connectivity standard deviation over time and feature changes in five brain frequency sub-bands (Alpha, Beta, Theta, Delta, and Gamma) are compared. The performance obtained for the proposed scheme in predicting seizures is: average prediction time is 50 minutes before seizure onset, the maximum sensitivity is approximate ~80% and the false positive rate is 0.33 FP/h. DTF method is more acceptable to predict epileptic seizures and generally we can observe that the greater results are in gamma and beta sub-bands. The research of this paper is significantly helpful for clinical applications, especially for the exploitation of online portable devices.

Keywords: effective connectivity, Granger causality, directed transfer function, epilepsy seizure prediction, EEG

Procedia PDF Downloads 469
890 Biophysical Features of Glioma-Derived Extracellular Vesicles as Potential Diagnostic Markers

Authors: Abhimanyu Thakur, Youngjin Lee

Abstract:

Glioma is a lethal brain cancer whose early diagnosis and prognosis are limited due to the dearth of a suitable technique for its early detection. Current approaches, including magnetic resonance imaging (MRI), computed tomography (CT), and invasive biopsy for the diagnosis of this lethal disease, hold several limitations, demanding an alternative method. Recently, extracellular vesicles (EVs) have been used in numerous biomarker studies, majorly exosomes and microvesicles (MVs), which are found in most of the cells and biofluids, including blood, cerebrospinal fluid (CSF), and urine. Remarkably, glioma cells (GMs) release a high number of EVs, which are found to cross the blood-brain-barrier (BBB) and impersonate the constituents of parent GMs including protein, and lncRNA; however, biophysical properties of EVs have not been explored yet as a biomarker for glioma. We isolated EVs from cell culture conditioned medium of GMs and regular primary culture, blood, and urine of wild-type (WT)- and glioma mouse models, and characterized by nano tracking analyzer, transmission electron microscopy, immunogold-EM, and differential light scanning. Next, we measured the biophysical parameters of GMs-EVs by using atomic force microscopy. Further, the functional constituents of EVs were examined by FTIR and Raman spectroscopy. Exosomes and MVs-derived from GMs, blood, and urine showed distinction biophysical parameters (roughness, adhesion force, and stiffness) and different from that of regular primary glial cells, WT-blood, and -urine, which can be attributed to the characteristic functional constituents. Therefore, biophysical features can be potential diagnostic biomarkers for glioma.

Keywords: glioma, extracellular vesicles, exosomes, microvesicles, biophysical properties

Procedia PDF Downloads 142
889 Evaluation of Central Nervous System Activity of Synthesized 5, 5-Diphenylimidazolidine-2, 4-Dione Derivatives

Authors: Shweta Verma

Abstract:

Background: Epilepsy is a chronic non-communicable central nervous system (CNS) disorder which affects a large population of all ages. Different classes of drugs are used for the treatment of this neurological disorder, but due to augmented drug resistance and side effects, these drugs become incompetent. Therefore, we design the synthesis of ten new derivatives of Phenytoin. The moiety of Phenytoin was hybridized with different phenols by using three step approach. The synthesized molecules were then investigated for different physicochemical parameters, such as Log P values using diverse software programs and to predict the potential to cross the blood-brain barrier. Objective: The Phenytoin derivatives were designed, synthesized, and characterized to meet the structural necessities indispensable for antiepileptic activity. Method: Firstly, the chloroacetylation of the 5,5-diphenyl hydantoin was carried out, and then various substituted phenols were added to it. The synthesized compounds were characterized and evaluated for antianxiety activity by elevated plus maze method and antiepileptic activity by using subcutaneous pentylenetetrazole (scPTZ) and maximal electroshock (MES) models and neurotoxicity. Result: The number of derivatives of 5,5-diphenyl hydantoin was developed and optimized. The number of parameters was optimized which reveal that the compound containing chloro group such as C3 and C6 showed imperative potential when compared with the standard drug Diazepam. Other compounds containing nitro and methyl group were also found to possess activity. Conclusion: It was summarized that the new compounds of 5,5-diphenyl hydantoin derivatives were synthesized. The results of the data show that the compound containing chloro group is more potent for CNS activity. The new compounds have the probability of being optimized further to engender new scaffolds to treat various CNS disorders.

Keywords: phenytoin, parameters, CNS activity, blood-brain barrier, Log P, CNS active

Procedia PDF Downloads 72
888 Relevance of Brain Stem Evoked Potential in Diagnosis of Central Demyelination in Guillain Barre’ Syndrome

Authors: Geetanjali Sharma

Abstract:

Guillain Barre’ syndrome (GBS) is an auto-immune mediated demyelination poly-radiculo-neuropathy. Clinical features include progressive symmetrical ascending muscle weakness of more than two limbs, areflexia with or without sensory, autonomic and brainstem abnormalities, the purpose of this study was to determine subclinical neurological changes of CNS with GBS and to establish the presence of central demyelination in GBS. The study was prospective and conducted in the Department of Physiology, Pt. B. D. Sharma Post-graduate Institute of Medical Sciences, University of Health Sciences, Rohtak, Haryana, India to find out early central demyelination in clinically diagnosed patients of GBS. These patients were referred from the department of Medicine of our Institute to our department for electro-diagnostic evaluation. The study group comprised of 40 subjects (20 clinically diagnosed GBS patients and 20 healthy individuals as controls) aged between 6-65 years. Brain Stem evoked Potential (BAEP) were done in both groups using RMS EMG EP mark II machine. BAEP parameters included the latencies of waves I to IV, inter peak latencies I-III, III-IV & I-V. Statistically significant increase in absolute peak and inter peak latencies in the GBS group as compared with control group was noted. Results of evoked potential reflect impairment of auditory pathways probably due to focal demyelination in Schwann cell derived myelin sheaths that cover the extramedullary portion of auditory nerves. Early detection of the sub-clinical abnormalities is important as timely intervention reduces morbidity.

Keywords: brainstem, demyelination, evoked potential, Guillain Barre’

Procedia PDF Downloads 302
887 Time-dependent Association between Recreational Cannabinoid Use and Memory Performance in Healthy Adults: A Neuroimaging Study of Human Connectome Project

Authors: Kamyar Moradi

Abstract:

Background: There is mixed evidence regarding the association between recreational cannabinoid use and memory performance. One of the major reasons for the present controversy is different cannabinoid use-related covariates that influence the cognitive status of an individual. Adjustment of these confounding variables provides accurate insight into the real effects of cannabinoid use on memory status. In this study, we sought to investigate the association between recent recreational cannabinoid use and memory performance while correcting the model for other possible covariates such as demographic characteristics and duration, and amount of cannabinoid use. Methods: Cannabinoid users were assigned to two groups based on the results of THC urine drug screen test (THC+ group: n = 110, THC- group: n = 410). THC urine drug screen test has a high sensitivity and specificity in detecting cannabinoid use in the last 3-4 weeks. The memory domain of NIH Toolbox battery and brain MRI volumetric measures were compared between the groups while adjusting for confounding variables. Results: After Benjamini-Hochberg p-value correction, the performance in all of the measured memory outcomes, including vocabulary comprehension, episodic memory, executive function/cognitive flexibility, processing speed, reading skill, working memory, and fluid cognition, were significantly weaker in THC+ group (p values less than 0.05). Also, volume of gray matter, left supramarginal, right precuneus, right inferior/middle temporal, right hippocampus, left entorhinal, and right pars orbitalis regions were significantly smaller in THC+ group. Conclusions: this study provides evidence regarding the acute effect of recreational cannabis use on memory performance. Further studies are warranted to confirm the results.

Keywords: brain MRI, cannabis, memory, recreational use, THC urine test

Procedia PDF Downloads 196
886 Effects of Oxytocin on Neural Response to Facial Emotion Recognition in Schizophrenia

Authors: Avyarthana Dey, Naren P. Rao, Arpitha Jacob, Chaitra V. Hiremath, Shivarama Varambally, Ganesan Venkatasubramanian, Rose Dawn Bharath, Bangalore N. Gangadhar

Abstract:

Objective: Impaired facial emotion recognition is widely reported in schizophrenia. Neuropeptide oxytocin is known to modulate brain regions involved in facial emotion recognition, namely amygdala, in healthy volunteers. However, its effect on facial emotion recognition deficits seen in schizophrenia is not well explored. In this study, we examined the effect of intranasal OXT on processing facial emotions and its neural correlates in patients with schizophrenia. Method: 12 male patients (age= 31.08±7.61 years, education= 14.50±2.20 years) participated in this single-blind, counterbalanced functional magnetic resonance imaging (fMRI) study. All participants underwent three fMRI scans; one at baseline, one each after single dose 24IU intranasal OXT and intranasal placebo. The order of administration of OXT and placebo were counterbalanced and subject was blind to the drug administered. Participants performed a facial emotion recognition task presented in a block design with six alternating blocks of faces and shapes. The faces depicted happy, angry or fearful emotions. The images were preprocessed and analyzed using SPM 12. First level contrasts comparing recognition of emotions and shapes were modelled at individual subject level. A group level analysis was performed using the contrasts generated at the first level to compare the effects of intranasal OXT and placebo. The results were thresholded at uncorrected p < 0.001 with a cluster size of 6 voxels. Neuropeptide oxytocin is known to modulate brain regions involved in facial emotion recognition, namely amygdala, in healthy volunteers. Results: Compared to placebo, intranasal OXT attenuated activity in inferior temporal, fusiform and parahippocampal gyri (BA 20), premotor cortex (BA 6), middle frontal gyrus (BA 10) and anterior cingulate gyrus (BA 24) and enhanced activity in the middle occipital gyrus (BA 18), inferior occipital gyrus (BA 19), and superior temporal gyrus (BA 22). There were no significant differences between the conditions on the accuracy scores of emotion recognition between baseline (77.3±18.38), oxytocin (82.63 ± 10.92) or Placebo (76.62 ± 22.67). Conclusion: Our results provide further evidence to the modulatory effect of oxytocin in patients with schizophrenia. Single dose oxytocin resulted in significant changes in activity of brain regions involved in emotion processing. Future studies need to examine the effectiveness of long-term treatment with OXT for emotion recognition deficits in patients with schizophrenia.

Keywords: recognition, functional connectivity, oxytocin, schizophrenia, social cognition

Procedia PDF Downloads 220
885 Decoding Kinematic Characteristics of Finger Movement from Electrocorticography Using Classical Methods and Deep Convolutional Neural Networks

Authors: Ksenia Volkova, Artur Petrosyan, Ignatii Dubyshkin, Alexei Ossadtchi

Abstract:

Brain-computer interfaces are a growing research field producing many implementations that find use in different fields and are used for research and practical purposes. Despite the popularity of the implementations using non-invasive neuroimaging methods, radical improvement of the state channel bandwidth and, thus, decoding accuracy is only possible by using invasive techniques. Electrocorticography (ECoG) is a minimally invasive neuroimaging method that provides highly informative brain activity signals, effective analysis of which requires the use of machine learning methods that are able to learn representations of complex patterns. Deep learning is a family of machine learning algorithms that allow learning representations of data with multiple levels of abstraction. This study explores the potential of deep learning approaches for ECoG processing, decoding movement intentions and the perception of proprioceptive information. To obtain synchronous recording of kinematic movement characteristics and corresponding electrical brain activity, a series of experiments were carried out, during which subjects performed finger movements at their own pace. Finger movements were recorded with a three-axis accelerometer, while ECoG was synchronously registered from the electrode strips that were implanted over the contralateral sensorimotor cortex. Then, multichannel ECoG signals were used to track finger movement trajectory characterized by accelerometer signal. This process was carried out both causally and non-causally, using different position of the ECoG data segment with respect to the accelerometer data stream. The recorded data was split into training and testing sets, containing continuous non-overlapping fragments of the multichannel ECoG. A deep convolutional neural network was implemented and trained, using 1-second segments of ECoG data from the training dataset as input. To assess the decoding accuracy, correlation coefficient r between the output of the model and the accelerometer readings was computed. After optimization of hyperparameters and training, the deep learning model allowed reasonably accurate causal decoding of finger movement with correlation coefficient r = 0.8. In contrast, the classical Wiener-filter like approach was able to achieve only 0.56 in the causal decoding mode. In the noncausal case, the traditional approach reached the accuracy of r = 0.69, which may be due to the presence of additional proprioceptive information. This result demonstrates that the deep neural network was able to effectively find a representation of the complex top-down information related to the actual movement rather than proprioception. The sensitivity analysis shows physiologically plausible pictures of the extent to which individual features (channel, wavelet subband) are utilized during the decoding procedure. In conclusion, the results of this study have demonstrated that a combination of a minimally invasive neuroimaging technique such as ECoG and advanced machine learning approaches allows decoding motion with high accuracy. Such setup provides means for control of devices with a large number of degrees of freedom as well as exploratory studies of the complex neural processes underlying movement execution.

Keywords: brain-computer interface, deep learning, ECoG, movement decoding, sensorimotor cortex

Procedia PDF Downloads 177
884 Study of the Protective Effects of Summer Savory against Multiple Organ Damage Induced by Lead Acetate in Rats

Authors: Bassant M. M. Ibrahim, Doha H. Abou Baker, Ahmed Abd Elghafour

Abstract:

Excessive exposure to heavy metals contributes to the occurrence of deleterious health problems that affect vital organs like the brain, liver, kidneys, and heart. The use of natural products that have antioxidant capabilities may contribute to the protection of these organs. In the present study, the essential oil of summer savory (Satureja hortensis) was used to evaluate its protective effects against lead acetate induced damaging effect on rats’ vital organs, due to its high contents of carvacrol, y-terpinene, and p-cymene. Forty female Wister Albino rats were classified into five equal groups, the 1st served as normal group, the 2nd served as positive control group was given lead acetate (60 mg/kg) intra-peritoneal (IP), the third to fifth groups were treated with calcium disodium (EDTA) as chelating agent and summer savory essential oil in doses of (50 and 100mg/kg) respectively. All treatments were given IP concomitant with lead acetate for ten successive days. At the end of the experiment duration electrocardiogram (ECG), an open field test for the evaluation of psychological state, rotarod test as for the evaluation of locomotor coordination ability as well as anti-inflammatory and oxidative stress biomarkers in serum and histopathology of vital organs were performed. The investigations in this study show that the protective effect of high dose of summer savory essential oil is more than the low dose and that the essential oil of summer savory is a promising agent that can contribute to the protection of vital organs against the hazardous damaging effects of lead acetate.

Keywords: brain, heart, kidneys, lead acetate, liver, protective, summer savory

Procedia PDF Downloads 123
883 An Automated Sensor System for Cochlear Implants Electrode Array Insertion

Authors: Lei Hou, Xinli Du, Nikolaos Boulgouris

Abstract:

A cochlear implant, referred to as a CI, is a small electronic device that can provide direct electrical stimulation to the auditory nerve. During cochlear implant surgery, atraumatic electrode array insertion is considered to be a crucial step. However, during implantation, the mechanical behaviour of an electrode array inside the cochlea is not known. The behaviour of an electrode array inside of the cochlea is hardly identified by regular methods. In this study, a CI electrode array capacitive sensor system is proposed. It is able to automatically determine the array state as a result of the capacitance variations. Instead of applying sensors to the electrode array, the capacitance information from the electrodes will be gathered and analysed. Results reveal that this sensing method is capable of recognising different states when fed into a pre-shaped model.

Keywords: cochlear implant, electrode, hearing preservation, insertion force, capacitive sensing

Procedia PDF Downloads 238
882 Enhancing Teacher Wellbeing through Trauma-Informed Practices: An Exploratory Case Study Utilizing an Accessible Trauma-Informed Wellness Program

Authors: Ashleigh Cicconi

Abstract:

Teachers may not have access to necessary and effective strategies for managing stress, trauma, and emotional exhaustion, which can lead to burnout. This practice-based research focused on the exploration of teacher well-being through participation in a wellness program in order to mitigate high stress levels and feelings of burnout. The purpose of this qualitative research was to explore how a multimodal, trauma-informed yoga and arts-based mindfulness program impacted stress levels and overall well-being for teachers in a school setting. The case study approach was used to investigate participant perceptions of interactions between multimodal accessibility, a trauma-informed wellness program, and teacher well-being. A sample size of 10 teachers employed full-time at a public high school in the Mid-Atlantic region were recruited via email correspondence to participate in the eight-week wellness program. Data were triangulated across semi-structured interviews, journal entries, and focus group guided questions, and transcripts were uploaded into the NVivo software application for thematic analysis. Data showed perceptions of improvements in overall well-being from participation in the wellness program and that utilizing trauma-informed practices may be an effective coping skill for stress. The multimodal design of the program was perceived to positively impact participation and accessibility to wellness strategies. Findings from this study suggest that the inclusion of trauma-informed practices within a wellness program may be effective for managing stress and trauma experienced by teachers, thereby aiding in improvement in overall well-being. Findings also suggest that multimodality may be effective for increasing participation in and accessibility to wellness strategies.

Keywords: trauma informed practices, wellness program, teacher wellbeing, accessible program, multimodal

Procedia PDF Downloads 55
881 Neuroprotective Effects of Gly-Pro-Glu-Thr-Ala-Phe-Leu-Arg, a Peptide Isolated from Lupinus angustifolius L. Protein Hydrolysate

Authors: Maria Del Carmen Millan-Linares, Ana Lemus Conejo, Rocio Toscano, Alvaro Villanueva, Francisco Millan, Justo Pedroche, Sergio Montserrat-De La Paz

Abstract:

GPETAFLR (Glycine-Proline-Glutamine-Threonine-Alanine-Phenylalanine-Leucine-Arginine) is a peptide isolated from Lupinus angustifolius L. protein hydrolysate (LPH). Herein, the effect of this peptide was investigated in two different models of neuroinflammation: in the immortalized murine microglia cell line BV-2 and in a high-fat-diet-induced obesity mouse model. Methods and Results: Effects of GPETAFLR on neuroinflammation were evaluated by RT-qPCR, flow cytometry, and ELISA techniques. In BV-2 microglial cells, Lipopolysaccharides (LPS) enhanced the release of pro-inflammatory cytokines (TNF-α, IL-1β, and IL-6) whereas GPETAFLR decreased pro-inflammatory cytokine levels and increased the release of the anti-inflammatory cytokine IL-10 in BV2 microglial cells. M1 (CCR7 and iNOS) and M2 (Arg-1 and Ym-1) polarization markers results showed how the GPETAFLR octapeptide was able to decrease M1 polarization marker expression and increase the M2 polarization marker expression compared to LPS. Animal model results indicate that GPETAFLR has an immunomodulatory capacity, both decreasing pro-inflammatory cytokine IL-6 and increasing the anti-inflammatory cytokine IL-10 in brain tissue. Polarization markers in the brain tissue were also modulated by GPETAFLR that decreased the pro-inflammatory expression (M1) and increased the anti-inflammatory expression (M2). Conclusion: Our results suggest that GPETAFLR isolated from LPH has significant potential for management of neuroinflammatory conditions and offer benefits derived from the consumption of Lupinus angustifolius L. in the prevention of neuroinflammatory-related diseases.

Keywords: GPETAFLR peptide, BV-2 cell line, neuroinflammation, cytokines, high-fat-diet

Procedia PDF Downloads 148
880 Exploring the Impact of Mobility-Related Treatments (Drug and Non-Pharmacological) on Independence and Wellbeing in Parkinson’s Disease - A Qualitative Synthesis

Authors: Cameron Wilson, Megan Hanrahan, Katie Brittain, Riona McArdle, Alison Keogh, Lynn Rochester

Abstract:

Background: The loss of mobility and functional dependence is a significant marker in the progression of neurodegenerative diseases such as Parkinson’s Disease (PD). Pharmacological, surgical, and therapeutic treatments are available that can help in the management and amelioration of PD symptoms; however, these only prolong more severe symptoms. Accordingly, ensuring people with PD can maintain independence and a healthy wellbeing are essential in establishing an effective treatment option for those afflicted. Existing literature reviews have examined experiences in engaging with PD treatment options and the impact of PD on independence and wellbeing. Although, the literature fails to explore the influence of treatment options on independence and wellbeing and therefore misses what people value in their treatment. This review is the first that synthesises the impact of mobility-related treatments on independence and wellbeing in people with PD and their carers, offering recommendations to clinical practice and provides a conceptual framework (in development) for future research and practice. Objectives: To explore the impact of mobility-related treatment (both pharmacological and non-pharmacological) on the independence and wellbeing of people with PD and their carers. To propose a conceptual framework to patients, carers and clinicians which captures the qualities people with PD value as part of their treatment. Methods: We performed a critical interpretive synthesis of qualitative evidence, searching six databases for reports that explored the impact of mobility-related treatments (both drug and non-pharmacological) on independence and wellbeing in Parkinson’s Disease. The types of treatments included medication (Levodopa and Amantadine), dance classes, Deep-Brain Stimulation, aquatic therapies, physical rehabilitation, balance training and foetal transplantation. Data was extracted, and quality was assessed using an adapted version of the NICE Quality Appraisal Tool Appendix H before being synthesised according to the critical interpretive synthesis framework and meta-ethnography process. Results: From 2301 records, 28 were eligible. Experiences and impact of treatment pathway on independence and wellbeing was similar across all types of treatments and are described by five inter-related themes: (i) desire to maintain independence, (ii) treatment as a social experience during and after, (iii) medication to strengthen emotional health, (iv) recognising physical capacity and (v) emphasising the personal journey of Parkinson’s treatments. Conclusion: There is a complex and inter-related experience and effect of PD treatments common across all types of treatment. The proposed conceptual framework (in development) provides patients, carers, and clinicians recommendations to personalise the delivery of PD treatment, thereby potentially improving adherence and effectiveness. This work is vital to disseminate as PD treatment transitions from subjective and clinically captured assessments to a more personalised process supplemented using wearable technology.

Keywords: parkinson's disease, medication, treatment, dance, review, healthcare, delivery, levodopa, social, emotional, psychological, personalised healthcare

Procedia PDF Downloads 89
879 TNF-Kinoid® in Autoimmune Diseases

Authors: Yahia Massinissa, Melakhessou Med Akram, Mezahdia Mehdi, Marref Salah Eddine

Abstract:

Cytokines are natural proteins which act as true intercellular communication signals in immune and inflammatory responses. Reverse signaling pathways that activate cytokines help to regulate different functions at the target cell, causing its activation, its proliferation, the differentiation, its survival or death. It was shown that malfunctioning of the cytokine regulation, particularly over-expression, contributes to the onset and development of certain serious diseases such as chronic rheumatoid arthritis, Crohn's disease, psoriasis, lupus. The action mode of Kinoid® technology is based on the principle vaccine: The patient's immune system is activated so that it neutralizes itself and the factor responsible for the disease. When applied specifically to autoimmune diseases, therapeutic vaccination allows the body to neutralize cytokines (proteins) overproduced through a highly targeted stimulation of the immune system.

Keywords: cytokines, Kinoid tech, auto-immune diseases, vaccination

Procedia PDF Downloads 337
878 Brain Derived Neurotrophic Factor (BDNF) Down Regulation in Peritoneal Carcinomatosis Patients

Authors: Awan A. Zaima, Tanvieer Ayesha, Mirshahi Shahsoltan, Pocard Marc, Mirshahi Massoud

Abstract:

Brain-derived neurotrophic factor (BDNF) is described as a factor helping to support the survival of existing neurons by involving the growth and differentiation of new neurons and synapses. Cancer diagnosis impacts the mental health, and in consequences, depression arise eventually hinders recovery and disrupts the quality of life and surviving chances of patients. The focus of this study is to hint upon a prospective biomarker as a promising diagnostic tool for an early indicator/predictor of depression prevalence in cancer patients for better care and treatment options. The study aims to analyze peripheral biomarkers from neuro immune axis (BDNF, IL21 as a NK cell activator) using co-relation approach. Samples were obtained from random non cancer candidates and advanced peritoneum carcinomatosis patients with 25% pseudomyxoma, 21% Colon cancer,19% stomach cancer, 10% ovarian cancer, 8% appendices cancer, and 10% other area of peritoneum cancer patients. Both groups of the study were categorized by gender and age, with a range of 18 to 86 years old. Biomarkers were analyzed in collected plasma by performing multiplex sandwich ELISA system. Data were subjected to statistical analysis for the assessment of the correlation. Our results demonstrate that BNDF and IL 21 down regulated significantly in patient groupas compared to non-cancer candidates (ratio of patients/normalis 2.57 for BNDF and 1.32 for IL21). This preliminary investigation suggested that the neuro immune biomarkers are down regulated in carcinomatosis patients and can be associated with cancer expansion and cancer genesis. Further studies on larger cohort are necessary to validate this hypothesis.

Keywords: biomarkers, depression, peritoneum carcinoma, BNDF, IL21

Procedia PDF Downloads 116
877 A Paradigm Shift in Patent Protection-Protecting Methods of Doing Business: Implications for Economic Development in Africa

Authors: Odirachukwu S. Mwim, Tana Pistorius

Abstract:

Since the early 1990s political and economic pressures have been mounted on policy and law makers to increase patent protection by raising the protection standards. The perception of the relation between patent protection and development, particularly economic development, has evolved significantly in the past few years. Debate on patent protection in the international arena has been significantly influenced by the perception that there is a strong link between patent protection and economic development. The level of patent protection determines the extent of development that can be achieved. Recently there has been a paradigm shift with a lot of emphasis on extending patent protection to method of doing business generally referred to as Business Method Patenting (BMP). The general perception among international organizations and the private sectors also indicates that there is a strong correlation between BMP protection and economic growth. There are two diametrically opposing views as regards the relation between Intellectual Property (IP) protection and development and innovation. One school of thought promotes the view that IP protection improves economic development through stimulation of innovation and creativity. The other school advances the view that IP protection is unnecessary for stimulation of innovation and creativity and is in fact a hindrance to open access to resources and information required for innovative and creative modalities. Therefore, different theories and policies attach different levels of protection to BMP which have specific implications for economic growth. This study examines the impact of BMP protection on development by focusing on the challenges confronting economic growth in African communities as a result of the new paradigm in patent law. (Africa is used as a single unit in this study but this should not be construed as African homogeneity. Rather, the views advanced in this study are used to address the common challenges facing many communities in Africa). The study reviews (from the point of views of legal philosophers, policy makers and decisions of competent courts) the relevant literature, patent legislation particularly the International Treaty, policies and legal judgments. Findings from this study suggest that over and above the various criticisms levelled against the extreme liberal approach to the recognition of business methods as patentable subject matter, there are other specific implications that are associated with such approach. The most critical implication of extending patent protection to business methods is the locking-up of knowledge which may hamper human development in general and economic development in particular. Locking up knowledge necessary for economic advancement and competitiveness may have a negative effect on economic growth by promoting economic exclusion, particularly in African communities. This study suggests that knowledge of BMP within the African context and the extent of protection linked to it is crucial in achieving a sustainable economic growth in Africa. It also suggests that a balance is struck between the two diametrically opposing views.

Keywords: Africa, business method patenting, economic growth, intellectual property, patent protection

Procedia PDF Downloads 126
876 Design and Creation of a BCI Videogame for Training and Measure of Sustained Attention in Children with ADHD

Authors: John E. Muñoz, Jose F. Lopez, David S. Lopez

Abstract:

Attention Deficit Hyperactivity Disorder (ADHD) is a disorder that affects 1 out of 5 Colombian children, converting into a real public health problem in the country. Conventional treatments such as medication and neuropsychological therapy have been proved to be insufficient in order to decrease high incidence levels of ADHD in the principal Colombian cities. This work demonstrates a design and development of a videogame that uses a brain computer interface not only to serve as an input device but also as a tool to monitor neurophysiologic signal. The video game named “The Harvest Challenge” puts a cultural scene of a Colombian coffee grower in its context, where a player can use his/her avatar in three mini games created in order to reinforce four fundamental aspects: i) waiting ability, ii) planning ability, iii) ability to follow instructions and iv) ability to achieve objectives. The details of this collaborative designing process of the multimedia tool according to the exact clinic necessities and the description of interaction proposals are presented through the mental stages of attention and relaxation. The final videogame is presented as a tool for sustained attention training in children with ADHD using as an action mechanism the neuromodulation of Beta and Theta waves through an electrode located in the central part of the front lobe of the brain. The processing of an electroencephalographic signal is produced automatically inside the videogame allowing to generate a report of the theta/beta ratio evolution - a biological marker, which has been demonstrated to be a sufficient measure to discriminate of children with deficit and without.

Keywords: BCI, neuromodulation, ADHD, videogame, neurofeedback, theta/beta ratio

Procedia PDF Downloads 371
875 Emotion-Convolutional Neural Network for Perceiving Stress from Audio Signals: A Brain Chemistry Approach

Authors: Anup Anand Deshmukh, Catherine Soladie, Renaud Seguier

Abstract:

Emotion plays a key role in many applications like healthcare, to gather patients’ emotional behavior. Unlike typical ASR (Automated Speech Recognition) problems which focus on 'what was said', it is equally important to understand 'how it was said.' There are certain emotions which are given more importance due to their effectiveness in understanding human feelings. In this paper, we propose an approach that models human stress from audio signals. The research challenge in speech emotion detection is finding the appropriate set of acoustic features corresponding to an emotion. Another difficulty lies in defining the very meaning of emotion and being able to categorize it in a precise manner. Supervised Machine Learning models, including state of the art Deep Learning classification methods, rely on the availability of clean and labelled data. One of the problems in affective computation is the limited amount of annotated data. The existing labelled emotions datasets are highly subjective to the perception of the annotator. We address the first issue of feature selection by exploiting the use of traditional MFCC (Mel-Frequency Cepstral Coefficients) features in Convolutional Neural Network. Our proposed Emo-CNN (Emotion-CNN) architecture treats speech representations in a manner similar to how CNN’s treat images in a vision problem. Our experiments show that Emo-CNN consistently and significantly outperforms the popular existing methods over multiple datasets. It achieves 90.2% categorical accuracy on the Emo-DB dataset. We claim that Emo-CNN is robust to speaker variations and environmental distortions. The proposed approach achieves 85.5% speaker-dependant categorical accuracy for SAVEE (Surrey Audio-Visual Expressed Emotion) dataset, beating the existing CNN based approach by 10.2%. To tackle the second problem of subjectivity in stress labels, we use Lovheim’s cube, which is a 3-dimensional projection of emotions. Monoamine neurotransmitters are a type of chemical messengers in the brain that transmits signals on perceiving emotions. The cube aims at explaining the relationship between these neurotransmitters and the positions of emotions in 3D space. The learnt emotion representations from the Emo-CNN are mapped to the cube using three component PCA (Principal Component Analysis) which is then used to model human stress. This proposed approach not only circumvents the need for labelled stress data but also complies with the psychological theory of emotions given by Lovheim’s cube. We believe that this work is the first step towards creating a connection between Artificial Intelligence and the chemistry of human emotions.

Keywords: deep learning, brain chemistry, emotion perception, Lovheim's cube

Procedia PDF Downloads 154