Search results for: sustainable consumption
1562 The Development of a Precision Irrigation System for Durian
Authors: Chatrabhuti Pipop, Visessri Supattra, Charinpanitkul Tawatchai
Abstract:
Durian is one of the top agricultural products exported by Thailand. There is the massive market potential for the durian industry. While the global demand for Thai durians, especially the demand from China, is very high, Thailand's durian supply is far from satisfying strong demand. Poor agricultural practices result in low yields and poor quality of fruit. Most irrigation systems currently used by the farmers are fixed schedule or fixed rates that ignore actual weather conditions and crop water requirements. In addition, the technologies emerging are too difficult and complex and prices are too high for the farmers to adopt and afford. Many farmers leave the durian trees to grow naturally. With improper irrigation and nutrient management system, durians are vulnerable to a variety of issues, including stunted growth, not flowering, diseases, and death. Technical development or research for durian is much needed to support the wellbeing of the farmers and the economic development of the country. However, there are a limited number of studies or development projects for durian because durian is a perennial crop requiring a long time to obtain the results to report. This study, therefore, aims to address the problem of durian production by developing an autonomous and precision irrigation system. The system is designed and equipped with an industrial programmable controller, a weather station, and a digital flow meter. Daily water requirements are computed based on weather data such as rainfall and evapotranspiration for daily irrigation with variable flow rates. A prediction model is also designed as a part of the system to enhance the irrigation schedule. Before the system was installed in the field, a simulation model was built and tested in a laboratory setting to ensure its accuracy. Water consumption was measured daily before and after the experiment for further analysis. With this system, the crop water requirement is precisely estimated and optimized based on the data from the weather station. Durian will be irrigated at the right amount and at the right time, offering the opportunity for higher yield and higher income to the farmers.Keywords: Durian, precision irrigation, precision agriculture, smart farm
Procedia PDF Downloads 1181561 Potential Application of Selected Halotolerant PSB Isolated from Rhizospheric Soil of Chenopodium quinoa in Plant Growth Promotion
Authors: Ismail Mahdi, Nidal Fahsi, Mohamed Hafidi, Abdelmounaim Allaoui, Latefa Biskri
Abstract:
To meet the worldwide demand for food, smart management of arable lands is needed. This could be achieved through sustainable approaches such as the use of plant growth-promoting microorganisms including bacteria. Phosphate (P) solubilization is one of the major mechanisms of plant growth promotion by associated bacteria. In the present study, we isolated and screened 14 strains from the rhizosphere of Chenopodium quinoa wild grown in the experimental farm of UM6P and assessed their plant growth promoting properties. Next, they were identified by using 16S rRNA and Cpn60 genes sequencing as Bacillus, Pseudomonas and Enterobacter. These strains showed dispersed capacities to solubilize P (up to 346 mg L−1) following five days of incubation in NBRIP broth. We also assessed their abilities for indole acetic acid (IAA) production (up to 795,3 µg ml−1) and in vitro salt tolerance. Three Bacillus strains QA1, QA2, and S8 tolerated high salt stress induced by NaCl with a maximum tolerable concentration of 8%. Three performant isolates, QA1, S6 and QF11, were further selected for seed germination assay because of their pronounced abilities in terms of P solubilization, IAA production and salt tolerance. The early plant growth potential of tested strains showed that inoculated quinoa seeds displayed greater germination rate and higher seedlings growth under bacterial treatments. The positive effect on seed germination traits strongly suggests that the tested strains are growth promoting, halotolerant and P solubilizing bacteria which could be exploited as biofertilizers.Keywords: phosphate solubilizing bacteria, IAA, Seed germination, salt tolerance, quinoa
Procedia PDF Downloads 1311560 Analysis of Power Demand for the Common Rail Pump Drive in an Aircraft Engine
Authors: Rafal Sochaczewski, Marcin Szlachetka, Miroslaw Wendeker
Abstract:
Increasing requirements to reduce exhaust emissions and fuel consumption while increasing the power factor is increasingly becoming applicable to internal combustion engines intended for aircraft applications. As a result, intensive research work is underway to develop a diesel-powered unit for aircraft propulsion. Due to a number of advantages, such as lack of the head (lower heat loss) and timing system, opposite movement of pistons conducive to balancing the engine, the two-stroke compression-ignition engine with the opposite pistons has been developed and upgraded. Of course, such construction also has drawbacks. The main one is the necessity of using a gear connecting two crankshafts or a complicated crank system with one shaft. The peculiarity of the arrangement of pistons with sleeves, as well as the fulfillment of rigorous requirements, makes it necessary to apply the most modern technologies and constructional solutions. In the case of the fuel supply system, it was decided to use common rail system elements. The paper presents an analysis of the possibility of using a common rail pump to supply an aircraft compression-ignition engine. It is an engine with a two-stroke cycle, three cylinders, opposing pistons, and 100 kW power. Each combustion chamber is powered by two injectors controlled by electromagnetic valves. In order to assess the possibility of using a common rail pump, four high-pressure pumps were tested on a bench. They are piston pumps differing in the number and geometry of the pumping sections. The analysis included the torque on the pump drive shaft and the power needed to drive the pump depending on the rotational speed, pumping pressure and fuel dispenser settings. The research allowed to optimize the engine power supply system depending on the fuel demand and the way the pump is mounted on the engine. Acknowledgment: This work has been realized in the cooperation with The Construction Office of WSK ‘PZL-KALISZ’ S.A.’ and is part of Grant Agreement No. POIR.01.02.00-00-0002/15 financed by the Polish Nation-al Centre for Research and Development.Keywords: diesel engine, fuel pump, opposing pistons, two-stroke
Procedia PDF Downloads 1411559 Quantifying the Rapid Urbanization Impact on Potential Stormwater Runoff of Dhaka City, Bangladesh
Authors: Md. Kumruzzaman, Anutosh Das, Md. Mosharraf Hossain
Abstract:
Historically, rapid urban growth activities are considered one of the main culprits behind urban floods or waterlogging. The increased unplanned urbanization of many areas of Dhaka has resulted in waterlogging, urban floods, and increasing groundwater depth. To determine potential groundwater recharge from precipitation, the study is being conducted to examine the changes in land use/land cover (LULC) and urban runoff extent based on the NRCS-CN from 2005–2021. Four kinds of land use are used to examine the LULC change: built-up, bare land, vegetation, and water body. These categories are used for the years 2005, 2010, 2015, and 2021. The built-up area is growing at a relatively fast rate: 7.43%, 17.4%, and 5.21%, respectively, between the years 2005 and 2010, 2010 and 2015, and 2015 and 2021. As the amount of impervious surface rose in Dhaka city, stormwater discharge increased from 2005 to 2021. In 2005, 2010, 2015, and 2021, heavy stormwater runoff regions made up around 24.873%, 32.616%, 49.118%, and 55.986% of the entire Dhaka city. Stormwater runoff accounted for around 53.738%, 55.092%, 63.472%, and 67.061% of the total rainfall in 2005, 2010, 2015, and 2021, respectively. Between 2005 and 2021, a significant portion of the natural land cover was altered because of the expanding impervious surface, which also harmed the natural drainage system. Due to careless growth, the potential for stormwater runoff and groundwater recharge in Dhaka city worsens every year. Concerning this situation, a sustainable urban drainage system (SUDS) can be the best possible solution for minimizing the stormwater runoff and groundwater recharge problem.Keywords: LULC, impervious surface, stormwater runoff, groundwater recharge, SUDS
Procedia PDF Downloads 801558 Exploring Environmental, Social, and Governance (ESG) Standards for Space Exploration
Authors: Rachael Sullivan, Joshua Berman
Abstract:
The number of satellites orbiting earth are in the thousands now. Commercial launches are increasing, and civilians are venturing into the outer reaches of the atmosphere. As the space industry continues to grow and evolve, so too will the demand on resources, the disparities amongst socio-economic groups, and space company governance standards. Outside of just ensuring that space operations are compliant with government regulations, export controls, and international sanctions, companies should also keep in mind the impact their operations will have on society and the environment. Those looking to expand their operations into outer space should remain mindful of both the opportunities and challenges that they could encounter along the way. From commercial launches promoting civilian space travel—like the recent launches from Blue Origin, Virgin Galactic, and Space X—to regulatory and policy shifts, the commercial landscape beyond the Earth's atmosphere is evolving. But practices will also have to become sustainable. Through a review and analysis of space industry trends, international government regulations, and empirical data, this research explores how Environmental, Social, and Governance (ESG) reporting and investing will manifest within a fast-changing space industry.Institutions, regulators, investors, and employees are increasingly relying on ESG. Those working in the space industry will be no exception. Companies (or investors) that are already engaging or plan to engage in space operations should consider 1) environmental standards and objectives when tackling space debris and space mining, 2) social standards and objectives when considering how such practices may impact access and opportunities for different socioeconomic groups to the benefits of space exploration, and 3) how decision-making and governing boards will function ethically, equitably, and sustainably as we chart new paths and encounter novel challenges in outer space.Keywords: climate, environment, ESG, law, outer space, regulation
Procedia PDF Downloads 1521557 Thermal Performance of an Air-Water Heat Exchanger (AWHE) Operating in Groundwater and Hot-Humid Climate
Authors: César Ramírez-Dolores, Jorge Wong-Loya, Jorge Andaverde, Caleb Becerra
Abstract:
Low-depth geothermal energy can take advantage of the use of the subsoil as an air conditioning technique, being used as a passive system or coupled to an active cooling and/or heating system. This source of air conditioning is possible because at a depth less than 10 meters, the subsoil temperature is practically homogeneous and tends to be constant regardless of the climatic conditions on the surface. The effect of temperature fluctuations on the soil surface decreases as depth increases due to the thermal inertia of the soil, causing temperature stability; this effect presents several advantages in the context of sustainable energy use. In the present work, the thermal behavior of a horizontal Air-Water Heat Exchanger (AWHE) is evaluated, and the thermal effectiveness and temperature of the air at the outlet of the prototype immersed in groundwater is experimentally determined. The thermohydraulic aspects of the heat exchanger were evaluated using the Number of Transfer Units-Efficiency (NTU-ε) method under conditions of groundwater flow in a coastal region of sandy soil (southeastern Mexico) and air flow induced by a blower, the system was constructed of polyvinyl chloride (PVC) and sensors were placed in both the exchanger and the water to record temperature changes. The results of this study indicate that when the exchanger operates in groundwater, it shows high thermal gains allowing better heat transfer, therefore, it significantly reduces the air temperature at the outlet of the system, which increases the thermal effectiveness of the system in values > 80%, this passive technique is relevant for building cooling applications and could represent a significant development in terms of thermal comfort for hot locations in emerging economy countries.Keywords: convection, earth, geothermal energy, thermal comfort
Procedia PDF Downloads 731556 Removal of Heavy Metal, Dye and Salinity from Industrial Wastewaters by Banana Rachis Cellulose Micro Crystal-Clay Composite
Authors: Mohd Maniruzzaman, Md. Monjurul Alam, Md. Hafezur Rahaman, Anika Amir Mohona
Abstract:
The consumption of water by various industries is increasing day by day, and the wastewaters from them are increasing as well. These wastewaters consist of various kinds of color, dissolved solids, toxic heavy metals, residual chlorine, and other non-degradable organic materials. If these wastewaters are exposed directly to the environment, it will be hazardous for the environment and personal health. So, it is very necessary to treat these wastewaters before exposing into the environment. In this research, we have demonstrated the successful processing and utilization of fully bio-based cellulose micro crystal (CMC) composite for the removal of heavy metals, dyes, and salinity from industrial wastewaters. Banana rachis micro-cellulose were prepared by acid hydrolysis (H₂SO₄) of banana (Musa acuminata L.) rachis fiber, and Bijoypur raw clay were treated by organic solvent tri-ethyl amine. Composites were prepared with varying different composition of banana rachis nano-cellulose and modified Bijoypur (north-east part in Bangladesh) clay. After the successful characterization of cellulose micro crystal (CMC) and modified clay, our targeted filter was fabricated with different composition of cellulose micro crystal and clay in the locally fabricated packing column with 7.5 cm as thickness of composites fraction. Waste-water was collected from local small textile industries containing basic yellow 2 as dye, lead (II) nitrate [Pb(NO₃)₂] and chromium (III) nitrate [Cr(NO₃)₃] as heavy metals and saline water was collected from Khulna to test the efficiency of banana rachis cellulose micro crystal-clay composite for removing the above impurities. The filtering efficiency of wastewater purification was characterized by Fourier transforms infrared spectroscopy (FTIR), X-ray diffraction (X-RD), thermo gravimetric analysis (TGA), atomic absorption spectrometry (AAS), scanning electron microscopy (SEM) analyses. Finally, our all characterizations data are shown with very high expected results for in industrial application of our fabricated filter.Keywords: banana rachis, bio-based filter, cellulose micro crystal-clay composite, wastewaters, synthetic dyes, heavy metal, water salinity
Procedia PDF Downloads 1281555 Retail of Organic Food in Poland
Authors: Joanna Smoluk-Sikorska, Władysława Łuczka
Abstract:
Organic farming is an important element of sustainable agriculture. It has been developing very dynamically in Poland, especially since Poland’s accession to the EU. Nevertheless, properly functioning organic market is a necessary condition justifying development of organic agriculture. Despite significant improvement, this market in Poland is still in the initial stage of growth. An important element of the market is distribution, especially retail, which offers specified product range to consumers. Therefore, there is a need to investigate retail outlets offering organic food in order to improve functioning of this part of the market. The inquiry research conducted in three types of outlets offering organic food, between 2011 and 2012 in the 8 largest Polish cities, shows that the majority of outlets offer cereals, processed fruit and vegetables as well as spices and the least shops – meat and sausages. The distributors mostly indicate unsatisfactory product range of suppliers as the reason for this situation. The main providers of the outlets are wholesalers, particularly in case of processed products, and in fresh products – organic farms. A very important distribution obstacle is dispersion of producers, which generates high transportation costs and what follows that, high price of organics. In the investigated shops, the most often used price calculation method is a cost method. The majority of the groceries and specialist shops apply margins between 21 and 40%. The margin in specialist outlets is the highest, in regard to the qualified service and advice. In turn, most retail networks declare the margin between 0 and 20%, which is consistent with low-price strategy applied in these shops. Some lacks in the product range of organics and in particular high prices cause that the demand volume is rather low. Therefore there is a need to support certain market actions, e.g. on-farm processing or promotion.Keywords: organic food, retail, product range, supply sources
Procedia PDF Downloads 2971554 An Exploration of Chinese Foreign Direct Investment in Africa from Ethical and Cultural Perspectives
Authors: Yongsheng Guo
Abstract:
This study explores the perceptions and conducts of Chinese foreign direct investment (FDI) in Africa from ethical and cultural perspectives. It offers a better understanding of how ethical and cultural factors affect Chinese investment in Africa and how the investment projects performed in Africa from both Chinese investors and African stakeholders’ perceptions. It adopted a grounded theory approach and conducted 30 in-depth interviews with corporate managers. Grounded theory models are developed to link the ethical and cultural factors, actions, and consequences. Results reveal that some ethical concepts like the unity of humans and nature, benevolence, virtue and responsibility, and cultural traits including propriety, righteousness, sincerity, equilibrium, long-term orientation, and principles affect Chinese investors when making investments in Africa. Most Chinese investors harmonize with local managers, cooperate with each other, and are gentle and courteous to partners. They take stable and steady actions and invest in infrastructure and agriculture projects and adopt a virtue governance system in the organization. This study finds that consequently, Chinese investors and local partners take complementary advantages, make achievements sequentially, and therefore both sides can win. They recognize great potentials and make sustainable development in Africa to achieve the Great Together in the future. This study proposes a Chinese ethics and governance system including economic, social, and political perspectives and compares it with alternative systems. It makes implications to the world island theory and propose suggestions to solve the Clash of Civilizations problem.Keywords: foreign direct investment, ethics, national culture, China, Africa
Procedia PDF Downloads 811553 Screening of Different Native Genotypes of Broadleaf Mustard against Different Diseases
Authors: Nisha Thapa, Ram Prasad Mainali, Prakriti Chand
Abstract:
Broadleaf mustard is a commercialized leafy vegetable of Nepal. However, its utilization is hindered in terms of production and productivity due to the high intensity of insects, pests, and diseases causing great loss. The plant protection part of the crop’s disease and damage intensity has not been studied much from research perspectives in Nepal. The research aimed to evaluate broadleaf mustard genotypes for resistance against different diseases. A total of 35 native genotypes of broadleaf mustard were screened at weekly intervals by scoring the plants for ten weeks. Five different diseases, such as Rhizoctonia root rot, Alternaria blight, black rot, turnip mosaic virus disease, and white rust, were reported from the broad leaf mustard genotypes. Out of 35 genotypes, 23 genotypes were found with very high Rhizoctonia Root Rot severity, whereas 8 genotypes showed very high Alternaria blight severity. Likewise, 3 genotypes were found with high Black rot severity, and 1 genotype was found with very high Turnip mosaic virus disease incidence. Similarly, 2 genotypes were found to have very high White rust severity. Among the disease of national importance, Rhizoctonia root rot was found to be the most severe disease with the greatest loss. Broadleaf mustard genotypes like Rato Rayo, CO 1002, and CO 11007 showed average to the high level of field resistance; therefore, these genotypes should be used, conserved, and stored in a mustard improvement program as the disease resistance quality or susceptibility of these genotypes can be helpful for seed producing farmers, companies and other stakeholders through varietal improvement and developmental works that further aids in sustainable disease management of the vegetable.Keywords: genotype, disease resistance, Rhizoctonia root rot severity, varietal improvement
Procedia PDF Downloads 801552 Through the Lens of Forced Displacement: Refugee Women's Rights as Human Rights
Authors: Pearl K. Atuhaire, Sylvia Kaye
Abstract:
While the need for equal access to civil, political as well as economic, social and cultural rights is clear under the international law, the adoption of the Convention on the Elimination of all forms of Discrimination against women in 1979 made this even clearer. Despite this positive progress, the abuse of refugee women's rights is one of the basic underlying root causes of their marginalisation and violence in their countries of asylum. This paper presents a critical review on the development of refugee women's rights at the international levels and national levels. It provides an array of scholarly literature on this issue and examines the measures taken by the international community to curb the problem of violence against women in their various provisions through the instruments set. It is cognizant of the fact that even if conflict affects both refugee women and men, the effects on women refugees are deep-reaching, due to the cultural strongholds they face. An important aspect of this paper is that it is conceptualised against the fact that refugee women face the problem of sexual and gender based first as refugees and second as women, yet, their rights are stumbled upon. Often times they have been rendered "worthless victims" who are only in need of humanitarian assistance than active participants committed to change their plight through their participation in political, economic and social participation in their societies. Scholars have taken notice of the fact that women's rights in refugee settings have been marginalized and call for a need to incorporate their perspectives in the planning and management of refugee settings in which they live. Underpinning this discussion is feminism theory which gives a clear understanding of the root cause of refugee women's problems. Finally, this paper suggests that these policies should be translated into action at local, national international and regional levels to ensure sustainable peace.Keywords: feminism theory, human rights, refugee women, sexual and gender based violence
Procedia PDF Downloads 3541551 Polyphenol Stability and Antioxidant Properties of Freeze-Dried Sour Cherry Encapsulates
Authors: Gordana Ćetković, Vesna Tumbas Šaponjac, Jasna Čanadanović-Brunet, Sonja Đilas, Slađana Stajčić, Jelena Vulić, Mirjana Jakišić
Abstract:
Despite the recommended amount of daily intake of fruits, the consumption in modern age remains very low. Therefore there is a need for delivering valuable phytochemicals into the human body through different foods by developing functional food products fortified with natural bioactive compounds from plant sources. Recently, a growing interest rises in exploiting the fruit and vegetable by-products as sources of phytochemicals such as polyphenols, carotenoids, vitamins etc. Cherry contain high amounts of polyphenols, which are known to display a wide range of biological activities like antioxidant, anti-inflammatory, antimicrobial or anti-carcinogenic activities, improvement of vision, induction of apoptosis and neuroprotective effects. Also, cherry pomace, a by-product in juice processing, can also be promising source of phenolic compounds. However, the application of polyphenols as food additives is limited because after extraction these compounds are susceptible to degradation. Microencapsulation is one of the alternative approaches to protect bioactive compounds from degradation during processing and storage. Freeze-drying is one of the most used microencapsulation methods for the protection of thermosensitive and unstable molecules. In this study sour cherry pomace was extracted with food-grade solvent (50% ethanol) to be suitable for application in products for human use. Extracted polyphenols have been concentrated and stabilized on whey (WP) and soy (SP) proteins. Encapsulation efficiency in SP was higher (94.90%), however not significantly (p<0.05) from the one in WP (90.10%). Storage properties of WP and SP encapsulate in terms of total polyphenols, anthocyanins and antioxidant activity was tested for 6 weeks. It was found that the retention of polyphenols after 6 weeks in WP and SP (67.33 and 69.30%, respectively) was similar. The content of anthocyanins has increased in WP (for 47.97%), while their content in SP has very slightly decreased (for 1.45%) after 6-week storage period. In accordance with anthocyanins the decrease in antioxidant activity in WP (87.78%) was higher than in SP (43.02%). According to the results obtained in this study, the technique reported herewith can be used for obtaining quality encapsulates for their further use as functional food additives, and, on the other hand, for fruit waste valorization.Keywords: cherry pomace, microencapsulation, polyphenols, storage
Procedia PDF Downloads 3681550 A Study of Fatigue Life Estimation of a Modular Unmanned Aerial Vehicle by Developing a Structural Health Monitoring System
Authors: Zain Ul Hassan, Muhammad Zain Ul Abadin, Muhammad Zubair Khan
Abstract:
Unmanned aerial vehicles (UAVs) have now become of predominant importance for various operations, and an immense amount of work is going on in this specific category. The structural stability and life of these UAVs is key factor that should be considered while deploying them to different intelligent operations as their failure leads to loss of sensitive real-time data and cost. This paper presents an applied research on the development of a structural health monitoring system for a UAV designed and fabricated by deploying modular approach. Firstly, a modular UAV has been designed which allows to dismantle and to reassemble the components of the UAV without effecting the whole assembly of UAV. This novel approach makes the vehicle very sustainable and decreases its maintenance cost to a significant value by making possible to replace only the part leading to failure. Then the SHM for the designed architecture of the UAV had been specified as a combination of wings integrated with strain gauges, on-board data logger, bridge circuitry and the ground station. For the research purpose sensors have only been attached to the wings being the most load bearing part and as per analysis was done on ANSYS. On the basis of analysis of the load time spectrum obtained by the data logger during flight, fatigue life of the respective component has been predicted using fracture mechanics techniques of Rain Flow Method and Miner’s Rule. Thus allowing us to monitor the health of a specified component time to time aiding to avoid any failure.Keywords: fracture mechanics, rain flow method, structural health monitoring system, unmanned aerial vehicle
Procedia PDF Downloads 2941549 Land Cover Change Analysis Using Remote Sensing
Authors: Tahir Ali Akbar, Hirra Jabbar
Abstract:
Land cover change analysis plays a significant role in understanding the trends of urban sprawl and land use transformation due to anthropogenic activities. In this study, the spatio-temporal dynamics of major land covers were analyzed in the last twenty years (1988-2016) for District Lahore located in the Punjab Province of Pakistan. The Landsat satellite imageries were downloaded from USGS Global Visualization Viewer of Earth Resources Observation and Science Center located in Sioux Falls, South Dakota USA. The imageries included: (i) Landsat TM-5 for 1988 and 2001; and (ii) Landsat-8 OLI for 2016. The raw digital numbers of Landsat-5 images were converted into spectral radiance and then planetary reflectance. The digital numbers of Landsat-8 image were directly converted into planetary reflectance. The normalized difference vegetation index (NDVI) was used to classify the processed images into six major classes of water, buit-up, barren land, shrub and grassland, sparse vegetation and dense vegetation. The NDVI output results were improved by visual interpretation using high-resolution satellite imageries. The results indicated that the built-up areas were increased to 21% in 2016 from 10% in 1988. The decrease in % areas was found in case of water, barren land and shrub & grassland. There were improvements in percentage of areas for the vegetation. The increasing trend of urban sprawl for Lahore requires implementation of GIS based spatial planning, monitoring and management system for its sustainable development.Keywords: land cover changes, NDVI, remote sensing, urban sprawl
Procedia PDF Downloads 3181548 Economic Expansion and Land Use Change in Thailand: An Environmental Impact Analysis Using Computable General Equilibrium Model
Authors: Supakij Saisopon
Abstract:
The process of economic development incurs spatial transformation. This spatial alternation also causes environmental impacts, leading to higher pollution. In the case of Thailand, there is still a lack of price-endogenous quantitative analysis incorporating relationships among economic growth, land-use change, and environmental impact. Therefore, this paper aimed at developing the Computable General Equilibrium (CGE) model with the capability of stimulating such mutual effects. The developed CGE model has also incorporated the nested constant elasticity of transformation (CET) structure that describes the spatial redistribution mechanism between agricultural land and urban area. The simulation results showed that the 1% decrease in the availability of agricultural land lowers the value-added of agricultural by 0.036%. Similarly, the 1% reduction of availability of urban areas can decrease the value-added of manufacturing and service sectors by 0.05% and 0.047%, respectively. Moreover, the outcomes indicate that the increasing farming and urban areas induce higher volumes of solid waste, wastewater, and air pollution. Specifically, the 1% increase in the urban area can increase pollution as follows: (1) the solid waste increase by 0.049%, (2) water pollution ̶ indicated by biochemical oxygen demand (BOD) value ̶ increase by 0.051% and (3) air pollution ̶ indicated by the volumes of CO₂, N₂O, NOₓ, CH₄, and SO₂ ̶ increase within the range of 0.045%–0.051%. With the simulation for exploring the sustainable development path, a 1% increase in agricultural land use efficiency leads to the shrinking demand for agricultural land. But this is not happening in urban, a 1% scale increase in urban utilization results in still increasing demand for land. Therefore, advanced clean production technology is necessary to align the increasing land-use efficiency with the lowered pollution density.Keywords: CGE model, CET structure, environmental impact, land use
Procedia PDF Downloads 2311547 CO2 Emission and Cost Optimization of Reinforced Concrete Frame Designed by Performance Based Design Approach
Authors: Jin Woo Hwang, Byung Kwan Oh, Yousok Kim, Hyo Seon Park
Abstract:
As greenhouse effect has been recognized as serious environmental problem of the world, interests in carbon dioxide (CO2) emission which comprises major part of greenhouse gas (GHG) emissions have been increased recently. Since construction industry takes a relatively large portion of total CO2 emissions of the world, extensive studies about reducing CO2 emissions in construction and operation of building have been carried out after the 2000s. Also, performance based design (PBD) methodology based on nonlinear analysis has been robustly developed after Northridge Earthquake in 1994 to assure and assess seismic performance of building more exactly because structural engineers recognized that prescriptive code based design approach cannot address inelastic earthquake responses directly and assure performance of building exactly. Although CO2 emissions and PBD approach are recent rising issues on construction industry and structural engineering, there were few or no researches considering these two issues simultaneously. Thus, the objective of this study is to minimize the CO2 emissions and cost of building designed by PBD approach in structural design stage considering structural materials. 4 story and 4 span reinforced concrete building optimally designed to minimize CO2 emissions and cost of building and to satisfy specific seismic performance (collapse prevention in maximum considered earthquake) of building satisfying prescriptive code regulations using non-dominated sorting genetic algorithm-II (NSGA-II). Optimized design result showed that minimized CO2 emissions and cost of building were acquired satisfying specific seismic performance. Therefore, the methodology proposed in this paper can be used to reduce both CO2 emissions and cost of building designed by PBD approach.Keywords: CO2 emissions, performance based design, optimization, sustainable design
Procedia PDF Downloads 4061546 Utility of Geospatial Techniques in Delineating Groundwater-Dependent Ecosystems in Arid Environments
Authors: Mangana B. Rampheri, Timothy Dube, Farai Dondofema, Tatenda Dalu
Abstract:
Identifying and delineating groundwater-dependent ecosystems (GDEs) is critical to the well understanding of the GDEs spatial distribution as well as groundwater allocation. However, this information is inadequately understood due to limited available data for the most area of concerns. Thus, this study aims to address this gap using remotely sensed, analytical hierarchy process (AHP) and in-situ data to identify and delineate GDEs in Khakea-Bray Transboundary Aquifer. Our study developed GDEs index, which integrates seven explanatory variables, namely, Normalized Difference Vegetation Index (NDVI), Modified Normalized Difference Water Index (MNDWI), Land-use and landcover (LULC), slope, Topographic Wetness Index (TWI), flow accumulation and curvature. The GDEs map was delineated using the weighted overlay tool in ArcGIS environments. The map was spatially classified into two classes, namely, GDEs and Non-GDEs. The results showed that only 1,34 % (721,91 km2) of the area is characterised by GDEs. Finally, groundwater level (GWL) data was used for validation through correlation analysis. Our results indicated that: 1) GDEs are concentrated at the northern, central, and south-western part of our study area, and 2) the validation results showed that GDEs classes do not overlap with GWL located in the 22 boreholes found in the given area. However, the results show a possible delineation of GDEs in the study area using remote sensing and GIS techniques along with AHP. The results of this study further contribute to identifying and delineating priority areas where appropriate water conservation programs, as well as strategies for sustainable groundwater development, can be implemented.Keywords: analytical hierarchy process (AHP), explanatory variables, groundwater-dependent ecosystems (GDEs), khakea-bray transboundary aquifer, sentinel-2
Procedia PDF Downloads 1081545 Construction and Optimization of Green Infrastructure Network in Mountainous Counties Based on Morphological Spatial Pattern Analysis and Minimum Cumulative Resistance Models: A Case Study of Shapingba District, Chongqing
Authors: Yuning Guan
Abstract:
Under the background of rapid urbanization, mountainous counties need to break through mountain barriers for urban expansion due to undulating topography, resulting in ecological problems such as landscape fragmentation and reduced biodiversity. Green infrastructure networks are constructed to alleviate the contradiction between urban expansion and ecological protection, promoting the healthy and sustainable development of urban ecosystems. This study applies the MSPA model, the MCR model and Linkage Mapper Tools to identify eco-sources and eco-corridors in the Shapingba District of Chongqing and combined with landscape connectivity assessment and circuit theory to delineate the importance levels to extract ecological pinch point areas on the corridors. The results show that: (1) 20 ecological sources are identified, with a total area of 126.47 km², accounting for 31.88% of the study area, and showing a pattern of ‘one core, three corridors, multi-point distribution’. (2) 37 ecological corridors are formed in the area, with a total length of 62.52km, with a ‘more in the west, less in the east’ pattern. (3) 42 ecological pinch points are extracted, accounting for 25.85% of the length of the corridors, which are mainly distributed in the eastern new area. Accordingly, this study proposes optimization strategies for sub-area protection of ecological sources, grade-level construction of ecological corridors, and precise restoration of ecological pinch points.Keywords: green infrastructure network, morphological spatial pattern, minimal cumulative resistance, mountainous counties, circuit theory, shapingba district
Procedia PDF Downloads 431544 Experimental Studies on Flexural Behaviour on Beam Using Lathe Waste in SIFCON
Authors: R. Saravanakumar, A. Siva, R. Banupriya, K. Balasubramanian
Abstract:
Slurry infiltrated fibrous concrete (SIFCON) is one of the recently developed construction material that can be considered as a special type of high performance fibre reinforced concrete (HPFRC) with higher fibre content. Fibre reinforced concrete is essentially a composite material in which fibres out of waste having higher modulus of elasticity. SIFCON is a special type of high fibrous concrete and it is having a high cementious content and sand. The matrix usually consists of cement-sand slurry or fluent mortar. The construction industry is in need of finding cost effective materials for increasing the strength of concrete structures hence an endeavour has been made in the present investigations to study the influence of addition of waste material like Lathe waste from workshop at different dosages to the total weight of concrete. The waste of steel scrap material which is available from the lathe is used as a steel fibre for innovative construction industry. To get sustainable and environmental benefits, lathe scrap as recycled fibres with concrete are likely to be used. An experimental program was carried out to investigate the flexural behavior of Slurry infiltrated fibrous concrete (SIFCON) in which the fibres having an aspect ratio of 100 is used. The investigations were done using M25 mix and tests were carried out as per recommended procedures by appropriate codes. SIFCON specimens with 8%, 10% and 12% volume of fraction fibres are used in this study. Test results were presented in comparison of SIFCON with and without conventional steel reinforcement. The load carrying capacity of SIFCON specimen is higher than conventional concrete and it also reduced crack width. In the SIFCON specimen less number of cracks as compared with conventional concrete.Keywords: SIFCON, lathe waste, RCC, fibre volume, flexural behaviour
Procedia PDF Downloads 3161543 Effective Factors on Farmers' Attitude toward Multifunctional Agriculture
Authors: Mohammad Sadegh Allahyari, Sorush Marzban
Abstract:
The main aim of this study was to investigate the factors affecting farmers' attitude of the Shanderman District in Masal (Guilan Province in the north of Iran), towards the concepts of multifunctional agriculture. The statistical population consisted of all 4908 in Shanderman.The sample of the present study consisted of 209 subjects who were selected from the total population using the Bartlett et al. Table. Questionnaire as the main tool of data collection was divided in two parts. The first part of questionnaire consisted of farmers' profiles regarding individual, technical-agronomic, economic and social characteristics. The second part included items to identify the farmers’ attitudes regarding different aspects of multifunctional agriculture. The validity of the questionnaire was assessed by professors and experts. Cronbach's alpha was used to determine the reliability (α= 0.844), which is considered an acceptable reliability value. Overall, the average scores of attitudes towards multifunctional agriculture show a positive tendency towards multifunctional agriculture, considering farmers' attitudes of the Shanderman district (SD = 0.53, M = 3.81). Results also highlight a significant difference between farmers' income source levels (F = 0.049) and agricultural literature review (F = 0.022) toward farmers' attitudes considering multifunctional agriculture (p < 0.05). Pearson correlations also indicated that there is a positive relationship between positive attitudes and family size (r = 0.154), farmers' experience (r = 0.246), size of land under cultivation (r = 0.186), income (r = 0.227), and social contribution activities (r = 0.224). The results of multiple regression analyses showed that the variation in the dependent variable depended on the farmers' experience in agricultural activities and their social contribution activities. This means that the variables included in the regression analysis are estimated to explain 12 percent of the variation in the dependent variable.Keywords: multifunctional agriculture, attitude, effective factor, sustainable agriculture
Procedia PDF Downloads 2351542 Design, Development, and Performance Evaluation of Hybrid Cross Axis Wind Turbine
Authors: Gwani M., Umar M. Kangiwa, Bello A. Umar, Gado A. Abubakar
Abstract:
The increasing demand for sustainable energy solutions has driven significant interest in the development of innovative designs of wind turbines. The horizontal axis wind turbine (HAWT) and the vertical axis wind turbine (VAWT) are the dominant type of wind turbine used for power generation. However, these turbines have their respective merits and demerits, which affect their performance. This study introduces a Hybrid Cross Axis Wind Turbine (HCAWT), which integrates the blades of both horizontal axis wind turbines (HAWTs) and vertical axis wind turbines (VAWTs) in a cross-axis configuration with a Savonius rotor to form a hybrid system. The HCAWT combines the self-starting capabilities of Savonius rotors with the high-efficiency characteristics of Darrieus rotors and HAWT, aiming to optimize performance across a range of wind conditions. The performance of the HCAWT was tested and evaluated against a cross-axis wind turbine (CAWT) and a conventional VAWT under similar experimental conditions. The study’s results indicate that the HCAWT outperformed both the CAWT and the conventional VAWT. The power coefficient (Cp) of the HCAWT increases by 83% and 132% compared to that of the CAWT and conventional VAWT, respectively. The findings show that the HCAWT offers better start-up performance and maintains higher efficiency at lower wind speeds compared to CAWT and conventional VAWT. The findings suggest that the HCAWT offers significant improvements in energy capture, particularly in turbulent wind conditions, and greater adaptability to changing wind conditions, making it a viable option for both urban and rural energy applications.Keywords: renewable energy, hybrid, cross axis wind turbine, energy efficiency
Procedia PDF Downloads 101541 The Role of Sustainable Financing Models for Smallholder Tree Growers in Ghana
Authors: Raymond Awinbilla
Abstract:
The call for tree planting has long been set in motion by the government of Ghana. The Forestry Commission encourages plantation development through numerous interventions including formulating policies and enacting legislations. However, forest policies have failed and that has generated a major concern over the vast gap between the intentions of national policies and the realities established. This study addresses three objectives;1) Assessing the farmers' response and contribution to the tree planting initiative, 2) Identifying socio-economic factors hindering the development of smallholder plantations as a livelihood strategy, and 3) Determining the level of support available for smallholder tree growers and the factors influencing it. The field work was done in 12 farming communities in Ghana. The article illuminates that farmers have responded to the call for tree planting and have planted both exotic and indigenous tree species. Farmers have converted 17.2% (369.48ha) of their total land size into plantations and have no problem with land tenure. Operations and marketing constraints include lack of funds for operations, delay in payment, low price of wood, manipulation of price by buyers, documentation by buyers, and no ready market for harvesting wood products. Environmental institutions encourage tree planting; the only exception is with the Lands Commission. Support availed to farmers includes capacity building in silvicultural practices, organisation of farmers, linkage to markets and finance. Efforts by the Government of Ghana to enhance forest resources in the country could rely on the input of local populations.Keywords: livelihood strategy, marketing constraints, environmental institutions, silvicultural practices
Procedia PDF Downloads 581540 Development of a Framework for Assessment of Market Penetration of Oil Sands Energy Technologies in Mining Sector
Authors: Saeidreza Radpour, Md. Ahiduzzaman, Amit Kumar
Abstract:
Alberta’s mining sector consumed 871.3 PJ in 2012, which is 67.1% of the energy consumed in the industry sector and about 40% of all the energy consumed in the province of Alberta. Natural gas, petroleum products, and electricity supplied 55.9%, 20.8%, and 7.7%, respectively, of the total energy use in this sector. Oil sands mining and upgrading to crude oil make up most of the mining energy sector activities in Alberta. Crude oil is produced from the oil sands either by in situ methods or by the mining and extraction of bitumen from oil sands ore. In this research, the factors affecting oil sands production have been assessed and a framework has been developed for market penetration of new efficient technologies in this sector. Oil sands production amount is a complex function of many different factors, broadly categorized into technical, economic, political, and global clusters. The results of developed and implemented statistical analysis in this research show that the importance of key factors affecting on oil sands production in Alberta is ranked as: Global energy consumption (94% consistency), Global crude oil price (86% consistency), and Crude oil export (80% consistency). A framework for modeling oil sands energy technologies’ market penetration (OSETMP) has been developed to cover related technical, economic and environmental factors in this sector. It has been assumed that the impact of political and social constraints is reflected in the model by changes of global oil price or crude oil price in Canada. The market share of novel in situ mining technologies with low energy and water use are assessed and calculated in the market penetration framework include: 1) Partial upgrading, 2) Liquid addition to steam to enhance recovery (LASER), 3) Solvent-assisted process (SAP), also called solvent-cyclic steam-assisted gravity drainage (SC-SAGD), 4) Cyclic solvent, 5) Heated solvent, 6) Wedge well, 7) Enhanced modified steam and Gas push (emsagp), 8) Electro-thermal dynamic stripping process (ET-DSP), 9) Harris electro-magnetic heating applications (EMHA), 10) Paraffin froth separation. The results of the study will show the penetration profile of these technologies over a long term planning horizon.Keywords: appliances efficiency improvement, diffusion models, market penetration, residential sector
Procedia PDF Downloads 3301539 Long Term Effect of FYM and Green Manure on Infiltration Characteristics Under Vertisol
Authors: Tripti Nayak, R. K. Bajpai
Abstract:
An ongoing field experiment was conducted at Long term fertilizer experiment, Raipur, to study the Effect of fertilization (both organic and inorganic) on soil Physical properties (infiltration rate) of Vertisol of ten treatments viz. The treatment combinations for were T1(Control),T2(50%NPK), T3(100%NPK), T4(150%NPK), T5(100%NPK+Zn), T6(100%NP), T7(100%N), T8(100%NPK+FYM), T9 (50%NPK+BGA) and T10(50%NPK+GM). Farmyard manure and green manure is applied at the treatment of T8 (100%NPK+FYM) and T10 (50%NPK+GM). Result showed that the highest infiltration rate recorded T8(100%NPK+FYM) and T10 (50%NPK+GM). These considerations have led to a renewed interest in the organic manures such as FYM, compost and green manures, which are formulations helps in sustainable agriculture production either by providing plants with fixed nitrogen, available P or by other plant growth promoting substances. Organic matter (OM) is the life of the soil because it contains all the essential elements required for plant growth. It also serves as food for soil bacteria. Decomposed OM, known as humus, improves the soil tilth, quality and helps the plant to grow. In general among all the other treatments and control gave poorest infiltration rate. Incorporation of organic sources considerably improved the soil physical properties such as decrease in bulk density and increase in infiltration rate and available NPK status of the soil. Study showed that wherever, nitrogen was substituted through GM, FYM or crop residue (rice straw) in rice, Corresponding decrease in bulk density favorably enhanced the infiltration rate and it was found to be highest in the green-manured plot, FYM and lowest in control. Concluded that Continuous monitoring of physical properties should be carried out for maintaining soil health and enhancing the crop production.Keywords: long term effect, FYM, green manure, infiltration rate, soil health, crop productivity, vertisol
Procedia PDF Downloads 3641538 The Nexus between Downstream Supply Chain Losses and Food Security in Nigeria: Empirical Evidence from the Yam Industry
Authors: Alban Igwe, Ijeoma Kalu, Alloy Ezirim
Abstract:
Food insecurity is a global problem, and the search for food security has assumed a central stage in the global development agenda as the United Nations currently placed zero hunger as a goal number in its sustainable development goals. Nigeria currently ranks 107th out of 113 countries in the global food security index (GFSI), a metric that defines a country's ability to furnish its citizens with food and nutrients for healthy living. Paradoxically, Nigeria is a global leader in food production, ranking 1st in yam (over 70% of global output), beans (over 41% of global output), cassava (20% of global output) and shea nuts, where it commands 53% of global output. Furthermore, it ranks 2nd in millet, sweet potatoes, and cashew nuts. It is Africa's largest producer of rice. So, it is apparent that Nigeria's food insecurity woes must relate to a factor other than food production. We investigated the nexus between food security and downstream supply chain losses in the yam industry with secondary data from the Food and Agricultural Organization (FAOSTAT) and the National Bureau of Statics for the decade 2012-2021. In analyzing the data, multiple regression techniques were used, and findings reveal that downstream losses have a strong positive correlation with food security (r = .763*) and a 58.3% variation in food security is explainable by post-downstream supply chain food losses. The study discovered that yam supply chain losses within the period under review averaged 50.6%, suggestive of the fact that downstream supply chain losses are the drainpipe and the major source of food insecurity in Nigeria. Therefore, the study concluded that there is a significant relationship between downstream supply chain losses and food insecurity and recommended the establishment of food supply chain structures and policies to enhance food security in Nigeria.Keywords: food security, downstream supply chain losses, yam, nigeria, supply chain
Procedia PDF Downloads 911537 Food Security of Migrants in a Regional Area of Australia: A Qualitative Study
Authors: Joanne Sin Wei Yeoh, Quynh Lê, Rosa McManamey
Abstract:
Food security indicates the ability of individuals, households and communities to acquire food that is healthy, sustainable, affordable, appropriate and accessible. Despite Australia’s current ability to produce enough food to feed a population larger than its current population, there has been substantial evidence over the last decades to demonstrate many Australians struggle to feed themselves, including those from a cultural and linguistically diverse (CALD) background. The study aimed to investigate migrants’ perceptions and experiences on food security in Tasmania. Semi-structured interviews were conducted with 33 migrants residing in North, South and North West Tasmania, who were recruited through purposive sampling. Thematic analysis was employed to analyse the interview data. Four main themes were identified from the interview data: (1) Understanding of food security; (2) Experiences with the food security in Tasmania; (3) Factors that influence migrants’ food security in Tasmania; and (4) Acculturation strategies. Various sub-themes have emerged under each of these four major themes. Though the findings indicate participants are satisfied with their current food security in Tasmania, they still encounter some challenges in food availability, accessibility, and affordability in Tasmania. Factors that influence migrants’ food security were educational background, language barrier, socioeconomic status, geographical isolation, and cultural background. By using different acculturation strategies, migrants managed to adapt to the new food culture. In addition, social and cultural capitals were also treated as vital roles in improving migrants’ food security. The findings indicate migrants residing in Tasmania face different challenges on food security. They use different strategies for food security while acculturating into a new environment. The findings may provide useful information for migrants in Australia and various private organisations or relevant government departments that address food security for migrants.Keywords: experiences, food security, migrants, perceptions
Procedia PDF Downloads 4241536 Preparations of Fruit Nectars from Fresh Fruit Juices-Analyses before and after Storage
Authors: Youcef Amir
Abstract:
The consumption of beverages continues to grow worldwide due to increasing demography, but pure fruit juices and high-quality nectars can induce protective effects on human health because of their natural bioactive components. In contrast, sodas and gaseous drinks containing synthetic food additives are considered as responsible for consumers of several pathologies such as obesity, diabetes, and non-alcoholic fatty liver disease. The nutritional and therapeutic virtues of fruit juices are generally a remarkable antioxidant power, anti-cancer activity linked to their richness of indigestible and indigestible sugars, vitamins, mineral salts, carotenoids and phenolic compounds. The main reasons, which led us to produce these fruit derivatives, are the non-availability of the fresh fruits mentioned above all along the year and also the existence of variations in the chemical composition of these different fruits as well as for the major or minor components. We tested, therefore, the physicochemical characteristics of each fruit juice and pulp apart and afterward those of the cocktails formulated. The fresh juices used during our experiments were obtained from the following fruits from north-central Algeria: prickly pear, pomegranate, melon, red oranges. The formulations of these fruit juices were tested after several trials comprising sensorial analysis, physicochemical factors (pH, titratable acidity, Brix degree, formal index, water content, total ash, total and reducing sugars, vitamin C, carotenoids, phenolic compounds) and microbial analysis after a storage period. To the pure juices proportions, citric acid E330, sucrose, and water were added followed by pasteurisation. These products were analysed from the physicochemical, microbial and sensorial viewpoints after a storage period of one month according to national legislation to evaluate their stability. The results of the physicochemical parameters of the prepared beverages had shown good physicochemical results, acceptable sensorial characteristics and microbial stability and safety before and after a storage period. We measured appreciable amounts of minor compounds with health properties.Keywords: fruit juices, microbial analyses, nectars, physico chemical characteristics, sensorial analysis, storage period
Procedia PDF Downloads 2291535 Use of Corn Stover for the Production of 2G Bioethanol, Enzymes, and Xylitol Under a Biorefinery Concept
Authors: Astorga-Trejo Rebeca, Fonseca-Peralta Héctor Manuel, Beltrán-Arredondo Laura Ivonne, Castro-Martínez Claudia
Abstract:
The use of biomass as feedstock for the production of fuels and other chemicals of interest is an ever-growing accepted option in the way to the development of biorefinery complexes; in the Mexican state of Sinaloa, two million tons of residues from corn crops are produced every year, most of which can be converted to bioethanol and other products through biotechnological conversion using yeast and other microorganisms. Therefore, the objective of this work was to take advantage of corn stover and evaluate its potential as a substrate for the production of second-generation bioethanol (2G), enzymes, and xylitol. To produce bioethanol 2G, an acid-alkaline pretreatment was carried out prior to saccharification and fermentation. The microorganisms used for the production of enzymes, as well as for the production of xylitol, were isolated and characterized in our workgroup. Statistical analysis was performed using Design Expert version 11.0. The results showed that it is possible to obtain 2G bioethanol employing corn stover as a carbon source and Saccharomyces cerevisiae ItVer01 and Candida intermedia CBE002 with yields of 0.42 g and 0.31 g, respectively. It was also shown that C. intermedia has the ability to produce xylitol with a good yield (0.46 g/g). On the other hand, qualitative and quantitative studies showed that the native strains of Fusarium equiseti (0.4 IU/mL - xylanase), Bacillus velezensis (1.2 IU/mL – xylanase and 0.4 UI/mL - amylase) and Penicillium funiculosum (1.5 IU / mL - cellulases) have the capacity to produce xylanases, amylases or cellulases using corn stover as raw material. This study allowed us to demonstrate that it is possible to use corn stover as a carbon source, a low-cost raw material with high availability in our country, to obtain bioproducts of industrial interest, using processes that are more environmentally friendly and sustainable. It is necessary to continue the optimization of each bioprocess.Keywords: biomass, corn stover, biorefinery, bioethanol 2G, enzymes, xylitol
Procedia PDF Downloads 1711534 Climate Change Vulnerability and Capacity Assessment in Coastal Areas of Sindh Pakistan and Its Impact on Water Resources
Authors: Falak Nawaz
Abstract:
The Climate Change Vulnerability and Capacity Assessment carried out in the coastal regions of Thatta and Malir districts underscore the potential risks and challenges associated with climate change affecting water resources. This study was conducted by the author using participatory rural appraisal tools, with a greater focus on conducting focus group discussions, direct observations, key informant interviews, and other PRA tools. The assessment delves into the specific impacts of climate change along the coastal belt, concentrating on aspects such as rising sea levels, depletion of freshwater, alterations in precipitation patterns, fluctuations in water table levels, and the intrusion of saltwater into rivers. These factors have significant consequences for the availability and quality of water resources in coastal areas, manifesting in frequent migration and alterations in agriculture-based livelihood practices. Furthermore, the assessment assesses the adaptive capacity of communities and organizations in these coastal regions to effectively confront and alleviate the effects of climate change on water resources. It considers various measures, including infrastructure enhancements, water management practices, adjustments in agricultural approaches, and disaster preparedness, aiming to bolster adaptive capacity. The study's findings emphasize the necessity for prompt actions to address identified vulnerabilities and fortify the adaptive capacities of Sindh's coastal areas. This calls for comprehensive strategies and policies promoting sustainable water resource management, integrating climate change considerations, and providing essential resources and support to vulnerable communities.Keywords: climate, climate change adaptation, disaster reselience, vulnerability, capacity, assessment
Procedia PDF Downloads 591533 Plasma Technology for Hazardous Biomedical Waste Treatment
Authors: V. E. Messerle, A. L. Mosse, O. A. Lavrichshev, A. N. Nikonchuk, A. B. Ustimenko
Abstract:
One of the most serious environmental problems today is pollution by biomedical waste (BMW), which in most cases has undesirable properties such as toxicity, carcinogenicity, mutagenicity, fire. Sanitary and hygienic survey of typical solid BMW, made in Belarus, Kazakhstan, Russia and other countries shows that their risk to the environment is significantly higher than that of most chemical wastes. Utilization of toxic BMW requires use of the most universal methods to ensure disinfection and disposal of any of their components. Such technology is a plasma technology of BMW processing. To implement this technology a thermodynamic analysis of the plasma processing of BMW was fulfilled and plasma-box furnace was developed. The studies have been conducted on the example of the processing of bone. To perform thermodynamic calculations software package Terra was used. Calculations were carried out in the temperature range 300 - 3000 K and a pressure of 0.1 MPa. It is shown that the final products do not contain toxic substances. From the organic mass of BMW synthesis gas containing combustible components 77.4-84.6% was basically produced, and mineral part consists mainly of calcium oxide and contains no carbon. Degree of gasification of carbon reaches 100% by the temperature 1250 K. Specific power consumption for BMW processing increases with the temperature throughout its range and reaches 1 kWh/kg. To realize plasma processing of BMW experimental installation with DC plasma torch of 30 kW power was developed. The experiments allowed verifying the thermodynamic calculations. Wastes are packed in boxes weighing 5-7 kg. They are placed in the box furnace. Under the influence of air plasma flame average temperature in the box reaches 1800 OC, the organic part of the waste is gasified and inorganic part of the waste is melted. The resulting synthesis gas is continuously withdrawn from the unit through the cooling and cleaning system. Molten mineral part of the waste is removed from the furnace after it has been stopped. Experimental studies allowed determining operating modes of the plasma box furnace, the exhaust gases was analyzed, samples of condensed products were assembled and their chemical composition was determined. Gas at the outlet of the plasma box furnace has the following composition (vol.%): CO - 63.4, H2 - 6.2, N2 - 29.6, S - 0.8. The total concentration of synthesis gas (CO + H2) is 69.6%, which agrees well with the thermodynamic calculation. Experiments confirmed absence of the toxic substances in the final products.Keywords: biomedical waste, box furnace, plasma torch, processing, synthesis gas
Procedia PDF Downloads 525