Search results for: unsaturated silty sand
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 954

Search results for: unsaturated silty sand

384 Dietary Effect of Selenium-Enriched Radish Sprouts, Vitamin E and Rhodobacter capsulatus on Hypocholesterolemia and Immunity of Broiler

Authors: Abdul G. Miah, Hirotada Tsujii, Ummay Salma, Iwao Takeda

Abstract:

The study was designed to investigate the effects of dietary Selenium-enriched radish sprouts (Se-RS), Vitamin E (Vit E) and Rhodobacter capsulatus (RC) on broiler's immunity, cholesterol concentration and fatty acid composition in broiler meat. A total of 100 two-week-old male broiler chicks were randomly assigned into 5 dietary groups, such as i) Control; ii) Se-RS (5 μg/kg Se-RS); iii) Se-RS+RC (5 μg/kg Se-RS + 0.2 g/kg RC); iv) Se-RS+Vit E (5 μg/kg Se-RS + 50 mg/kg Vit E) and v) Se-RS+RC+Vit E (5 μg/kg Se-RS + 0.2 g/kg RC + 50 mg/kg Vit E). The broilers were offered ad libitum specific diets and clean drinking water. After the end of 3-wk of feeding period, serum cholesterol and triglycerides concentrations were decreased (p<0.05) specially, in the broilers fed Se-RS+RC+Vit E supplemented diet compared to the broilers fed control diet. At the end of the 6-wk feeding period, Se-RS+RC+Vit E supplemented diet significantly (p<0.05) reduced cholesterol and triglycerides concentrations, and improved the ratio of unsaturated fatty acids (UFA) to saturated fatty acids (SFA) in broiler meat. The highest (p<0.05) number of leukocytes was observed in the broilers fed Se-RS+RC+Vit E supplemented diet than that of the broilers fed control diet. Spleen, bursa and thymus weight were significantly (p<0.05) increased by Se-RS+RC+Vit E supplemented diet than the control diet. Compared to the control diet, Se-RS+RC+Vit E supplemented diet significantly (p<0.05) increased foot web index. Moreover, there was no mortality in all groups of broilers during the experimental period. Therefore, the study may conclude that there are dual benefits of Se-RS+RC+Vit E supplementation in broiler diet improved immunity and meat quality for health conscious consumers.

Keywords: hypocholesterolemia, immunity of broiler, rhodobacter capsulatus, selenium-enriched radish sprouts, vitamin E

Procedia PDF Downloads 299
383 The Effect of Potassium Hydroxide on Fine Soil Treated with Olivine

Authors: Abdelmaoula Mahamoud Tahir, Sedat Sert

Abstract:

The possibility of improving the shear strength of unsaturated clayey soil with the addition of olivine was investigated in this paper. Unconsolidated undrained triaxial tests (UU), under different cell pressures (namely: 100 kPa and 200 kPa), with varying percentages of olivine (10% and 20% by weight) and with one day, 28 days, and 56 days curing times, were performed to determine the shear strength of the soil. The increase in strength was observed as a function of the increase in olivine content. An olivine content of 25% was determined as the optimum value to achieve the targeted improvement for both cure times. A comparative study was also conducted between clay samples treated with only olivine and others in the presence of potassium hydroxide (KOH). Clay samples treated with olivine and activated with potassium hydroxide (KOH) had higher shear strength than non-activated olivine-treated samples. It was determined that the strength of the clay samples treated with only olivine did not increase over time and added resistance only with the high specific gravity of olivine. On the other hand, the samples activated with potassium hydroxide (KOH) added to the resistance with high specific gravity and the chemical bonds of olivine. Morphological and mineralogical analyzes were carried out in this study to see and analyze the chemical bonds formed after the reaction. The main components of this improvement were the formation of magnesium-aluminate-hydrate and magnesium-silicate-hydrate. Compared to older methods such as cement addition, these results show that in stabilizing clayey soils, olivine additive offers an energy-efficient alternative for reducing carbon dioxide emissions.

Keywords: ground stabilization, clay, olivine additive, KOH, microstructure

Procedia PDF Downloads 117
382 Indenyl and Allyl Palladates: Synthesis, Bonding, and Anticancer Activity

Authors: T. Scattolin, E. Cavarzerani, F. Visentin, F. Rizzolio

Abstract:

Organopalladium compounds have recently attracted attention for their high stability even under physiological conditions and, above all, for their remarkable in vitro cytotoxicity towards cisplatin-resistant cell lines. Among the organopalladium derivatives, those bearing at least one N-heterocyclic carbene ligand (NHC) and the Pd(II)-η³-allyl fragment have exhibited IC₅₀ values in the micro and sub-micromolar range towards several cancer cell lines in vitro and in some cases selectivity towards cancerous vs. non-tumorigenic cells. Herein, a selection of allyl and indenyl palladates were synthesized using a solvent-free method consisting of grinding the corresponding palladium precursors with different saturated and unsaturated azolium salts. All compounds have been fully characterized by NMR, XRD and elemental analyses. The intramolecular H, Cl interaction has been elucidated and quantified using the Voronoi Deformation Density scheme. Most of the complexes showed excellent cytotoxicity towards ovarian cancer cell lines, with I₅₀ values comparable to or even lower than cisplatin. Interestingly, the potent anticancer activity was also confirmed in a high-serous ovarian cancer (HGSOC) patient-derived tumoroid, with a clear superiority of this class of compounds over classical platinum-based agents. Finally, preliminary enzyme inhibition studies of the synthesized palladate complexes against the model TrxR show that the compounds have high activity comparable to or even higher than auranofin and classical Au(I) NHC complexes. Based on such promising data, further in vitro and in vivo experiments and in-depth mechanistic studies are ongoing in our laboratories.

Keywords: anticancer activity, palladium complexes, organoids, indenyl and allyl ligands

Procedia PDF Downloads 95
381 Effect of Dietary Waste Date Meal (Phoneix dactylifera) on Chemical Body Composition, Nutrition Value and Fatty Acids Profile of Fingerling Common Carp (Cyprinus carpio)

Authors: Mehrdad Kamali-Sanzighi, Maziar Kamali-sanzighi

Abstract:

Effect of waste date meal (WDM) addition to the diet on body chemical composition and fatty acids profile of fingerling cyprinus carpio were evaluated. Four treatments with 3 replication such as control treatment (no additional WDM; T1), 5% WDM (50 gr/kg; T2), 10% WDM (100 gr/kg; T3) and 15% WDM (150 gr/kg; T4) were done. 168 fish with initial weight of 2.48±0.06 gr were fed 3 times per day according to 5 % of fish body weight for 12 weeks. The body composition results showed that there is no significant differences between treatments (P>0.05). All of Fatty acids profile parameters show significant differences between different treatments (P<0.05). Although, the highest value of MUFA+PUFA, PUFA/SFA, MUFA+PUFA/SFA, W3, EPA+DHA parameters belong to control treatment (T1) and 5% WDM treatment (T2) had lowest value of MUFA, PUFA, MUFA+PUFA, PUFA/SFA, MUFA+PUFA/SFA, W3, W3/W6, DHA/EPA and EPA+DHA parameters except of SFA and W6/W3 that show highest value than other treatments. Atherogenic index (AI) had no significant differences between different treatments (P>0.05) but Thrombogenic index (TI) had significant differences between different experimental treatments (P<0.05). The 5% WDM and control treatment show highest and lowest values. Generally, treatments of 10 and 15% WDM (T3-T4) had moderate performance than the other experimental treatments. Finally, addition of WDM to common carp fingerlings diets help to insignificant improvement of chemical body composition and the saturated and unsaturated fatty acids profile of them were significant.

Keywords: waste, date, common carp, nutrition value

Procedia PDF Downloads 91
380 Experimental Study of Sahara Climat Effect in Photovoltaic Solar Module

Authors: A. Benatiallah, A. Hadjadj, D. Benatiallah, F. Abaidi, A. Harrouz

Abstract:

Photovoltaic system is established as a reliable and economical source of electricity in rural and Sahara areas, especially in developing countries where the population is dispersed, has low consumption of energy and the grid power is not extended to these areas due to viability and financial problems. The production of energy by the photovoltaic system is very fluctuates and depend of meteorological conditions. Wind is a very important and often neglected parameter in the behavior of the solar module. The electric performances of a solar module to the silicon are very appreciable to the blows; in the present work we have studies the behavior of multi-crystal solar module according to the density of dust, and the principals electric feature of the solar module. An evaluation permits to affirm that a solar module under the effect of sand will collect a lower flux to the normal conditions.

Keywords: photovoltaic, multi-crystal module, experimental, effect of dust, performances

Procedia PDF Downloads 307
379 Phytotoxicity of Lead on the Physiological Parameters of Two Varieties of Broad Bean (Vicia faba)

Authors: El H. Bouziani, H. A. Reguieg Yssaad

Abstract:

The phytotoxicity of heavy metals can be expressed on roots and visible part of plants and is characterized by molecular and metabolic answers at various levels of organization of the whole plant. The present study was undertaken on two varieties of broad bean Vicia faba (Sidi Aïch and Super Aguadulce). The device was mounted on a substrate prepared by mixing sand, soil and compost, the substrate was artificially contaminated with three doses of lead nitrate [Pb(NO3)2] 0, 500 and 1000 ppm. Our objective is to follow the behavior of plant opposite the stress by evaluating the physiological parameters. The results reveal a reduction in the parameters of the productivity (chlorophyll and proteins production) with an increase in the osmoregulators (soluble sugars and proline).These results show that the production of broad bean is strongly modified by the disturbance of its internal physiology under lead exposure.

Keywords: broad bean, lead, stress, physiological parameters, phytotoxicity

Procedia PDF Downloads 308
378 Effectiveness of Natural Zeolite in Mitigating Alkali Silica Reaction Expansions

Authors: Esma Gizem Daskiran, Mehmet Mustafa Daskiran

Abstract:

This paper investigates the effectiveness of two natural zeolites in reducing expansion of concrete due to alkali-silica reaction. These natural zeolites have different reactive silica content. Three aggregates; two natural sand and one crushed stone aggregate were used while preparing mortar bars in accordance with accelerated mortar bar test method, ASTM C1260. Performance of natural zeolites are compared by examining the expansions due to alkali silica reaction. Natural zeolites added to the mixtures at %10 and %20 replacement levels by weight of cement. Natural zeolite with high reactive silica content had better performance on reducing expansions due to ASR. In this research, using high reactive zeolite at %20 replacement level was effective in mitigating expansions.

Keywords: alkali silica reaction, natural zeolite, durability, expansion

Procedia PDF Downloads 393
377 Partial Replacement of Lateritic Soil with Crushed Rock Sand (Stone Dust) in Compressed Earth Brick Production

Authors: A. M. Jungudo, M. A. Lasan

Abstract:

Affordable housing has long been one of the basic necessities of life to man. The ever rising prices of building materials are one of the major causes of housing shortage in many developing countries. Breaching the gap of housing needs in developing countries like Nigeria is an awaiting task longing for attention. This is due to lack of research in the development of local materials that will suit the troubled economies of these countries. The use of earth material to meet the housing needs is a sustainable option and its material is freely available universally. However, people are doubtful of using the earth material due to its modest outlook and uncertain durability. This research aims at enhancing the durability of Compressed Earth Bricks (CEBs) using stone dust as a stabilizer. The result indicates that partial replacement of lateritic soil with stone dust at 30% improves its compressive strength along with abrasive resistance.

Keywords: earth construction, durability, stone dust, sustainable

Procedia PDF Downloads 131
376 Effects of Dietary Protein and Lipid Levels on Growth and Body Composition of Juvenile Fancy Carp, Cyprinus carpio var. Koi

Authors: Jin Choi, Zahra Aminikhoei, Yi-Oh Kim, Sang-Min Lee

Abstract:

A 4 × 2 factorial experiment was conducted to determine the optimum dietary protein and lipid levels for juvenile fancy carp, Cyprinus carpio var. koi. Eight experimental diets were formulated to contain four protein levels (200, 300, 400, and 500 g kg-1) with two lipid levels (70 and 140 g kg-1). Triplicate groups of fish (initial weight, 12.1±0.2 g fish-1) were hand-fed the diets to apparent satiation for 8 weeks. Weight gain, daily feed intake, feed efficiency ratio and protein efficiency ratio were significantly (P < 0.0001) affected by dietary protein level, but not by dietary lipid level (P > 0.05). Weight gain and feed efficiency ratio tended to increase as dietary protein level increased up to 400 and 500 g kg-1, respectively. Daily feed intake of fish decreased with increasing dietary protein level and that of fish fed diet contained 500 g kg-1 protein was significantly lower than other fish groups. The protein efficiency ratio of fish fed 400 and 500 g kg-1 protein was lower than that of fish fed 200 and 300 g kg-1 protein. Moisture, crude protein and crude lipid contents of muscle and liver were significantly affected by dietary protein, but not by dietary lipid level (P > 0.05). The increase in dietary lipid level resulted in an increase in linoleic acid in liver and muscle paralleled with a decrease in n-3 highly unsaturated fatty acids content in muscle of fish. In considering these results, it was concluded that the diet containing 400 g kg-1 protein with 70 g kg-1 lipid level is optimal for growth and efficient feed utilization of juvenile fancy carp.

Keywords: fancy carp, dietary protein, dietary lipid, Cyprinus carpio, fatty acid

Procedia PDF Downloads 405
375 Production of Biodiesel Using Tannery Fleshing as a Feedstock via Solid-State Fermentation

Authors: C. Santhana Krishnan, A. M. Mimi Sakinah, Lakhveer Singh, Zularisam A. Wahid

Abstract:

This study was initiated to evaluate and optimize the conversion of animal fat from tannery wastes into methyl ester. In the pre-treatment stage, animal fats feedstock was hydrolysed and esterified through solid state fermentation (SSF) using Microbacterium species immobilized onto sand silica matrix. After 72 hours of fermentation, predominant esters in the animal fats were found to be with 83.9% conversion rate. Later, esterified animal fats were transesterified at 3 hour reaction time with 1% NaOH (w/v %), 6% methanol to oil ratio (w/v %) to produce 89% conversion rate. C13 NMR revealed long carbon chain in fatty acid methyl esters at 22.2817-31.9727 ppm. Methyl esters of palmitic, stearic, oleic represented the major components in biodiesel.

Keywords: tannery wastes, fatty animal fleshing, trans-esterification, immobilization, solid state fermentation

Procedia PDF Downloads 268
374 Oily Sludge Bioremediation Pilot Plant Project, Nigeria

Authors: Ime R. Udotong, Justina I. R. Udotong, Ofonime U. M. John

Abstract:

Brass terminal, one of the several crude oil and petroleum products storage/handling facilities in the Niger Delta was built in the 1980s. Activities at this site, over the years, released crude oil into this 3 m-deep, 1500 m-long canal lying adjacent to the terminal with oil floating on it and its sediment heavily polluted. To ensure effective clean-up, three major activities were planned: Site characterization, bioremediation pilot plant construction and testing and full-scale bioremediation of contaminated sediment/bank soil by land farming. The canal was delineated into 12 lots and each characterized, with reference to the floating oily phase, contaminated sediment and canal bank soil. As a result of site characterization, a pilot plant for on-site bioremediation was designed and a treatment basin constructed for carrying out pilot bioremediation test. Following a designed sampling protocol, samples from this pilot plant were collected for analysis at two laboratories as a quality assurance/quality control check. Results showed that Brass Canal upstream is contaminated with dark, thick and viscous oily film with characteristic hydrocarbon smell while downstream, thin oily film interspersed with water were observed. Sediments were observed to be dark with mixture of brownish sandy soil with TPH ranging from 17,800 mg/kg in Lot 1 to 88,500 mg/kg in Lot 12 samples. Brass Canal bank soil was observed to be sandy from ground surface to 3m, below ground surface (bgs) it was silty-sandy and brownish while subsurface soil (4-10m bgs) was sandy-clayey and whitish/grayish with typical hydrocarbon smell. Preliminary results obtained so far have been very promising but were proprietary. This project is considered, to the best of technical literature knowledge, the first large-scale on-site bioremediation project in the Niger Delta region, Nigeria.

Keywords: bioremediation, contaminated sediment, land farming, oily sludge, oil terminal

Procedia PDF Downloads 454
373 Relationship between Gully Development and Characteristics of Drainage Area in Semi-Arid Region, NW Iran

Authors: Ali Reza Vaezi, Ouldouz Bakhshi Rad

Abstract:

Gully erosion is a widespread and often dramatic form of soil erosion caused by water during and immediately after heavy rainfall. It occurs when flowing surface water is channelled across unprotected land and washes away the soil along the drainage lines. The formation of gully is influenced by various factors, including climate, drainage surface area, slope gradient, vegetation cover, land use, and soil properties. It is a very important problem in semi-arid regions, where soils have lower organic matter and are weakly aggregated. Intensive agriculture and tillage along the slope can accelerate soil erosion by water in the region. There is little information on the development of gully erosion in agricultural rainfed areas. Therefore, this study was carried out to investigate the relationship between gully erosion and morphometric characteristics of the drainage area and the effects of soil properties and soil management factors (land use and tillage method) on gully development. A field study was done in a 900 km2 agricultural area in Hshtroud township located in the south of East Azarbijan province, NW Iran. Toward this, two hundred twenty-two gullies created in rainfed lands were found in the area. Some properties of gullies, consisting of length, width, depth, height difference, cross section area, and volume, were determined. Drainage areas for each or some gullies were determined, and their boundaries were drawn. Additionally, the surface area of each drainage, land use, tillage direction, and soil properties that may affect gully formation were determined. The soil erodibility factor (K) defined in the Universal Soil Loss Equation (USLE) was estimated based on five soil properties (silt and very fine sand, coarse sand, organic matter, soil structure code, and soil permeability). Gully development in each drainage area was quantified using its volume and soil loss. The dependency of gully development on drainage area characteristics (surface area, land use, tillage direction, and soil properties) was determined using correlation matrix analysis. Based on the results, gully length was the most important morphometric characteristic indicating the development of gully erosion in the lands. Gully development in the area was related to slope gradient (r= -0.26), surface area (r= 0.71), the area of rainfed lands (r= 0.23), and the area of rainfed tilled along the slope (r= 0.24). Nevertheless, its correlation with the area of pasture and soil erodibility factor (K) was not significant. Among the characteristics of drainage area, surface area is the major factor controlling gully volume in the agricultural land. No significant correlation was found between gully erosion and soil erodibility factor (K) estimated by the Universal Soil Loss Equation (USLE). It seems the estimated soil erodibility can’t describe the susceptibility of the study soils to the gully erosion process. In these soils, aggregate stability and soil permeability are the two soil physical properties that affect the actual soil erodibility and in consequence, these soil properties can control gully erosion in the rainfed lands.

Keywords: agricultural area, gully properties, soil structure, USLE

Procedia PDF Downloads 78
372 Oi̇l Absorption Behavior and Its Effect on Charpy Impact Test of Glass Reinforced Polyester Composites Used in the Manufacture of Naval Ship Hulls

Authors: Bouhafara Djaber, Menail Younes, Mesrafet Farouk, Aissaoui Mohammed Islem

Abstract:

This article presents results of experimental investigations of the durability of (GFRP) composite exposed to typical environments of marine industries applications,The use of fiber-glass reinforced polyester composites in marine applications such as Hulls of voyage boats and hulls of small vessels for the military navy , this type of composite is becoming attractive because of their reduced weight and improved corrosion resistance. However,a deep understating of oil ageing effect on composite structures is essential to ensure long-term performance and durability. in this work evaluate the effect of oil ageing on absorptıon behavıor and ımpact properties of glass/polyester composites manufactured with two types of fiber fabrics (fibreglass mat and fiberglass woven roving) and isophthalic polyester resin. The specimens obtained from commercial (GFRP) profiles made of unsaturated polyester resin were subjected to immersion in (i) marine oil for boats and (ii) salt water at ambient temperature for up to 1 month. The effects of such exposure conditions on this types of profile we analysed in what concerns their (i) mass change,(ii) mechanical response in impact, namely on the mechanical response – oil immersion caused a higher level of degradation, compared with salt water immersion;fracture surface examination by scanning electron microscopy revealed delamination, fiber debonding and resin crumbling due to oil effect.

Keywords: Marine Engine Oil, Absorption, Polyester, Glass Fibre

Procedia PDF Downloads 83
371 Seismic Soil-Pile Interaction Considering Nonlinear Soil Column Behavior in Saturated and Dry Soil Conditions

Authors: Mohammad Moeini, Mehrdad Ghyabi, Kiarash Mohtasham Dolatshahi

Abstract:

This paper investigates seismic soil-pile interaction using the Beam on Nonlinear Winkler Foundation (BNWF) approach. Three soil types are considered to cover all the possible responses, as well as nonlinear site response analysis using finite element method in OpenSees platform. Excitations at each elevation that are output of the site response analysis are used as the input excitation to the soil pile system implementing multi-support excitation method. Spectral intensities of acceleration show that the extent of the response in sand is more severe than that of clay, in addition, increasing the PGA of ground strong motion will affect the sandy soil more, in comparison with clayey medium, which is an indicator of the sensitivity of soil-pile systems in sandy soil.

Keywords: BNWF method, multi-support excitation, nonlinear site response analysis, seismic soil-pile interaction

Procedia PDF Downloads 394
370 Experimental Characterization of the Shear Behavior of Fiber Reinforced Concrete Beam Elements in Chips

Authors: Djamal Atlaoui, Youcef Bouafia

Abstract:

This work deals with the experimental study of the mechanical behavior, by shear tests (fracture shear), elements of concrete beams reinforced with fibers in chips. These fibers come from the machining waste of the steel parts. The shear tests are carried out on prismatic specimens of dimensions 10 x 20 x 120 cm3. The fibers are characterized by mechanical resistance and tearing. The optimal composition of the concrete was determined by the workability test. Two fiber contents are selected for this study (W = 0.6% and W = 0.8%) and a BT control concrete (W = 0%) of the same composition as the matrix is developed to serve as a reference with a sand-to-gravel ratio (S/G) of concrete matrix equal to 1. The comparison of the different results obtained shows that the chips fibers confer a significant ductility to the material after cracking of the concrete. Also, the fibers used limit diagonal cracks in shear and improve strength and rigidity.

Keywords: characterization, chips fibers, cracking mode, ductility, undulation, shear

Procedia PDF Downloads 135
369 Laboratory Assessment of Electrical Vertical Drains in Composite Soils Using Kaolin and Bentonite Clays

Authors: Maher Z. Mohammed, Barry G. Clarke

Abstract:

As an alternative to stone column in fine grained soils, it is possible to create stiffened columns of soils using electroosmosis (electroosmotic piles). This program of this research is to establish the effectiveness and efficiency of the process in different soils. The aim of this study is to assess the capability of electroosmosis treatment in a range of composite soils. The combined electroosmotic and preloading equipment developed by Nizar and Clarke (2013) was used with an octagonal array of anodes surrounding a single cathode in a nominal 250mm diameter 300mm deep cylinder of soil and 80mm anode to cathode distance. Copper coiled springs were used as electrodes to allow the soil to consolidate either due to an external vertical applied load or electroosmosis. The equipment was modified to allow the temperature to be monitored during the test. Electroosmotic tests were performed on China Clay Grade E kaolin and calcium bentonite (Bentonex CB) mixed with sand fraction C (BS 1881 part 131) at different ratios by weight; (0, 23, 33, 50 and 67%) subjected to applied voltages (5, 10, 15 and 20). The soil slurry was prepared by mixing the dry soil with water to 1.5 times the liquid limit of the soil mixture. The mineralogical and geotechnical properties of the tested soils were measured before the electroosmosis treatment began. In the electroosmosis cell tests, the settlement, expelled water, variation of electrical current and applied voltage, and the generated heat was monitored during the test time for 24 osmotic tests. Water content was measured at the end of each test. The electroosmotic tests are divided into three phases. In Phase 1, 15 kPa was applied to simulate a working platform and produce a uniform soil which had been deposited as a slurry. 50 kPa was used in Phase 3 to simulate a surcharge load. The electroosmotic treatment was only performed during Phase 2 where a constant voltage was applied through the electrodes in addition to the 15 kPa pressure. This phase was stopped when no further water was expelled from the cell, indicating the electroosmotic process had stopped due to either the degradation of the anode or the flow due to the hydraulic gradient exactly balanced the electroosmotic flow resulting in no flow. Control tests for each soil mixture were carried out to assess the behaviour of the soil samples subjected to only an increase of vertical pressure, which is 15kPa in Phase 1 and 50kPa in Phase 3. Analysis of the experimental results from this study showed a significant dewatering effect on the soil slurries. The water discharged by the electroosmotic treatment process decreased as the sand content increased. Soil temperature increased significantly when electrical power was applied and drops when applied DC power turned off or when the electrode degraded. The highest increase in temperature was found in pure clays at higher applied voltage after about 8 hours of electroosmosis test.

Keywords: electrokinetic treatment, electrical conductivity, electroosmotic consolidation, electroosmosis permeability ratio

Procedia PDF Downloads 167
368 The Effect of Spatial Variability on Axial Pile Design of Closed Ended Piles in Sand

Authors: Cormac Reale, Luke J. Prendergast, Kenneth Gavin

Abstract:

While significant improvements have been made in axial pile design methods over recent years, the influence of soils natural variability has not been adequately accounted for within them. Soil variability is a crucial parameter to consider as it can account for large variations in pile capacity across the same site. This paper seeks to address this knowledge deficit, by demonstrating how soil spatial variability can be accommodated into existing cone penetration test (CPT) based pile design methods, in the form of layered non-homogeneous random fields. These random fields model the scope of a given property’s variance and define how it varies spatially. A Monte Carlo analysis of the pile will be performed taking into account parameter uncertainty and spatial variability, described using the measured scales of fluctuation. The results will be discussed in light of Eurocode 7 and the effect of spatial averaging on design capacities will be analysed.

Keywords: pile axial design, reliability, spatial variability, CPT

Procedia PDF Downloads 246
367 Waste Recovery: A Sustainable Way for Application of Solid Waste from WTP's in Building Materials

Authors: Flavio Araujo, Livia Dias, Fabiolla Lima, Paulo Scalize, Antonio Albuquerque

Abstract:

Water treatment residues (WTR) are solid waste produced during drinking water treatment and have recently been seen as a reusable material. The aim of this research was show how to use the residue generated in a Water Treatment Plant, located in Goiania, Brazil, following the considerations of the law of solid waste to obtain normative parameters and consider sustainable alternatives for reincorporation of the residues in the productive chain for manufacturing various materials construction. In order to reduce the environmental liabilities generated by sanitation companies and discontinue unsustainable forms of disposal. The analyzes performed: Granulometry, Scanning Electron Microscopy and X-Ray Diffraction demonstrated the potential application of residues to replace the soil and sand, because it has characteristics compatible with small aggregate and can be used as feedstock for the manufacture of materials as ceramic and soil-cement bricks, mortars, interlocking floors and concrete artifacts.

Keywords: residue, sustainable, water treatment plants, WTR, WTP

Procedia PDF Downloads 495
366 Accuracy of a 3D-Printed Polymer Model for Producing Casting Mold

Authors: Ariangelo Hauer Dias Filho, Gustavo Antoniácomi de Carvalho, Benjamim de Melo Carvalho

Abstract:

The work´s purpose was to evaluate the possibility of manufacturing casting tools utilizing Fused Filament Fabrication, a 3D printing technique, without any post-processing on the printed part. Taguchi Orthogonal array was used to evaluate the influence of extrusion temperature, bed temperature, layer height, and infill on the dimensional accuracy of a 3D-Printed Polymer Model. A Zeiss T-SCAN CS 3D Scanner was used for dimensional evaluation of the printed parts within the limit of ±0,2 mm. The mold capabilities were tested with the printed model to check how it would interact with the green sand. With little adjustments in the 3D model, it was possible to produce rapid tools without the need for post-processing for iron casting. The results are important for reducing time and cost in the development of such tools.

Keywords: additive manufacturing, Taguchi method, rapid tooling, fused filament fabrication, casting mold

Procedia PDF Downloads 145
365 Dynamic Response of Structure-Raft-Pile-Soil with Respect to System Frequency

Authors: B. Razmi, F. Rafiee, M. Baziar, A. Saeedi Azizkandi

Abstract:

In the present research, a series of 3-D finite element numerical modeling was performed to study the effect of system frequency and excitation specifications on the internal forces of the piled raft (PR) system in a dry sand layer. The results of numerical simulations were first compared with those associated with centrifuge tests. The natural frequency of superstructure, modeled on the piled raft foundation, was smaller than the natural frequency of the fixed-base super-structure. This difference was greater for super-structures with higher frequencies. In PR systems, the excitation with a frequency close to the system frequency produced the largest responses. Furthermore, based on the results of presented numerical analyses, ignoring the interactions and characteristics of all components of a pile-raft-structure, may lead to highly uneconomical design.

Keywords: centrifuge test, excitation frequency, natural frequency of super-structure, piled raft foundation, 3-D finite element model

Procedia PDF Downloads 118
364 Wastewater Treatment Using Sodom Apple Tree in Arid Regions

Authors: D. Oulhaci, M. Zehah, S. Meguellati

Abstract:

Collected by the sewerage network, the wastewater contains many polluting elements, coming from the population, commercial, industrial and agricultural activities. These waters are collected and discharged into the natural environment and pollute it. Hence the need to transport them before discharge to a treatment plant to undergo several treatment phases. The objective of this study is to highlight the purification performance of the "Sodom apple tree" which is a very common shrub in the region of Djanet and Illizi in Algeria. As material, we used small buckets filled with sand with a gravel substrate. We sowed seeds that we let grow a few weeks. The water supply is under a horizontal flow regime under-ground. The urban wastewater used is preceded by preliminary treatment. The water obtained after purification is collected using a tap in a container placed under the seal. The comparison between the inlet and the outlet waters showed that the presence of the Sodom apple tree contributes to reducing their pollutant parameters with significant rates: 81% for COD, 84%, for BOD , 95% for SM , 82% for NO⁻² , and 85% for NO⁻³ and can be released into the environment without risk of pollution

Keywords: arid zone, pollution, purification, re-use, wastewater.

Procedia PDF Downloads 80
363 Image Processing on Geosynthetic Reinforced Layers to Evaluate Shear Strength and Variations of the Strain Profiles

Authors: S. K. Khosrowshahi, E. Güler

Abstract:

This study investigates the reinforcement function of geosynthetics on the shear strength and strain profile of sand. Conducting a series of simple shear tests, the shearing behavior of the samples under static and cyclic loads was evaluated. Three different types of geosynthetics including geotextile and geonets were used as the reinforcement materials. An image processing analysis based on the optical flow method was performed to measure the lateral displacements and estimate the shear strains. It is shown that besides improving the shear strength, the geosynthetic reinforcement leads a remarkable reduction on the shear strains. The improved layer reduces the required thickness of the soil layer to resist against shear stresses. Consequently, the geosynthetic reinforcement can be considered as a proper approach for the sustainable designs, especially in the projects with huge amount of geotechnical applications like subgrade of the pavements, roadways, and railways.

Keywords: image processing, soil reinforcement, geosynthetics, simple shear test, shear strain profile

Procedia PDF Downloads 220
362 Energy Efficiency Analysis of Electrical Submersible Pump on Mature Oil Field Offshore Java Sea

Authors: Marda Vidrianto, Tania Surya Utami

Abstract:

Electrical Submersible Pump (ESP) is an artificial lift of choice to produce oil on Offshore Java Sea. It is selected based on the production rate capacity and running life expectation. ESP performance in a mature field is highly affected by oil well conditions. The presence of sand, scale, gas, and low influx will create unstable ESP operation hence lowering the run life expectation and system efficiency. This paper reviews the current energy usage and efficiency on every part of the ESP system. The hydraulic and electrical losses, as well as system efficiency for each well, are calculated to identify energy losses and the possibility for improvement. It is shown that high back pressure on the system and low-efficiency pump are the major contributors to energy losses. It was found that optimized production rate and the use of advanced technology on pump and motor unit could improve energy efficiency.

Keywords: advance technology, energy efficiency, ESP, mature field, production rate

Procedia PDF Downloads 342
361 Numerical Analysis of NOₓ Emission in Staged Combustion for the Optimization of Once-Through-Steam-Generators

Authors: Adrien Chatel, Ehsan Askari Mahvelati, Laurent Fitschy

Abstract:

Once-Through-Steam-Generators are commonly used in the oil-sand industry in the heavy fuel oil extraction process. They are composed of three main parts: the burner, the radiant and convective sections. Natural gas is burned through staged diffusive flames stabilized by the burner. The heat generated by the combustion is transferred to the water flowing through the piping system in the radiant and convective sections. The steam produced within the pipes is then directed to the ground to reduce the oil viscosity and allow its pumping. With the rapid development of the oil-sand industry, the number of OTSG in operation has increased as well as the associated emissions of environmental pollutants, especially the Nitrous Oxides (NOₓ). To limit the environmental degradation, various international environmental agencies have established regulations on the pollutant discharge and pushed to reduce the NOₓ release. To meet these constraints, OTSG constructors have to rely on more and more advanced tools to study and predict the NOₓ emission. With the increase of the computational resources, Computational Fluid Dynamics (CFD) has emerged as a flexible tool to analyze the combustion and pollutant formation process. Moreover, to optimize the burner operating condition regarding the NOx emission, field characterization and measurements are usually accomplished. However, these kinds of experimental campaigns are particularly time-consuming and sometimes even impossible for industrial plants with strict operation schedule constraints. Therefore, the application of CFD seems to be more adequate in order to provide guidelines on the NOₓ emission and reduction problem. In the present work, two different software are employed to simulate the combustion process in an OTSG, namely the commercial software ANSYS Fluent and the open source software OpenFOAM. RANS (Reynolds-Averaged Navier–Stokes) equations combined with the Eddy Dissipation Concept to model the combustion and closed by the k-epsilon model are solved. A mesh sensitivity analysis is performed to assess the independence of the solution on the mesh. In the first part, the results given by the two software are compared and confronted with experimental data as a mean to assess the numerical modelling. Flame temperatures and chemical composition are used as reference fields to perform this validation. Results show a fair agreement between experimental and numerical data. In the last part, OpenFOAM is employed to simulate several operating conditions, and an Emission Characteristic Map of the combustion system is generated. The sources of high NOₓ production inside the OTSG are pointed and correlated to the physics of the flow. CFD is, therefore, a useful tool for providing an insight into the NOₓ emission phenomena in OTSG. Sources of high NOₓ production can be identified, and operating conditions can be adjusted accordingly. With the help of RANS simulations, an Emission Characteristics Map can be produced and then be used as a guide for a field tune-up.

Keywords: combustion, computational fluid dynamics, nitrous oxides emission, once-through-steam-generators

Procedia PDF Downloads 116
360 Shape Optimization of a Hole for Water Jetting in a Spudcan for a Jack-Up Rig

Authors: Han Ik Park, Jeong Hyeon Seong, Dong Seop Han, Su-Chul Shin, Young Chul Park

Abstract:

A Spudcan is mounted on the lower leg of the jack-up rig, a device for preventing a rollover of a structure and to support the structure in a stable sea floor. At the time of inserting the surface of the spud can to penetrate when the sand layer is stable and smoothly pulled to the clay layer, and at that time of recovery when uploading the spud can is equipped with a water injection device. In this study, it is significant to optimize the shape of pipelines holes for water injection device and it was set in two kinds of shape, the oval and round. Interpretation of the subject into the site of Gulf of Mexico offshore Wind Turbine Installation Vessels (WTIV)was chosen as a target platform. Using the ANSYS Workbench commercial programs, optimal design was conducted. The results of this study can be applied to the hole-shaped design of various marine structures.

Keywords: kriging method, jack-up rig, shape optimization, spudcan

Procedia PDF Downloads 508
359 In vitro Analysis of the Effect of Supplementation Oils on Conjugated Linoleic Acid Production by Butyvibrio Fibrisolvense

Authors: B. D. Ravindra, A. K. Tyagi, C. Kathirvelan

Abstract:

Some micronutrients in food (milk and meat), called ‘functional food components’ exert beneficial effects other than their routine nutrient function and conjugated linoleic acid (CLA) is an unsaturated fatty acid of ruminant origin, an example of this category. However, recently the fear of hypercholesterolemia due to saturated fats has led to the avoidance of dietary fat especially of animal origin despite its advantages such as lowering blood cholesterol, immuno-modulation and anticarcinogenic property due to the presence of CLA. The dietary increase of linoleic acid (LA) and linolenic acid (LNA) is one of the feeding strategies for increasing the CLA concentration in milk. Butyrivibrio fibrisolvens is the one potential rumen bacteria, which has high potential to isomerize LA to CLA. The study was conducted to screen the different oils for CLA production, selected based on their LA concentration. Butyrivibrio fibrisolvens culture (strain 49, MZ3, 30/10) were isolated from the rumen liquor of fistulated Buffalo (age ≈ 3 years; weight ≈ 250 kg) were used in in-vitro experiments, further work was carried out with three oils viz., sunflower, mustard and soybean oil at different concentration (0.05, 0.1, 0.15, 0.2, 0.25 and 0.3 g/L of media) to study the growth of bacteria and CLA production at different incubation period (0, 8, 12, 18, 24, 48, 72 h). In the present study, growth of the bacteria was decreased linearly with increase in concentration of three oils. However, highest decrease in growth was recorded at the concentration of 0.30 g of three oils per litre of the media. Highest CLA production was 51.96, 42.08 and 25.60 µg/ml at 0.25 g and it decreased to 48.19, 39.35 and 23.41 µg/ml at 0.3 g supplementation of sunflower, soybean, and mustard oil per litre of the media, respectively at 18 h incubation period. The present study indicates the Butyrivibrio fibrisolvens bacteria involves in the biohydrogenation process, and LA rich sunflower meal can be used to improve the CLA production in rumen and thereby increasing the CLA concentration of milk.

Keywords: Butyrivibrio fibrisolvens, CLA, fatty acids, sunflower oil

Procedia PDF Downloads 374
358 Temporal Variation of Surface Runoff and Interrill Erosion in Different Soil Textures of a Semi-arid Region, Iran

Authors: Ali Reza Vaezi, Naser Fakori Ivand, Fereshteh Azarifam

Abstract:

Interrill erosion is the detachment and transfer of soil particles between the rills due to the impact of raindrops and the shear stress of shallow surface runoff. This erosion can be affected by some soil properties such as texture, amount of organic matter and stability of soil aggregates. Information on the temporal variation of interrill erosion during a rainfall event and the effect soil properties have on it can help in understanding the process of runoff production and soil loss between the rills in hillslopes. The importance of this study is especially grate in semi-arid regions, where the soil is weakly aggregated and vegetation cover is mostly poor. Therefore, this research was conducted to investigate the temporal variation of surface flow and interrill erosion and the effect of soil properties on it in some semi-arid soils. A field experiment was done in eight different soil textures under simulated rainfalls with uniform intensity. A total of twenty four plots were installed for eight study soils with three replicates in the form of a random complete block design along the land. The plots were 1.2 m (length) × 1 m (width) in dimensions which designed with a distance of 3 m from each other across the slope. Then, soil samples were purred into the plots. The plots were surrounded by a galvanized sheet, and runoff and soil erosion equipment were placed at their outlets. Rainfall simulation experiments were done using a designed portable simulator with an intensity of 60 mm per hour for 60 minutes. A plastic cover was used around the rainfall simulator frame to prevent the impact of the wind on the free fall of water drops. Runoff production and soil loss were measured during 1 hour time with 5-min intervals. In order to study soil properties, such as particle size distribution, aggregate stability, bulk density, ESP and Ks were determined in the laboratory. Correlation and regression analysis was done to determine the effect of soil properties on runoff and interrill erosion. Results indicated that the study soils have lower booth organic matter content and aggregate stability. The soils, except for coarse textured textures, are calcareous and with relatively higher exchangeable sodium percentages (ESP). Runoff production and soil loss didn’t occur in sand, which was associated with higher infiltration and drainage rates. In other study soils, interrill erosion occurred simultaneously with the generation of runoff. A strong relationship was found between interrill erosion and surface runoff (R2 = 0.75, p< 0.01). The correlation analysis showed that surface runoff was significantly affected by some soil properties consisting of sand, silt, clay, bulk density, gravel, hydraulic conductivity (Ks), lime (calcium carbonate), and ESP. The soils with lower Ks such as fine-textured soils, produced higher surface runoff and more interrill erosion. In the soils, Surface runoff production temporally increased during rainfall and finally reached a peak after about 25-35 min. Time to peak was very short (30 min) in fine-textured soils, especially clay, which was related to their lower infiltration rate.

Keywords: erosion plot, rainfall simulator, soil properties, surface flow

Procedia PDF Downloads 69
357 Evaluation of Natural Frequency of Single and Grouped Helical Piles

Authors: Maryam Shahbazi, Amy B. Cerato

Abstract:

The importance of a systems’ natural frequency (fn) emerges when the vibration force frequency is equivalent to foundation's fn which causes response amplitude (resonance) that may cause irreversible damage to the structure. Several factors such as pile geometry (e.g., length and diameter), soil density, load magnitude, pile condition, and physical structure affect the fn of a soil-pile system; some of these parameters are evaluated in this study. Although experimental and analytical studies have assessed the fn of a soil-pile system, few have included individual and grouped helical piles. Thus, the current study aims to provide quantitative data on dynamic characteristics of helical pile-soil systems from full-scale shake table tests that will allow engineers to predict more realistic dynamic response under motions with variable frequency ranges. To evaluate the fn of single and grouped helical piles in dry dense sand, full-scale shake table tests were conducted in a laminar box (6.7 m x 3.0 m with 4.6 m high). Two different diameters (8.8 cm and 14 cm) helical piles were embedded in the soil box with corresponding lengths of 3.66m (excluding one pile with length of 3.96) and 4.27m. Different configurations were implemented to evaluate conditions such as fixed and pinned connections. In the group configuration, all four piles with similar geometry were tied together. Simulated real earthquake motions, in addition to white noise, were applied to evaluate the wide range of soil-pile system behavior. The Fast Fourier Transform (FFT) of measured time history responses using installed strain gages and accelerometers were used to evaluate fn. Both time-history records using accelerometer or strain gages were found to be acceptable for calculating fn. In this study, the existence of a pile reduced the fn of the soil slightly. Greater fn occurred on single piles with larger l/d ratios (higher slenderness ratio). Also, regardless of the connection type, the more slender pile group which is obviously surrounded by more soil, yielded higher natural frequencies under white noise, which may be due to exhibiting more passive soil resistance around it. Relatively speaking, within both pile groups, a pinned connection led to a lower fn than a fixed connection (e.g., for the same pile group the fn’s are 5.23Hz and 4.65Hz for fixed and pinned connections, respectively). Generally speaking, a stronger motion causes nonlinear behavior and degrades stiffness which reduces a pile’s fn; even more, reduction occurs in soil with a lower density. Moreover, fn of dense sand under white noise signal was obtained 5.03 which is reduced by 44% when an earthquake with the acceleration of 0.5g was applied. By knowing the factors affecting fn, the designer can effectively match the properties of the soil to a type of pile and structure to attempt to avoid resonance. The quantitative results in this study assist engineers in predicting a probable range of fn for helical pile foundations under potential future earthquake, and machine loading applied forces.

Keywords: helical pile, natural frequency, pile group, shake table, stiffness

Procedia PDF Downloads 133
356 Valorization of Sawdust for the Treatment of Purified Water for Irrigation

Authors: Dalila Oulhaci, Mohammed Zahaf

Abstract:

The watering technique is essential to maintain a moist perimeter around the roots of the crop. This is the case with topical watering, where the soil around the root system can be kept permanently moist between the two extremes of water content. Moreover, one of the oldest methods used since Roman times throughout North Africa and the Near East was based on the repeated pouring of water into porous earthen vessels buried in the ground. In this context, these two techniques have been combined by replacing the earthen vase with plastic bottles filled with sand which release water through their perforated walls into the surrounding soil. The objective of this work is to first determine the purifying power of the activated sludge treatment plant of Toggourt and then that of the bottled Sawdust filter. For the station, the BOD purification rate was (96.5%), the COD purification rate was (87%) and suspended solids (90%). For the bottle, the BOD removal rate was (35%), and COD removal rate was (12.58%). This work falls within the framework of water saving, sustainable development and environmental protection, and also within the framework of agriculture.

Keywords: wasterwater, sawdust, purification, irrigation, touggourt (Algeria)

Procedia PDF Downloads 86
355 Amelioration of Earth Bricks by Introduction of Traditional Lime for Arid Regions

Authors: R. Abdeldjebar, B. Labbaci, L. Lahmar, L. Missoum, B. Moudden

Abstract:

Today to build durably means to build in such a way to create, to preserve in the world an acceptable environment where ecology, social and economic implications are in the center of future generations interest. To achieve this goal, we tried to employ local, durable, powerful ground materials which lead to limit pollution, to have long lifetime, and possibility of recycling or recovery. Using them in the most rational way makes construction technically perfect and put an end to cement invasion, since ground bricks are simple to implement and create a useful decoration, original and pleasant which enables to preserve the historical architectural heritage. This work concerns the study of environmental effects on stabilized bricks of compressed ground, traditionally manufactured containing traditional quicklime after extinction in water as a basic component which offers to brick mechanical resistance in conformity with the standards. Experimental results of compression and bending are exposed and are in conformity with the used standards.

Keywords: characterization, BTS, quicklime, dune sand, environment, durable

Procedia PDF Downloads 561