Search results for: rapid tooling
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2495

Search results for: rapid tooling

2495 An Investigation of Aluminum Foil-Epoxy Laminated Composites for Rapid Tooling Applications

Authors: Kevlin Govender, Anthony Walker, Glen Bright

Abstract:

Mass customization is an area of increased importance and the development of rapid tooling applications is pivotal to the success of mass customization. This paper presents a laminated object manufacturing (LOM) process for rapid tooling. The process is termed 3D metal laminate printing and utilizes domestic-grade aluminum foil and epoxy for layered manufacturing. A detailed explanation of the process is presented to produce complex metal laminated composite parts. Aluminum-epoxy composite specimens were manufactured from 0.016mm aluminum and subjected to tensile tests to determine the mechanical properties of the manufactured composite in relation to solid metal specimens. The fracture zone of the specimens was analyzed under scanning electron microscopy (SEM) in order to characterize the fracture mode and study the interfacial bonding of the manufactured laminate specimens.

Keywords: 3D metal laminate printer, aluminum-epoxy composite, laminated object manufacturing, rapid tooling

Procedia PDF Downloads 251
2494 Mechanical and Thermal Characterization of Washout Tooling for Resin Transfer Molding

Authors: Zachary N. Wing

Abstract:

Compared to autoclave based processes, Resin Transfer Molding (RTM) offers several key advantages. This includes high internal and external complexity, less waste, lower volatile emissions, higher production rates, and excellent surface finish. However, the injection of high pressure-high temperature resin presents a tooling challenge in cases where trapped geometries exist. Tooling materials that can sustain these conditions and be easily removed would expand the use of RTM. We have performed research on developing an RTM suitable tooling material called 'RTMCore' for use in forming trapped geometries. RTMCore tooling materials can withstand the injection of high temperature-high pressure resin but be easily removed with tap water. RTM properties and performance capabilities are reviewed against other washout systems. Our research will cover the preliminary characterization of tooling system properties, mechanical behavior, and initial results from an RTM manufacturing trial. Preliminary results show the material can sustain pressures greater than 13 MPa and temperatures greater than 150°C.

Keywords: RTM, resin transfer molding, trapped geometries, washout tooling

Procedia PDF Downloads 123
2493 Investigate the Effects of Geometrical Structure and Layer Orientation on Strength of 3D-FDM Rapid Prototyped Samples

Authors: Ahmed A.D. Sarhan, Chong Feng Duan, Mum Wai Yip, M. Sayuti

Abstract:

Rapid Prototyping (RP) technologies enable physical parts to be produced from various materials without depending on the conventional tooling. Fused Deposition Modeling (FDM) is one of the famous RP processes used at present. Tensile strength and compressive strength resistance will be identified for different sample structures and different layer orientations of ABS rapid prototype solid models. The samples will be fabricated by a FDM rapid prototyping machine in different layer orientations with variations in internal geometrical structure. The 0° orientation where layers were deposited along the length of the samples displayed superior strength and impact resistance over all the other orientations. The anisotropic properties were probably caused by weak interlayer bonding and interlayer porosity.

Keywords: building orientation, compression strength, rapid prototyping, tensile strength

Procedia PDF Downloads 658
2492 Investigating the Effectiveness of a 3D Printed Composite Mold

Authors: Peng Hao Wang, Garam Kim, Ronald Sterkenburg

Abstract:

In composite manufacturing, the fabrication of tooling and tooling maintenance contributes to a large portion of the total cost. However, as the applications of composite materials continue to increase, there is also a growing demand for more tooling. The demand for more tooling places heavy emphasis on the industry’s ability to fabricate high quality tools while maintaining the tool’s cost effectiveness. One of the popular techniques of tool fabrication currently being developed utilizes additive manufacturing technology known as 3D printing. The popularity of 3D printing is due to 3D printing’s ability to maintain low material waste, low cost, and quick fabrication time. In this study, a team of Purdue University School of Aviation and Transportation Technology (SATT) faculty and students investigated the effectiveness of a 3D printed composite mold. A steel valve cover from an aircraft reciprocating engine was modeled utilizing 3D scanning and computer-aided design (CAD) to create a 3D printed composite mold. The mold was used to fabricate carbon fiber versions of the aircraft reciprocating engine valve cover. The carbon fiber valve covers were evaluated for dimensional accuracy and quality while the 3D printed composite mold was evaluated for durability and dimensional stability. The data collected from this study provided valuable information in the understanding of 3D printed composite molds, potential improvements for the molds, and considerations for future tooling design.

Keywords: additive manufacturing, carbon fiber, composite tooling, molds

Procedia PDF Downloads 82
2491 Optimization of Surface Finish in Milling Operation Using Live Tooling via Taguchi Method

Authors: Harish Kumar Ponnappan, Joseph C. Chen

Abstract:

The main objective of this research is to optimize the surface roughness of a milling operation on AISI 1018 steel using live tooling on a HAAS ST-20 lathe. In this study, Taguchi analysis is used to optimize the milling process by investigating the effect of different machining parameters on surface roughness. The L9 orthogonal array is designed with four controllable factors with three different levels each and an uncontrollable factor, resulting in 18 experimental runs. The optimal parameters determined from Taguchi analysis were feed rate – 76.2 mm/min, spindle speed 1150 rpm, depth of cut – 0.762 mm and 2-flute TiN coated high-speed steel as tool material. The process capability Cp and process capability index Cpk values were improved from 0.62 and -0.44 to 1.39 and 1.24 respectively. The average surface roughness values from the confirmation runs were 1.30 µ, decreasing the defect rate from 87.72% to 0.01%. The purpose of this study is to efficiently utilize the Taguchi design to optimize the surface roughness in a milling operation using live tooling.

Keywords: live tooling, surface roughness, taguchi analysis, CNC milling operation, CNC turning operation

Procedia PDF Downloads 107
2490 An Evaluation on the Effectiveness of a 3D Printed Composite Compression Mold

Authors: Peng Hao Wang, Garam Kim, Ronald Sterkenburg

Abstract:

The applications of composite materials within the aviation industry has been increasing at a rapid pace.  However, the growing applications of composite materials have also led to growing demand for more tooling to support its manufacturing processes. Tooling and tooling maintenance represents a large portion of the composite manufacturing process and cost. Therefore, the industry’s adaptability to new techniques for fabricating high quality tools quickly and inexpensively will play a crucial role in composite material’s growing popularity in the aviation industry. One popular tool fabrication technique currently being developed involves additive manufacturing such as 3D printing. Although additive manufacturing and 3D printing are not entirely new concepts, the technique has been gaining popularity due to its ability to quickly fabricate components, maintain low material waste, and low cost. In this study, a team of Purdue University School of Aviation and Transportation Technology (SATT) faculty and students investigated the effectiveness of a 3D printed composite compression mold. A 3D printed composite compression mold was fabricated by 3D scanning a steel valve cover of an aircraft reciprocating engine. The 3D printed composite compression mold was used to fabricate carbon fiber versions of the aircraft reciprocating engine valve cover. The 3D printed composite compression mold was evaluated for its performance, durability, and dimensional stability while the fabricated carbon fiber valve covers were evaluated for its accuracy and quality. The results and data gathered from this study will determine the effectiveness of the 3D printed composite compression mold in a mass production environment and provide valuable information for future understanding, improvements, and design considerations of 3D printed composite molds.

Keywords: additive manufacturing, carbon fiber, composite tooling, molds

Procedia PDF Downloads 172
2489 Effect of the Tooling Conditions on the Machining Stability of a Milling Machine

Authors: Jui-Pui Hung, Yong-Run Chen, Wei-Cheng Shih, Shen-He Tsui, Kung-Da Wu

Abstract:

This paper presents the effect on the tooling conditions on the machining stabilities of a milling machine tool. The machining stability was evaluated in different feeding direction in the X-Y plane, which was referred as the orientation-dependent machining stability. According to the machining mechanics, the machining stability was determined by the frequency response function of the cutter. Thus, we first conducted the vibration tests on the spindle tool of the milling machine to assess the tool tip frequency response functions along the principal direction of the machine tool. Then, basing on the orientation dependent stability analysis model proposed in this study, we evaluated the variation of the dynamic characteristics of the spindle tool and the corresponding machining stabilities at a specific feeding direction. Current results demonstrate that the stability boundaries and limited axial cutting depth of a specific cutter were affected to vary when it was fixed in the tool holder with different overhang length. The flute of the cutter also affects the stability boundary. When a two flute cutter was used, the critical cutting depth can be increased by 47 % as compared with the four flute cutter. The results presented in study provide valuable references for the selection of the tooling conditions for achieving high milling performance.

Keywords: tooling condition, machining stability, milling machine, chatter

Procedia PDF Downloads 399
2488 Optimization of Surface Roughness in Turning Process Utilizing Live Tooling via Taguchi Methodology

Authors: Weinian Wang, Joseph C. Chen

Abstract:

The objective of this research is to optimize the process of cutting cylindrical workpieces utilizing live tooling on a HAAS ST-20 lathe. Surface roughness (Ra) has been investigated as the indicator of quality characteristics for machining process. Aluminum alloy was used to conduct experiments due to its wide range usages in engineering structures and components where light weight or corrosion resistance is required. In this study, Taguchi methodology is utilized to determine the effects that each of the parameters has on surface roughness (Ra). A total of 18 experiments of each process were designed according to Taguchi’s L9 orthogonal array (OA) with four control factors at three levels of each and signal-to-noise ratios (S/N) were computed with Smaller the better equation for minimizing the system. The optimal parameters identified for the surface roughness of the turning operation utilizing live tooling were a feed rate of 3 inches/min(A3); a spindle speed of 1300 rpm(B3); a 2-flute titanium nitrite coated 3/8” endmill (C1); and a depth of cut of 0.025 inches (D2). The mean surface roughness of the confirmation runs in turning operation was 8.22 micro inches. The final results demonstrate that Taguchi methodology is a sufficient way of process improvement in turning process on surface roughness.

Keywords: CNC milling operation, CNC turning operation, surface roughness, Taguchi parameter design

Procedia PDF Downloads 139
2487 Accuracy of a 3D-Printed Polymer Model for Producing Casting Mold

Authors: Ariangelo Hauer Dias Filho, Gustavo Antoniácomi de Carvalho, Benjamim de Melo Carvalho

Abstract:

The work´s purpose was to evaluate the possibility of manufacturing casting tools utilizing Fused Filament Fabrication, a 3D printing technique, without any post-processing on the printed part. Taguchi Orthogonal array was used to evaluate the influence of extrusion temperature, bed temperature, layer height, and infill on the dimensional accuracy of a 3D-Printed Polymer Model. A Zeiss T-SCAN CS 3D Scanner was used for dimensional evaluation of the printed parts within the limit of ±0,2 mm. The mold capabilities were tested with the printed model to check how it would interact with the green sand. With little adjustments in the 3D model, it was possible to produce rapid tools without the need for post-processing for iron casting. The results are important for reducing time and cost in the development of such tools.

Keywords: additive manufacturing, Taguchi method, rapid tooling, fused filament fabrication, casting mold

Procedia PDF Downloads 91
2486 Towards a Competitive South African Tooling Industry

Authors: Mncedisi Trinity Dewa, Andre Francois Van Der Merwe, Stephen Matope

Abstract:

Tool, Die and Mould-making (TDM) firms have been known to play a pivotal role in the growth and development of the manufacturing sectors in most economies. Their output contributes significantly to the quality, cost and delivery speed of final manufactured parts. Unfortunately, the South African Tool, Die and Mould-making manufacturers have not been competing on the local or global market in a significant way. This reality has hampered the productivity and growth of the sector thus attracting intervention. The paper explores the shortcomings South African toolmakers have to overcome to restore their competitive position globally. Results from a global benchmarking survey on the tooling sector are used to establish a roadmap of what South African toolmakers can do to become a productive, World Class force on the global market.

Keywords: competitive performance objectives, toolmakers, world-class manufacturing, lead times

Procedia PDF Downloads 483
2485 Finite Element Analysis of the Blanking and Stamping Processes of Nuclear Fuel Spacer Grids

Authors: Rafael Oliveira Santos, Luciano Pessanha Moreira, Marcelo Costa Cardoso

Abstract:

Spacer grid assembly supporting the nuclear fuel rods is an important concern in the design of structural components of a Pressurized Water Reactor (PWR). The spacer grid is composed by springs and dimples which are formed from a strip sheet by means of blanking and stamping processes. In this paper, the blanking process and tooling parameters are evaluated by means of a 2D plane-strain finite element model in order to evaluate the punch load and quality of the sheared edges of Inconel 718 strips used for nuclear spacer grids. A 3D finite element model is also proposed to predict the tooling loads resulting from the stamping process of a preformed Inconel 718 strip and to analyse the residual stress effects upon the spring and dimple design geometries of a nuclear spacer grid.

Keywords: blanking process, damage model, finite element modelling, inconel 718, spacer grids, stamping process

Procedia PDF Downloads 309
2484 Wireless Battery Charger with Adaptive Rapid-Charging Algorithm

Authors: Byoung-Hee Lee

Abstract:

Wireless battery charger with adaptive rapid charging algorithm is proposed. The proposed wireless charger adopts voltage regulation technique to reduce the number of power conversion steps. Moreover, based on battery models, an adaptive rapid charging algorithm for Li-ion batteries is obtained. Rapid-charging performance with the proposed wireless battery charger and the proposed rapid charging algorithm has been experimentally verified to show more than 70% charging time reduction compared to conventional constant-current constant-voltage (CC-CV) charging without the degradation of battery lifetime.

Keywords: wireless, battery charger, adaptive, rapid-charging

Procedia PDF Downloads 331
2483 A Comparative Study on the Dimensional Error of 3D CAD Model and SLS RP Model for Reconstruction of Cranial Defect

Authors: L. Siva Rama Krishna, Sriram Venkatesh, M. Sastish Kumar, M. Uma Maheswara Chary

Abstract:

Rapid Prototyping (RP) is a technology that produces models and prototype parts from 3D CAD model data, CT/MRI scan data, and model data created from 3D object digitizing systems. There are several RP process like Stereolithography (SLA), Solid Ground Curing (SGC), Selective Laser Sintering (SLS), Fused Deposition Modelling (FDM), 3D Printing (3DP) among them SLS and FDM RP processes are used to fabricate pattern of custom cranial implant. RP technology is useful in engineering and biomedical application. This is helpful in engineering for product design, tooling and manufacture etc. RP biomedical applications are design and development of medical devices, instruments, prosthetics and implantation; it is also helpful in planning complex surgical operation. The traditional approach limits the full appreciation of various bony structure movements and therefore the custom implants produced are difficult to measure the anatomy of parts and analyse the changes in facial appearances accurately. Cranioplasty surgery is a surgical correction of a defect in cranial bone by implanting a metal or plastic replacement to restore the missing part. This paper aims to do a comparative study on the dimensional error of CAD and SLS RP Models for reconstruction of cranial defect by comparing the virtual CAD with the physical RP model of a cranial defect.

Keywords: rapid prototyping, selective laser sintering, cranial defect, dimensional error

Procedia PDF Downloads 294
2482 Production of Metal Powder Using Twin Arc Spraying Process for Additive Manufacturing

Authors: D. Chen, H. Daoud, C. Kreiner, U. Glatzel

Abstract:

Additive Manufacturing (AM) provides promising opportunities to optimize and to produce tooling by integrating near-contour tempering channels for more efficient cooling. To enhance the properties of the produced tooling using additive manufacturing, prototypes should be produced in short periods. Thereby, this requires a small amount of tailored powders, which either has a high production cost or is commercially unavailable. Hence, in this study, an arc spray atomization approach to produce a tailored metal powder at a lower cost and even in small quantities, in comparison to the conventional powder production methods, was proposed. This approach involves converting commercially available metal wire into powder by modifying the wire arc spraying process. The influences of spray medium and gas pressure on the powder properties were investigated. As a result, particles with smooth surface and lower porosity were obtained, when nonoxidizing gases are used for thermal spraying. The particle size decreased with increasing of the gas pressure, and the particles sizes are in the range from 10 to 70 µm, which is desirable for selective laser melting (SLM). A comparison of microstructure and mechanical behavior of SLM generated parts using arc sprayed powders (alloy: X5CrNiCuNb 16-4) and commercial powder (alloy: X5CrNiCuNb 16-4) was also conducted.

Keywords: additive manufacturing, arc spraying, powder production, selective laser melting

Procedia PDF Downloads 102
2481 Construction of Large Scale UAVs Using Homebuilt Composite Techniques

Authors: Brian J. Kozak, Joshua D. Shipman, Peng Hao Wang, Blake Shipp

Abstract:

The unmanned aerial system (UAS) industry is growing at a rapid pace. This growth has increased the demand for low cost, custom made and high strength unmanned aerial vehicles (UAV). The area of most growth is in the area of 25 kg to 200 kg vehicles. Vehicles this size are beyond the size and scope of simple wood and fabric designs commonly found in hobbyist aircraft. These high end vehicles require stronger materials to complete their mission. Traditional aircraft construction materials such as aluminum are difficult to use without machining or advanced computer controlled tooling. However, by using general aviation composite aircraft homebuilding techniques and materials, a large scale UAV can be constructed cheaply and easily. Furthermore, these techniques could be used to easily manufacture cost made composite shapes and airfoils that would be cost prohibitive when using metals. These homebuilt aircraft techniques are being demonstrated by the researchers in the construction of a 75 kg aircraft.

Keywords: composite aircraft, homebuilding, unmanned aerial system industry, UAS, unmanned aerial vehicles, UAV

Procedia PDF Downloads 104
2480 Designing of Tooling Solution for Material Handling in Highly Automated Manufacturing System

Authors: Muhammad Umair, Yuri Nikolaev, Denis Artemov, Ighor Uzhinsky

Abstract:

A flexible manufacturing system is an integral part of a smart factory of industry 4.0 in which every machine is interconnected and works autonomously. Robots are in the process of replacing humans in every industrial sector. As the cyber-physical-system (CPS) and artificial intelligence (AI) are advancing, the manufacturing industry is getting more dependent on computers than human brains. This modernization has boosted the production with high quality and accuracy and shifted from classic production to smart manufacturing systems. However, material handling for such automated productions is a challenge and needs to be addressed with the best possible solution. Conventional clamping systems are designed for manual work and not suitable for highly automated production systems. Researchers and engineers are trying to find the most economical solution for loading/unloading and transportation workpieces from a warehouse to a machine shop for machining operations and back to the warehouse without human involvement. This work aims to propose an advanced multi-shape tooling solution for highly automated manufacturing systems. The currently obtained result shows that it could function well with automated guided vehicles (AGVs) and modern conveyor belts. The proposed solution is following requirements to be automation-friendly, universal for different part geometry and production operations. We used a bottom-up approach in this work, starting with studying different case scenarios and their limitations and finishing with the general solution.

Keywords: artificial intelligence, cyber physics system, Industry 4.0, material handling, smart factory, flexible manufacturing system

Procedia PDF Downloads 103
2479 Numerical Analysis of Rapid Drawdown in Dams Based on Brazilian Standards

Authors: Renato Santos Paulinelli Raposo, Vinicius Resende Domingues, Manoel Porfirio Cordao Neto

Abstract:

Rapid drawdown is one of the cases referred to ground stability study in dam projects. Due to the complexity generated by the combination of loads and the difficulty in determining the parameters, analyses of rapid drawdown are usually performed considering the immediate reduction of water level upstream. The proposal of a simulation, considering the gradual reduction in water level upstream, requires knowledge of parameters about consolidation and those related to unsaturated soil. In this context, the purpose of this study is to understand the methodology of collection and analysis of parameters to simulate a rapid drawdown in dams. Using a numerical tool, the study is complemented with a hypothetical case study that can assist the practical use of data compiled. The referenced dam presents homogeneous section composed of clay soil, a height of 70 meters, a width of 12 meters, and upstream slope with inclination 1V:3H.

Keywords: dam, GeoStudio, rapid drawdown, stability analysis

Procedia PDF Downloads 228
2478 Cutting Tools in Finishing Operations for CNC Rapid Manufacturing Processes: Experimental Studies

Authors: M. N. Osman Zahid, K. Case, D. Watts

Abstract:

This paper reports an advanced approach in the application of CNC machining for rapid manufacturing processes (CNC-RM). The aim of this study is to improve the quality of machined parts by introducing different cutting tools during finishing operations. As the cutting is performed in different directions, the surfaces presented on part can be classified into several categories. Therefore, suitable cutting tools are assigned to machine particular surfaces and to improve the quality. Experimental studies have been carried out by fabricating several parts based on the suggested approach. The results provide further support for implementing this approach in rapid machining processes.

Keywords: CNC machining, end mill tool, finishing operation, rapid manufacturing

Procedia PDF Downloads 312
2477 Microstructure Evolution and Modelling of Shear Forming

Authors: Karla D. Vazquez-Valdez, Bradley P. Wynne

Abstract:

In the last decades manufacturing needs have been changing, leading to the study of manufacturing methods that were underdeveloped, such as incremental forming processes like shear forming. These processes use rotating tools in constant local contact with the workpiece, which is often also rotating, to generate shape. This means much lower loads to forge large parts and no need for expensive special tooling. Potential has already been established by demonstrating manufacture of high-value products, e.g., turbine and satellite parts, with high dimensional accuracy from difficult to manufacture materials. Thus, huge opportunities exist for these processes to replace the current method of manufacture for a range of high value components, e.g., eliminating lengthy machining, reducing material waste and process times; or the manufacture of a complicated shape without the development of expensive tooling. However, little is known about the exact deformation conditions during processing and why certain materials are better than others for shear forming, leading to a lot of trial and error before production. Three alloys were used for this study: Ti-54M, Jethete M154, and IN718. General Microscopy and Electron Backscatter Diffraction (EBSD) were used to measure strains and orientation maps during shear forming. A Design of Experiments (DOE) analysis was also made in order to understand the impact of process parameters in the properties of the final workpieces. Such information was the key to develop a reliable Finite Element Method (FEM) model that closely resembles the deformation paths of this process. Finally, the potential of these three materials to be shear spun was studied using the FEM model and their Forming Limit Diagram (FLD) which led to the development of a rough methodology for testing the shear spinnability of various metals.

Keywords: shear forming, damage, principal strains, forming limit diagram

Procedia PDF Downloads 135
2476 Rapid Method for the Determination of Acid Dyes by Capillary Electrophoresis

Authors: Can Hu, Huixia Shi, Hongcheng Mei, Jun Zhu, Hongling Guo

Abstract:

Textile fibers are important trace evidence and frequently encountered in criminal investigations. A significant aspect of fiber evidence examination is the determination of fiber dyes. Although several instrumental methods have been developed for dyes detection, the analysis speed is not fast enough yet. A rapid dye analysis method is still needed to further improve the efficiency of case handling. Capillary electrophoresis has the advantages of high separation speed and high separation efficiency and is an ideal method for the rapid analysis of fiber dyes. In this paper, acid dyes used for protein fiber dyeing were determined by a developed short-end injection capillary electrophoresis technique. Five acid red dyes with similar structures were successfully baseline separated within 5 min. The separation reproducibility is fairly good for the relative standard deviation of retention time is 0.51%. The established method is rapid and accurate which has great potential to be applied in forensic setting.

Keywords: acid dyes, capillary electrophoresis, fiber evidence, rapid determination

Procedia PDF Downloads 115
2475 The Use of SD Bioline TB AgMPT64® Detection Assay for Rapid Characterization of Mycobacteria in Nigeria

Authors: S. Ibrahim, U. B. Abubakar, S. Danbirni, A. Usman, F. M. Ballah, C. A. Kudi, L. Lawson, G. H. Abdulrazak, I. A. Abdulkadir

Abstract:

Performing culture and characterization of mycobacteria in low resource settings like Nigeria is a very difficult task to undertake because of the very few and limited laboratories carrying out such an experiment; this is a largely due to stringent and laborious nature of the tests. Hence, a rapid, simple and accurate test for characterization is needed. The “SD BIOLINE TB Ag MPT 64 Rapid ®” is a simple and rapid immunochromatographic test used in differentiating Mycobacteria into Mycobacterium tuberculosis (NTM). The 100 sputa were obtained from patients suspected to be infected with tuberculosis and presented themselves to hospitals for check-up and treatment were involved in the study. The samples were cultured in a class III Biosafety cabinet and level III biosafety practices were followed. Forty isolates were obtained from the cultured sputa, and there were identified as Acid-fast bacilli (AFB) using Zeihl-Neelsen acid-fast stain. All the isolates (AFB positive) were then subjected to the SD BIOLINE Analyses. A total of 31 (77.5%) were characterized as MTBC, while nine (22.5%) were NTM. The total turnaround time for the rapid assay was just 30 minutes as compared to a few days of phenotypic and genotypic method. It was simple, rapid and reliable test to differentiate MTBC from NTM.

Keywords: culture, mycobacteria, non tuberculous mycobacterium, SD Bioline

Procedia PDF Downloads 301
2474 Dynamics of Adiabatic Rapid Passage in an Open Rabi Dimer Model

Authors: Justin Zhengjie Tan, Yang Zhao

Abstract:

Adiabatic Rapid Passage, a popular method of achieving population inversion, is studied in a Rabi dimer model in the presence of noise which acts as a dissipative environment. The integration of the multi-Davydov D2 Ansatz into the time-dependent variational framework enables us to model the intricate quantum system accurately. By influencing the system with a driving field strength resonant with the energy spacing, the probability of adiabatic rapid passage, which is modelled after the Landau Zener model, can be derived along with several other observables, such as the photon population. The effects of a dissipative environment can be reproduced by coupling the system to a common phonon mode. By manipulating the strength and frequency of the driving field, along with the coupling strength of the phonon mode to the qubits, we are able to control the qubits and photon dynamics and subsequently increase the probability of Adiabatic Rapid Passage happening.

Keywords: quantum electrodynamics, adiabatic rapid passage, Landau-Zener transitions, dissipative environment

Procedia PDF Downloads 49
2473 Modeling of the Dynamic Characteristics of a Spindle with Experimental Validation

Authors: Jhe-Hao Huang, Kun-Da Wu, Wei-Cheng Shih, Jui-Pin Hung

Abstract:

This study presented the investigation on the dynamic characteristics of a spindle tool system by experimental and finite element modeling approaches. As well known facts, the machining stability is greatly determined by the dynamic characteristics of the spindle tool system. Therefore, understanding the factors affecting dynamic behavior of a spindle tooling system is a prerequisite in dominating the final machining performance of machine tool system. To this purpose, a physical spindle unit was employed to assess the dynamic characteristics by vibration tests. Then, a three-dimensional finite element model of a high-speed spindle system integrated with tool holder was created to simulate the dynamic behaviors. For modeling the angular contact bearings, a series of spring elements were introduced between the inner and outer rings. The spring constant can be represented by the contact stiffness of the rolling bearing based on Hertz theory. The interface characteristic between spindle nose and tool holder taper can be quantified from the comparison of the measurements and predictions. According to the results obtained from experiments and finite element predictions, the vibration behavior of the spindle is dominated by the bending deformation of the spindle shaft in different modes, which is further determined by the stiffness of the bearings in spindle housing. Also, the spindle unit with tool holder shows a different dynamic behavior from that of spindle without tool holder. This indicates the interface property between tool holder and spindle nose plays an dominance on the dynamic characteristics the spindle tool system. Overall, the dynamic behaviors the spindle with and without tool holder can be successfully investigated through the finite element model proposed in this study. The prediction accuracy is determined by the modeling of the rolling interface of ball bearings in spindles and the interface characteristics between tool holder and spindle nose. Besides, identifications of the interface characteristics of a ball bearing and spindle tool holder are important for the refinement of the spindle tooling system to achieve the optimum machining performance.

Keywords: contact stiffness, dynamic characteristics, spindle, tool holder interface

Procedia PDF Downloads 260
2472 Preparation Non-Woven Nanofiber Structures for Uniform and Rapid Drug Releasing Applications Using an Electrospinning Process

Authors: Cho-Liang Chung

Abstract:

Uniform and rapid drug release are important for trauma dressing application. Low glass transition polymer system and non-woven nanofiber structures as the designs conduct rapid-release characteristics. In this study, polyvinylpyrrolidone, polysulfone, and polystyrene were dissolved in dimethylformamide to form precursor solution. These solutions were blended with vitamin C to form the electrospinning solutions. The non-woven nanofibers structures were successfully prepared using an electrospinning process. The following instruments were used to analyze the characteristics of non-woven nanofibers structures: Atomic force microscopy (AFM), Field Emission Scanning Electron Microscope (FE-SEM), and X-ray Diffraction (XRD). The AFM was used to scan the nanofibers. 3D Graphics were applied to explore the surface morphology of nanofibers. FE-SEM was used to explore the morphology of non-woven structures. XRD was used to identify crystal structures in the non-woven structures. The evolution of morphology of non-woven structures was changed dramatically in different durations, because of the moisture absorption and decreasing glass transition temperature; the non-woven nanofiber structures can be applied to uniform and rapid drug release for trauma dressing application.

Keywords: nanofibers, non-woven, electrospinning process, rapid drug releasing

Procedia PDF Downloads 109
2471 Achieving Sustainable Rapid Construction Using Lean Principles

Authors: Muhamad Azani Yahya, Vikneswaran Munikanan, Mohammed Alias Yusof

Abstract:

There is the need to take the holistic approach in achieving sustainable construction for a contemporary practice. Sustainable construction is the practice that involved method of human preservation of the environment, whether economically or socially through responsibility, management of resources and maintenance utilizing support. This paper shows the correlation of achieving rapid construction with sustainable concepts using lean principles. Lean principles being used widely in the manufacturing industry, but this research will demonstrate the principles into building construction. Lean principle offers the benefits of stabilizing work flow and elimination of unnecessary work. Therefore, this principle contributes to time and waste reduction. The correlation shows that pulling factor provides the improvement of progress curve and stabilizing the time-quality relation. The finding shows the lean principles offer the elements of rapid construction synchronized with the elements of sustainability.

Keywords: sustainable construction, rapid construction, time reduction, lean construction

Procedia PDF Downloads 209
2470 Public Transport Analysis and Introducing of Bus Rapid Transit (BRT) System in Kabul City

Authors: Ramin Mirzada

Abstract:

This research investigates the valuation of public transport importance in decreasing congestion and in introduction of bus rapid transit in Kabul city. The main concern and main problem of the Kabul city public transport is traffic congestion. When buses and trams are stuck in traffic jams, it is clear that they fall behind from the schedule and this cause lots of problem for Kabul residence. In this research, the main attention has been given to improve current public transport in Kabul city which Public transport has large share almost 50% share among all mode. The main purpose of this research is to improve public transport system, to examine the demand and the supply of public transport in Kabul city, and to improve public transport system by introducing Bus rapid transit (BRT) system in Kabul city. The data which is used in this research is gathered by Transport Ministry, Kabul Municipality and Japan Cooperation Agency in Afghanistan (JICA). Urban transportation modeling system (UTMS) which is also known as traditional four-step modeling is used as the methodology of this research. The outcome of this research shows that by improving public transport which is local bus system mostly congestion problem of Kabul city become solve, and for those lanes which has the high demand and has more congestion, it is needed to introduce bus rapid transit system.

Keywords: transportation, planning, public transport, bus rapid transit, Kabul, Afghanistan

Procedia PDF Downloads 449
2469 Undercooling of Refractory High-Entropy Alloy

Authors: Liang Hu

Abstract:

The innovation of refractory high-entropy alloy (RHEA) formed from refractory metals W, Ta, Mo, Nb, Hf, V, and Zr was firstly implemented in 2010 to obtain better strength at high temperature than conventional HEAs based on Al, Co, Cr, Cu, Fe and Ni. Due to the refractory characteristic and high chemical activity at elevated temperature, electrostatic levitation technique has been utilized to fulfill the rapid solidification of RHEA. Several RHEAs consisting W, Ta, Mo, Nb, Zr have been selected to perform the undercooling and rapid solidification by ESL. They are substantially undercooled by up to 0.2TL. The evolution of as-solidified microstructure and component redistribution with undercooling have been investigated by SEM, EBSD, and EPMA analysis. According to the EPMA results of composing elements at different undercooling levels, the chemical distribution relevant to undercooling was also analyzed.

Keywords: chemical distribution, high-entropy alloy, rapid solidification, undercooling

Procedia PDF Downloads 97
2468 Comparative Assessment of Bus Rapid Transit System in India

Authors: Namrata Ghosh, Sapan Tiwari

Abstract:

Public transport service plays an important role in people's transportation needs in urban areas. Bus Rapid Transit System (BRTS) is a transport service that provides passengers with a quick and efficient mode of transport. It is developed by changing the existing infrastructure, vehicles, route, or by developing a new dedicated corridor for the bus route. This dedicated lanes transport passengers to their destination quickly and efficiently and flexible in meeting demand. However, with rapid urbanization and increasing population density in Indian cities, traffic congestion has become a significant issue. In a few Indian cities, the BRTS concept is implemented to address the issue of traffic congestion that eventually resulted in less road congestion. The research aims to provide a literature review on the overall outlook of the BRTS system and its practical implementation in mass urban transit. First, it reflects a literature review on the concept of the BRTS system in both developed and developing countries. Afterward, comparative analysis of BRTS, hindrances associated with the permanent integrated system, and the need for establishing the Bus Rapid Transit System in Indian cities is demonstrated. The research concludes with some recommendations that could help in improving the loopholes in the existing system.

Keywords: bus rapid transit system(BRTS), dedicated corridor, public transport, traffic congestion

Procedia PDF Downloads 247
2467 A Preliminary Study of Urban Resident Space Redundancy in the Context of Rapid Urbanization: Based on Urban Research of Hongkou District of Shanghai

Authors: Ziwei Chen, Yujiang Gao

Abstract:

The rapid urbanization has caused the massive physical space in Chinese cities to be in a state of duplication and dislocation through the rapid development, forming many daily spaces that cannot be standardized, typed, and identified, such as illegal construction. This phenomenon is known as urban spatial redundancy and is often excluded from mainstream architectural discussions because of its 'remaining' and 'excessive' derogatory label. In recent years, some practice architects have begun to pay attention to this phenomenon and tried to tap the value behind it. In this context, the author takes the redundancy phenomenon of resident space as the research object and explores the inspiration to the urban architectural renewal and the innovative residential area model, based on the urban survey of redundant living space in Hongkou District of Shanghai. On this basis, it shows that the changes accumulated in the long-term use of the building can be re-applied to the goals before the design, which is an important link and significance of the existence of an architecture.

Keywords: rapid urbanization, living space redundancy, architectural renewal, residential area model

Procedia PDF Downloads 105
2466 Quality of Romanian Food Products on Rapid Alert System for Food and Feed Notifications

Authors: Silvius Stanciu

Abstract:

Romanian food products sold on European markets have been accused of several non-conformities of quality and safety. Most products incriminated last period were those of animal origin, especially meat and meat products. The study proposed an analysis of the notifications made by network members through Rapid Alert System for Food and Feed on products originating in Romania. As a source of information, the Rapid Alert System portal and the official communications of the National Sanitary Veterinary and Food Safety Authority were used. The research results showed that nearly a quarter of network notifications were rejected and were withdrawn by the European Authority. Although national authorities present these issues as success stories of national quality policies, the large number of notifications related to the volume of exported products is worrying. The paper is of practical and applicative importance for both the business environment and the academic environment, laying the basis for a wider research on the quality differences between Romanian and imported products.

Keywords: food, quality, RASFF, Rapid Alert System for Food and Feed, Romania

Procedia PDF Downloads 130