Search results for: detoxifying enzymes
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 664

Search results for: detoxifying enzymes

634 Development of Strategy for Enhanced Production of Industrial Enzymes by Microscopic Fungi in Submerged Fermentation

Authors: Zhanara Suleimenova, Raushan Blieva, Aigerim Zhakipbekova, Inkar Tapenbayeva, Zhanar Narmuratova

Abstract:

Green processes are based on innovative technologies that do not negatively affect the environment. Industrial enzymes originated from biological systems can effectively contribute to sustainable development through being isolated from microorganisms which are fermented using primarily renewable resources. Many widespread microorganisms secrete a significant amount of biocatalysts into the environment, which greatly facilitates the task of their isolation and purification. The ability to control the enzyme production through the regulation of their biosynthesis and the selection of nutrient media and cultivation conditions allows not only to increase the yield of enzymes but also to obtain enzymes with certain properties. In this regard, large potentialities are embedded in immobilized cells. Enzyme production technology in a secreted active form enabling industrial application on an economically feasible scale has been developed. This method is based on the immobilization of enzyme producers on a solid career. Immobilizing has a range of advantages: decreasing the price of the final product, absence of foreign substances, controlled process of enzyme-genesis, the ability of various enzymes' simultaneous production, etc. Design of proposed equipment gives the opportunity to increase the activity of immobilized cell culture filtrate comparing to free cells, growing in periodic culture conditions. Such technology allows giving a 10-times raise in culture productivity, to prolong the process of fungi cultivation and periods of active culture liquid generation. Also, it gives the way to improve the quality of filtrates (to make them more clear) and exclude time-consuming processes of recharging fermentative vials, that require manual removing of mycelium.

Keywords: industrial enzymes, immobilization, submerged fermentation, microscopic fungi

Procedia PDF Downloads 141
633 Using Hybrid Method for Inactivation of Microorganism and Enzymes in a Berry Juice

Authors: Golnoosh Torabian, P. Valtchev, F. Dehghani

Abstract:

The need for efficient nutraceutical products has been dramatically changing the approach of the industrial processes. The development of novel mild processes is highly demanded for the production of such products; especially when both quality and safety need to be guaranteed during their long shelf life. Within this research, for the first time, we investigated the effect of supercritical carbon dioxide treatment for the inactivation of microbes and enzymes in a berry juice possessing therapeutic effect. We demonstrated that a complete inactivation of microbes can be achieved at optimized conditions of treatment. However, the bottle neck of the process was represented by the unpromising inactivation of the degradative enzyme by supercritical carbon dioxide treatment. However, complete enzyme inactivation was achieved by applying two strategies: the first was optimizing juicing method by adding a mechanical step and the second strategy was addition of natural inhibitors to the juice. Overall these results demonstrate that our hybrid process has a significant effect on the inactivation of microorganism and enzymes in the fresh juice. The developed process opens the possibility for the evolution of new products with optimal nutritional and sensorial characteristics, as well as offering a competitive cost and an environmentally friendly alternative for pasteurization and extension of shelf life in a wide range of natural therapeutic products.

Keywords: hybrid method, berry juice, pasteurization, enzymes inactivation

Procedia PDF Downloads 193
632 Effect of Supplementing Different Sources and Levels of Phytase Enzyme to Diets on Productive Performance for Broiler Chickens

Authors: Sunbul Jassim Hamodi, Muna Khalid Khudayer, Firas Muzahem Hussein

Abstract:

The experiment was conducted to study the effect of supplement sources of Phytase enzyme (bacterial, fungal, enzymes mixture) using levels (250, 500, 750) FTY/ kg feed to diets compared with control on the performance for one thousand fifty broiler chicks (Ross 308) from 1day old with initial weight 39.78 gm till 42 days. The study involved 10 treatments, three replicates per treatment (35 chicks/replicate). Treatments were as follows: T1: control diet (without any addition). T2: added bacterial phytase enzyme 250FTY/ kg feed. T3: added bacterial phytase enzyme 500FTY/ kg feed. T4: added bacterial phytase enzyme 750FTY/ kg feed. T5: added fungal phytase enzyme 250FTY/ kg feed. T6: added fungal phytase enzyme 500FTY/ kg feed. T7: added fungal phytase enzyme 750FTY/ kg feed. T8 added enzymes mixture 250U/ kg feed. T9: added enzymes mixture 500U/ kg feed. T10: added enzymes mixture 750U/ kg feed. The results revealed that supplementing 750 U from enzymes mixture to broiler diet increased significantly (p <0.05) body weight compared with (250 FTY bacterial phytase/Kgfeed), (750 FTY bacterial phytase/Kg feed), (750FTY fungal phytase/Kgfeed) at 6 weeks, also supplemented different sources and levels from phytase enzyme improved a cumulative weight gain for (500 FTY bacterial phytase/Kgfeed), (250FTY fungal phytase/Kgfeed), (500FTY fungal phytase/Kgfeed), (250 Uenzymes mixture/Kgfeed), (500 Uenzymes mixture/Kgfeed) and (750 U enzymes mixture/Kgfeed) treatments compared with (750 FTY fungal phytase/Kgfeed)treatment, about accumulative feed consumption (500 FTY fungal phytase/Kgfeed) and (250 Uenzymes mixture/Kgfeed) increased significantly compared with control group and (750FTY fungal phytase/Kgfeed) during 1-6 weeks. There were significantly improved in cumulative feed conversion for (500U enzymes mixture/Kgfeed) compared with the worse feed conversion ratio that recorded in (250 FTY bacterial phytase/Kgfeed). No significant differences between treatments in internal organs relative weights, carcass cuts, dressing percentage and production index. Mortality was increased in (750FTY fungal phytase/Kgfeed) compared with other treatments.

Keywords: phytase, phytic acid, broiler, productive performance

Procedia PDF Downloads 302
631 Evaluation of Antarctic Bacteria as Potential Producers of Cellulolytic Enzymes of Industrial Interest

Authors: Claudio Lamilla, Andrés Santos, Vicente Llanquinao, Jocelyn Hermosilla, Leticia Barrientos

Abstract:

The industry in general is very interested in improving and optimizing industrial processes in order to reduce the costs involved in obtaining raw materials and production. Thus, an interesting and cost-effective alternative is the incorporation of bioactive metabolites in such processes, being an example of this enzymes which catalyze efficiently a large number of enzymatic reactions of industrial and biotechnological interest. In the search for new sources of these active metabolites, Antarctica is one of the least explored places on our planet where the most drastic cold conditions, salinity, UVA-UVB and liquid water available are present, features that have shaped all life in this very harsh environment, especially bacteria that live in different Antarctic ecosystems, which have had to develop different strategies to adapt to these conditions, producing unique biochemical strategies. In this work the production of cellulolytic enzymes of seven bacterial strains isolated from marine sediments at different sites in the Antarctic was evaluated. Isolation of the strains was performed using serial dilutions in the culture medium at M115°C. The identification of the strains was performed using universal primers (27F and 1492R). The enzyme activity assays were performed on R2A medium, carboxy methyl cellulose (CMC)was added as substrate. Degradation of the substrate was revealed by adding Lugol. The results show that four of the tested strains produce enzymes which degrade CMC substrate. The molecular identifications, showed that these bacteria belong to the genus Streptomyces and Pseudoalteromonas, being Streptomyces strain who showed the highest activity. Only some bacteria in marine sediments have the ability to produce these enzymes, perhaps due to their greater adaptability to degrade at temperatures bordering zero degrees Celsius, some algae that are abundant in this environment and have cellulose as the main structure. The discovery of new enzymes adapted to cold is of great industrial interest, especially for paper, textiles, detergents, biofuels, food and agriculture. These enzymes represent 8% of industrial demand worldwide and is expected to increase their demand in the coming years. Mainly in the paper and food industry are required in extraction processes starch, protein and juices, as well as the animal feed industry where treating vegetables and grains helps improve the nutritional value of the food, all this clearly puts Antarctic microorganisms and their enzymes specifically as a potential contribution to industry and the novel biotechnological applications.

Keywords: antarctic, bacteria, biotechnological, cellulolytic enzymes

Procedia PDF Downloads 297
630 Enzymatic Hydrolysis of Sugar Cane Bagasse Using Recombinant Hemicellulases

Authors: Lorena C. Cintra, Izadora M. De Oliveira, Amanda G. Fernandes, Francieli Colussi, Rosália S. A. Jesuíno, Fabrícia P. Faria, Cirano J. Ulhoa

Abstract:

Xylan is the main component of hemicellulose and for its complete degradation is required cooperative action of a system consisting of several enzymes including endo-xylanases (XYN), β-xylosidases (XYL) and α-L-arabinofuranosidases (ABF). The recombinant hemicellulolytic enzymes an endoxylanase (HXYN2), β-xylosidase (HXYLA), and an α-L-arabinofuranosidase (ABF3) were used in hydrolysis tests. These three enzymes are produced by filamentous fungi and were expressed heterologously and produced in Pichia pastoris previously. The aim of this work was to evaluate the effect of recombinant hemicellulolytic enzymes on the enzymatic hydrolysis of sugarcane bagasse (SCB). The interaction between the three recombinant enzymes during SCB pre-treated by steam explosion hydrolysis was performed with different concentrations of HXYN2, HXYLA and ABF3 in different ratios in according to a central composite rotational design (CCRD) 23, including six axial points and six central points, totaling 20 assays. The influence of the factors was assessed by analyzing the main effects and interaction between the factors, calculated using Statistica 8.0 software (StatSoft Inc. Tulsa, OK, USA). The Pareto chart was constructed with this software and showed the values of the Student’s t test for each recombinant enzyme. It was considered as response variable the quantification of reducing sugars by DNS (mg/mL). The Pareto chart showed that the recombinant enzyme ABF3 exerted more significant effect during SCB hydrolysis, with higher concentrations and with the lowest concentration of this enzyme. It was performed analysis of variance according to Fisher method (ANOVA). In ANOVA for the release of reducing sugars (mg/ml) as the variable response, the concentration of ABF3 showed significance during hydrolysis SCB. The result obtained by ANOVA, is in accordance with those presented in the analysis method based on the statistical Student's t (Pareto chart). The degradation of the central chain of xylan by HXYN2 and HXYLA was more strongly influenced by ABF3 action. A model was obtained, and it describes the performance of the interaction of all three enzymes for the release of reducing sugars, and can be used to better explain the results of the statistical analysis. The formulation capable of releasing the higher levels of reducing sugars had the following concentrations: HXYN2 with 600 U/g of substrate, HXYLA with 11.5 U.g-1 and ABF3 with 0.32 U.g-1. In conclusion, the recombinant enzyme that has a more significant effect during SCB hydrolysis was ABF3. It is noteworthy that the xylan present in the SCB is arabinoglucoronoxylan, due to this fact debranching enzymes are important to allow access of enzymes that act on the central chain.

Keywords: experimental design, hydrolysis, recombinant enzymes, sugar cane bagasse

Procedia PDF Downloads 229
629 Antitrypanosomal Activity of Stigmasterol: An in silico Approach

Authors: Mohammed Auwal Ibrahim, Aminu Mohammed

Abstract:

Stigmasterol has previously been reported to possess antitrypanosomal activity using in vitro and in vivo models. However, the mechanism of antitrypanosomal activity is yet to be elucidated. In the present study, molecular docking was used to decipher the mode of interaction and binding affinity of stigmasterol to three known antitrypanosomal drug targets viz; adenosine kinase, ornithine decarboxylase and triose phosphate isomerase. Stigmasterol was found to bind to the selected trypanosomal enzymes with minimum binding energy of -4.2, -6.5 and -6.6 kcal/mol for adenosine kinase, ornithine decarboxylase, and triose phosphate isomerase respectively. However, hydrogen bond was not involved in the interaction of stigmasterol with all the three enzymes, but hydrophobic interaction seemed to play a vital role in the binding phenomenon which was predicted to be non-competitive like type of inhibition. It was concluded that binding to the three selected enzymes, especially triose phosphate isomerase, might be involved in the antitrypanosomal activity of stigmasterol but not mediated via a hydrogen bond interaction.

Keywords: antitrypanosomal, in silico, molecular docking, stigmasterol

Procedia PDF Downloads 278
628 Histochemistry of Intestinal Enzymes of Juvenile Dourado Salminus brasiliensis Fed Bovine Colostrum

Authors: Debora B. Moretti, Wiolene M. Nordi, Thaline Maira P. Cruz, José Eurico P. Cyrino, Raul Machado-Neto

Abstract:

Enzyme activity was evaluated in the intestine of juvenile dourado (Salminus brasiliensis) fed with diets containing 0, 10 or 20% of lyophilized bovine colostrum (LBC) inclusion for either 30 or 60 days. The intestinal enzymes acid and alkaline phosphatase (ACP and ALP, respectively), non-specific esterase (NSE), lipase (LIP), dipeptidyl aminopeptidase IV (DAP IV) and leucine aminopeptidase (LAP) were studied using histochemistry in four intestinal segments (S1, S2, S3 and posterior intestine). Weak proteolitic activity was observed in all intestinal segments for DAP IV and LAP. The activity of NSE and LIP was also weak in all intestines, except for the moderate activity of NSE in the S2 of 20% LBC group after 30 days and in the S1 of 0% LBC group after 60 days. The ACP was detected only in the S2 and S3 of the 10% LBC group after 30 days. Moderate and strong staining was observed in the first three intestinal segments for ALP and weak activity in the posterior intestine. The activity of DAP IV, LAP and ALP were also present in the cytoplasm of the enterocytes. In the present results, bovine colostrum feeding did not cause alterations in activity of intestinal enzymes.

Keywords: carnivorous fish, enterocyte, intestinal epithelium, teleost

Procedia PDF Downloads 329
627 Detection and Expression of Peroxidase Genes in Trichoderma harzianum KY488466 and Its Response to Crude Oil Degradation

Authors: Michael Dare Asemoloye, Segun Gbolagade Jonathan, Rafiq Ahmad, Odunayo Joseph Olawuyi, D. O. Adejoye

Abstract:

Fungi have potentials for degrading hydrocarbons through the secretion of different enzymes. Crude oil tolerance and degradation by Trichoderma harzianum was investigated in this study with its ability to produce peroxidase enzymes (LiP and MnP). Many fungal strains were isolated from rhizosphere of grasses growing on a crude oil spilled site, and the most frequent strain based on percentage incidence was further characterized using morphological and molecular characteristics. Molecular characterization was done through the amplification of Ribosomal-RNA regions of 18s (1609-1627) and 28s (287-266) using ITS1 and ITS4 combinations and it was identified using NCBI BLAST tool. The selected fungus was also subjected to an in-vitro tolerance test at crude oil concentrations of 5, 10, 15, 20 and 25% while 0% served as control. In addition, lignin peroxidase genes (lig1-6) and manganese peroxidase gene (mnp) were detected and expressed in this strain using RT-PCR technique, its peroxidase producing activities was also studied in aliquots (U/ml). This strain had highest incidence of 80%, it was registered in NCBI as Trichoderma harzianum asemoJ KY488466. The strain KY488466 responded to crude oil concentrations as it increase, the dose inhibition response percentage (DIRP) increased from 41.67 to 95.41 at 5 to 25 % crude oil concentrations. All the peroxidase genes are present in KY488466, and expressed with amplified 900-1000 bp through RT-PCR technique. In this strain, lig2, lig4 and mnp genes were over-expressed, lig 6 was moderately expressed, while none of the genes was under-expressed. The strain also produced 90±0.87 U/ml lignin peroxidase and 120±1.23 U/mil manganese peroxidase enzymes in aliquots. These results imply that KY488466 can tolerate and survive high crude oil concentration and could be exploited for bioremediation of oil-spilled soils, the produced peroxidase enzymes could also be exploited for other biotechnological experiments.

Keywords: crude oil, enzymes, expression, peroxidase genes, tolerance, Trichoderma harzianum

Procedia PDF Downloads 228
626 Binding Studies of Complexes of Anticancer Drugs with DNA and Enzymes Involved in DNA Replication Using Molecular Docking and Cell Culture Techniques

Authors: Fouzia Perveen, Rumana Qureshi

Abstract:

The presently studied twelve anticancer drugs are the cytotoxic agents which inhibit the replication of DNA and activity of enzymes involved in DNA replication namely topoisomerase-II, polymerase and helicase and have shown remarkable anticancer activity in clinical trials. In this study, we performed molecular docking studies of twelve antitumor drugs against DNA and DNA enzymes in the presence and absence of ascorbic acid (AA) and developed the quantitative structure-activity relationship (QSAR) model for anticancer activity screening. A number of electronic and steric descriptors were calculated using MOE software package. QSAR was established showing a correlation of binding strength with various physicochemical descriptors. Out of these twelve, eight cytotoxic drugs were tested on Non-Small Cell Lung Cancer cell lines (H-157 and H-1299) in the absence and presence of ascorbic acid and experimental IC50 values were calculated. From the docking studies, binding constants were calculated indicating the strength of drug-DNA and drug-enzyme complex formation and it was correlated to the IC50 values (both experimental and theoretical). These results can offer useful references for directing the molecular design of DNA enzyme inhibitor with improved anticancer activity.

Keywords: ascorbic acid, binding constant, cytotoxic agents, cell culture, DNA, DNA enzymes, molecular docking

Procedia PDF Downloads 427
625 Design, Molecular Modeling, Synthesize, and Biological Evaluation of Some Dual Inhibitors of Soluble Epoxide Hydrolase (sEH) and Cyclooxygenase 2 (COX-2)

Authors: Elham Rezaee, Sayyed Abbas Tabatabai

Abstract:

Dual inhibition of COX-2 and sEH enzymes represents one of the distinct pharmaceutical approaches for the treatment of inflammation, pain, cancers, and other diseases. The discovery of these inhibitors for treatment is a great deal of attention because of some advantages such as increased efficacy, a promising safety profile, ease of formulation, and better target engagement. In this research, based on the structure-activity relationship of COX-2 and sEH inhibitors, some amide derivatives with oxadiazole and dihydropyrimidinone rings against sEH and COX-2 enzymes were developed. The designed compounds showed high affinity to the active site of both enzymes in docking studies and were synthesized in good yield and characterized by IR, Mass, 1HNMR, and 13CNMR. All of the novel compounds exhibited considerable in-vitro sEH and COX-2 inhibitory activities in comparison with 12-(3-Adamantan-1-yl-ureido)- dodecanoic acid and celecoxib (a potent urea-based sEH inhibitor and selective nonsteroidal anti-inflammatory drug, respectively). Ethyl 6-methyl-4-(4-(4-(methylsulfonyl)benzamido)phenyl)-2-oxo-1,2,3,4-tetrahydropyrimidine-5-carboxylate was found to be the most selective COX-2 inhibitor (COX-2/COX-1 ratio: 683) with IC50 value of 2.1 nM targeting sEH enzyme.

Keywords: COX-2, dual inhibitors, sEH, synthesis

Procedia PDF Downloads 50
624 Second Generation Biofuels: A Futuristic Green Deal for Lignocellulosic Waste

Authors: Nivedita Sharma

Abstract:

The global demand for fossil fuels is very high, but their use is not sustainable since its reserves are declining. Additionally, fossil fuels are responsible for the accumulation of greenhouse gases. The emission of greenhouse gases from the transport sector can be reduced by substituting fossil fuels by biofuels. Thus, renewable fuels capable of sequestering carbon dioxide are in high demand. Second‐generation biofuels, which require lignocellulosic biomass as a substrate and ultimately producing ethanol, fall largely in this category. Bioethanol is a favorable and near carbon-neutral renewable biofuel leading to reduction in tailpipe pollutant emission and improving the ambient air quality. Lignocellulose consists of three main components: cellulose, hemicellulose and lignin which can be converted to ethanol with the help of microbial enzymes. Enzymatic hydrolysis of lignocellulosic biomass in 1st step is considered as the most efficient and least polluting methods for generating fermentable hexose and pentose sugars which subsequently are fermented to power alcohol by yeasts in 2nd step of the process. In the present technology, a complete bioconversion process i.e. potential hydrolytic enzymes i.e. cellulase and xylanase producing microorganisms have been isolated from different niches, screened for enzyme production, identified using phenotyping and genotyping, enzyme production, purification and application of enzymes for saccharification of different lignocellulosic biomass followed by fermentation of hydrolysate to ethanol with high yield is to be presented in detail.

Keywords: cellulase, xylanase, lignocellulose, bioethanol, microbial enzymes

Procedia PDF Downloads 98
623 Beneficial Effect of Lupeol in Diabetes Induced Oxidative Damage

Authors: Rajnish Gupta, R. S. Gupta

Abstract:

Present research was aimed to investigate antidiabetic and antioxidant status of Lupeol in streptozotocin induced diabetes. Rats were divided into following groups mainly: control, diabetic, normal group as well as diabetic treated with Lupeol at 25 and 35 mg/kg b.wt./day for 21 days, diabetic group treated with glibenclamide. Tissue (pancreas, kidney and liver) as well as serum biochemical parameters were analysed for any abnormal behavior. Lupeol administration reduced diabetes onset with significant improvement in serum insulin level also strengthened by increase in β-Cell counts. A significant decrease was observed in serum glucose level. Furthermore, Lupeol treatment increased the antioxidant enzymes, glycolytic enzymes and also protein levels with a decrease in the level of thiobarbituric acid-reactive oxygen species and gluconeogenic enzymes. Present study proves that Lupeol administration significantly reinstated serum and tissue biochemical parameters and thus strengthening its antidiabetic potential.

Keywords: oxidative stress, pterostilbene, thiobarbituric acid, reactive oxygen species

Procedia PDF Downloads 470
622 A 7 Dimensional-Quantitative Structure-Activity Relationship Approach Combining Quantum Mechanics Based Grid and Solvation Models to Predict Hotspots and Kinetic Properties of Mutated Enzymes: An Enzyme Engineering Perspective

Authors: R. Pravin Kumar, L. Roopa

Abstract:

Enzymes are molecular machines used in various industries such as pharmaceuticals, cosmetics, food and animal feed, paper and leather processing, biofuel, and etc. Nevertheless, this has been possible only by the breath-taking efforts of the chemists and biologists to evolve/engineer these mysterious biomolecules to work the needful. Main agenda of this enzyme engineering project is to derive screening and selection tools to obtain focused libraries of enzyme variants with desired qualities. The methodologies for this research include the well-established directed evolution, rational redesign and relatively less established yet much faster and accurate insilico methods. This concept was initiated as a Receptor Rependent-4Dimensional Quantitative Structure Activity Relationship (RD-4D-QSAR) to predict kinetic properties of enzymes and extended here to study transaminase by a 7D QSAR approach. Induced-fit scenarios were explored using Quantum Mechanics/Molecular Mechanics (QM/MM) simulations which were then placed in a grid that stores interactions energies derived from QM parameters (QMgrid). In this study, the mutated enzymes were immersed completely inside the QMgrid and this was combined with solvation models to predict descriptors. After statistical screening of descriptors, QSAR models showed > 90% specificity and > 85% sensitivity towards the experimental activity. Mapping descriptors on the enzyme structure revealed hotspots important to enhance the enantioselectivity of the enzyme.

Keywords: QMgrid, QM/MM simulations, RD-4D-QSAR, transaminase

Procedia PDF Downloads 137
621 Effects of Dietary Copper Supplementation on the Freshwater Prawn, Macrobrachium rosenbergii

Authors: Muralisankar Thirunavukkarasu, Saravana Bhavan Periyakali, Santhanam Perumal

Abstract:

The present study was performed to assess the effects of dietary copper (Cu) on growth, biochemical constituents, digestive enzyme activities, enzymatic antioxidant and metabolic enzymes of the freshwater prawn, Macrobrachium rosenbergii post larvae (PL). The Cu was supplemented at 0, 10, 20, 40, 60 and 80 mg kg-1 with the basal diets. Cu supplemented diets were fed to M. rosenbergii PL for a period of 90 days. At the end of the feeding experiment, 40 mg kg-1 Cu supplemented feeds fed PL showed significant (P < 0.05) improvement in survival, growth, digestive enzyme activities and concentrations of biochemical constituents. However, PL fed with 60 to 80 mg Cu kg-1 showed negative performance. Activities of enzymatic antioxidants, metabolic enzymes and lipid peroxidation in the muscle and hepatopancreas showed insignificant alterations (P > 0.05) up to 40 mg kg-1 Cu supplemented feeds fed PL. Whereas, 60 and 80 mg of Cu kg-1 supplemented feeds fed PL showed significant alterations on these antioxidants and metabolic enzymes levels. It indicates that beyond 40 mg Cu kg-1 diets were produced some toxic to M. rosenbergii PL. Therefore, the present study suggests that 40 mg Cu kg-1 can be supplemented in the diets of M. rosenbergii PL for regulating better survival and growth.

Keywords: antioxidants, biochemical constituents, copper, growth, Macrobrachium rosenbergii

Procedia PDF Downloads 224
620 Heterologous Expression of a Clostridium thermocellum Proteins and Assembly of Cellulosomes 'in vitro' for Biotechnology Applications

Authors: Jessica Pinheiro Silva, Brenda Rabello De Camargo, Daniel Gusmao De Morais, Eliane Ferreira Noronha

Abstract:

The utilization of lignocellulosic biomass as source of polysaccharides for industrial applications requires an arsenal of enzymes with different mode of action able to hydrolyze its complex and recalcitrant structure. Clostridium thermocellum is gram-positive, thermophilic bacterium producing lignocellulosic hydrolyzing enzymes in the form of multi-enzyme complex, termed celulossomes. This complex has several hydrolytic enzymes attached to a large and enzymically inactive protein known as Cellulosome-integrating protein (CipA), which serves as a scaffolding protein for the complex produced. This attachment occurs through specific interactions between cohesin modules of CipA and dockerin modules in enzymes. The present work aims to construct celulosomes in vitro with the structural protein CipA, a xylanase called Xyn10D and a cellulose called CelJ from C.thermocellum. A mini-scafoldin was constructed from modules derived from CipA containing two cohesion modules. This was cloned and expressed in Escherichia coli. The other two genes were cloned under the control of the alcohol oxidase 1 promoter (AOX1) in the vector pPIC9 and integrated into the genome of the methylotrophic yeast Pichia pastoris GS115. Purification of each protein is being carried out. Further studies regarding enzymatic activity of the cellulosome is going to be evaluated. The cellulosome built in vitro and composed of mini-CipA, CelJ and Xyn10D, can be very interesting for application in industrial processes involving the degradation of plant biomass.

Keywords: cellulosome, CipA, Clostridium thermocellum, cohesin, dockerin, yeast

Procedia PDF Downloads 233
619 Enzyme Inhibition Activity of Schiff Bases Against Mycobacterium Tuberculosis Using Molecular Docking

Authors: Imran Muhammad

Abstract:

The main cause of infectious disease in the modern world is Mycobacterium Tuberculosis (MT). To combat tuberculosis, new and efficient drugs are an urgent need in the modern world. Schif bases are potent for their biological pharmacophore activity. Thus we selected different Vanillin-based Schiff bases for their binding activity against target enzymes of Mycobacterium tuberculosis that is (DprE1 (decaprenyl phosphoryl-β-D-ribose 2′-epimerase), and DNA gyrase subunit-A), using molecular docking. We evaluate the inhibition potential, interaction, and binding mode of these compounds with the target enzymes.

Keywords: schiff bases, tuberculosis, DNA gyrase, DprE1, docking

Procedia PDF Downloads 74
618 Free Radical Scavenging, Antioxidant Activity, Phenolic, Alkaloids Contents and Inhibited Properties against α-Amylase and Invertase Enzymes of Stem Bark Extracts Coula edulis B

Authors: Eric Beyegue, Boris Azantza, Judith Laure Ngondi, Julius E. Oben

Abstract:

Background: It is clearly that phytochemical constituents of plants in relation exhibit free radical scavenging, antioxidant and glycosylation properties. This study investigated the in vitro antioxidant and free radical scavenging, inhibited activities against α-amylase and invertase enzymes of stem bark extracts C. edulis (Olacaceae). Methods: Four extracts (hexane, dichloromethane, ethanol and aqueous) from the barks of C. edulis were used in this study. Colorimetric in vitro methods were using for evaluate free radical scavenging activity DPPH, ABTS, NO, OH, antioxidant capacity, glycosylation activity, inhibition of α-amylase and invertase activities, phenolic, flavonoid and alkaloid contents. Results: C. edulis extracts (CEE) had a higher scavenging potential on the 2, 2-diphenyl-1-picrylhydrazyl (DPPH), hydroxyl (OH), nitrite oxide (NO), 2, 2-azinobis (3-ethylbenzthiazoline)-6-sulfonic acid (ABTS) radicals and glucose scavenging with the IC50 varied between 41.95 and 36694.43 µg/ml depending on the solvent of extraction. The ethanol extract of C. edulis stem bark (CE EtOH) showed the highest polyphenolic (289.10 + 30.32), flavonoid (1.12 + 0.09) and alkaloids (18.47 + 0.16) content. All the tested extracts demonstrated a relative high inhibition potential against α-amylase and invertase digestive enzymes activities. Conclusion: This study suggests that CEE exhibited higher antioxidant potential and significant inhibition potential against digestive enzymes.

Keywords: Coula edulis, antioxidant, scavenging activity, amylase, invertase

Procedia PDF Downloads 351
617 Effect of Spontaneous Ripening and Drying Techniques on the Bioactive Activities Peel of Plantain (Musa paradisiaca) Fruit

Authors: Famuwagun A. A., Abiona O. O., Gbadamosi S.O., Adeboye O. A., Adebooye O. C.

Abstract:

The need to provide more information on the perceived bioactive status of the peel of plantain fruit informed the design of this research. Matured Plantain fruits were harvested, and fruits were allowed to ripen spontaneously. Samples of plantain fruit were taken every fortnight, and the peels were removed. The peels were dried using two different drying techniques (Oven drying and sun drying) and milled into powdery forms. Other samples were picked and processed in a similar manner on the first, third, seventh and tenth day until the peels of the fruits were fully ripped, resulting in eight different samples. The anti-oxidative properties of the samples using different assays (DPPH, FRAP, MCA, HRSA, SRSA, ABTS, ORAC), inhibitory activities against enzymes related to diabetes (alpha-amylase and glucosidase) and inhibition against angiotensin-converting enzymes (ACE) were evaluated. The result showed that peels of plantain fruits on the 7th day of ripening and sundried exhibited greater inhibitions against free radicals, which enhanced its antioxidant activities, resulting in greater inhibitions against alpha-amylase and alpha-glucosidase enzymes. Also, oven oven-dried sample of the peel of plantain fruit on the 7th day of ripening had greater phenolic contents than the other samples, which also resulted in higher inhibition against angiotensin converting enzymes when compared with other samples. The results showed that even though the unripe peel of plantain fruit is assumed to contain excellent bioactive activities, consumption of the peel should be allowed to ripen for seven days after maturity and harvesting so as to derive maximum benefit from the peel.

Keywords: functional ingredient, diabetics, hypertension, functional foods

Procedia PDF Downloads 51
616 Bifunctional Activity and Stability of Fused Plasmodium falciparum Orotate Phosphoribosyltransferase and Orotidine 5′-Monophosphate Decarboxylase

Authors: Patsarawadee Paojinda, Waranya Imprasittichai, Sudaratana R. Krungkrai, Nirianne Marie Q. Palacpac, Toshihiro Horii, Jerapan Krungkrai

Abstract:

Fusion of the last two enzymes in the pyrimidine biosynthetic pathway in the inversed order by having COOH-terminal orotate phosphoribosyltransferase (OPRT) and NH2-terminal orotidine 5'-monophosphate decarboxylase (OMPDC), as OMPDC-OPRT, are described in many organisms. Here, we produced gene fusions of Plasmodium falciparum OMPDC-OPRT and expressed the bifunctional protein in Escherichia coli. The enzyme was purified to homogeneity using affinity and anion-exchange chromatography, exhibited enzymatic activities and functioned as a dimer. The activities, although unstable, can be stabilized by its substrate and product during purification and long-term storage. Furthermore, the enzyme expressed a perfect catalytic efficiency (kcat/Km). The kcat was selectively enhanced up to 3 orders of magnitude, while the Km was not much affected and remained at low µM levels when compared to the monofunctional enzymes. The fusion of the two enzymes, creating a “super-enzyme” with perfect catalytic power and more flexibility, reflects cryptic relationship of enzymatic reactivaties and metabolic functions on molecular evolution.

Keywords: bifunctional enzyme, orotate phosphoribosyltransferase, orotidine 5'-monophosphate decarboxylase, plasmodium falciparum

Procedia PDF Downloads 285
615 Effect of Multi-Enzyme Supplementation on Growth Performance of Broiler

Authors: Abdur Rahman, Saima, T. N. Pasha, Muhammad Younus, Yassar Abbas, Shahid Jaleel

Abstract:

Non-starch polysaccharides (NSPs) are not completely digested by broiler endogenous enzymes and consequently the soluble NSPs in feed results in high digesta viscosity and poor retention of nutrients. Supplementation of NSPs digesting enzymes may release the nutrients from feed and reduce the anti-nutritional effects of NSP’s. The present study was conducted to determine the effects of NSPs digesting enzymes (Zympex) in broiler chicks. A total of 120 day old broiler chicks (Hubbard) were categorized into 3 treatments and each treatment was having four replicates with 10 birds in each. Dietary treatments comprised of Basal diet (2740 KCal/Kg) as control-1 (T1), low energy diet (2630 KCal/kg) control-2 (T2) and low energy diet with 0.5 gm/Kg enzyme as T3. Multi-enzymes supplementation showed significant (P < 0.05) positive effect on weight gain (last three weeks), feed intake (last two weeks), FCR (1st, 2nd, 4th and 5th) and nutrient retention in T3 when compared with control-2. Weight gain was lower (P < 0.05) in low caloric feed group C when compared with control-1 in all weeks except last week (P > 0.05), feed consumption was significantly lower (P < 0.05) in 5th week and results showed significantly poor FCR (P < 0.05) in 2nd, 3rd and 4th week but non-significant effect in 1st and 5th week when compared with control-1 group, which revealed the positive effect of enzyme supplementation in low energy diet. These results revealed that enzyme supplementation releases more energy from low energy diets and results in equal performance to normal diet.

Keywords: body weight, FCR, feed intake, enzyme, non-starch polysaccharides

Procedia PDF Downloads 348
614 Elucidation of Physiological and Biochemical Mechanisms of an Endemic Halophyte Centaurea Tuzgoluensis under Salt Stress

Authors: Mustafa Kucukoduk, Evren Yildiztugay, A. Hediye Sekmen, Ismail Turkan, Yavuz Bagci

Abstract:

In this study, physiological and biochemical responses of Centaurea tuzgoluensis, a Turkish endemic halophyte, to salinity were studied. Therefore, the changes in shoot growth, leaf relative water content (RWC), ion concentrations, lipid peroxidation, hydroxyl (OH.) radical scavenging activity, proline (Pro) content, and antioxidant system [superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX) and glutathione reductase (GR)] were investigated. The 60 days (d) old C. tuzgoluensis seedlings were subjected to 0, 150 and 300 mM NaCl for 7 d and 14 d. The relative shoot growth was generally did not change in the 150 mM NaCl, but reduced with 300 mM NaCl stress at 7 d and 14 d. RWC was higher in 150 mM NaCl-treated leaves than that of 300 mM NaCl. Salinity decreased K+/Na+ ratio, but increased Na+, Cl, Ca+2 and Na+/Cl ratio in the leaves. On the other hand, it did not change or increase the K+ content at 150 and 300 mM NaCl, respectively. MDA content in the 150 and 300 mM NaCl-treated leaves remained close to control at 7 d. This was related to enhanced activities of SOD, CAT, APX and GR enzymes, and their isoenzymes especially Fe-SOD in the leaves. On the other hand, the higher sensitivity to 300 mM NaCl at 14 d was associated with inadequate increase in antioxidant enzymes and the decreased OH radical scavenging activity. All these results suggest that C. tuzgoluensis has different antioxidant metabolisms between short- (7 d) and long-term (14 d) salt treatments and salinity tolerance of C. tuzgoluensis might be closely related to increased capacity of antioxidative system to scavenge reactive oxygen species (ROS) and accumulation of osmoprotectant proline under salinity conditions.

Keywords: antioxidant enzymes, endemic halophyte, ion exchange, lipid peroxidation, antioxidant, enzymes, endemic halophyte, ion exchange, lipid peroxidation, proline, Centaurea tuzgoluensis

Procedia PDF Downloads 297
613 Use of Corn Stover for the Production of 2G Bioethanol, Enzymes, and Xylitol Under a Biorefinery Concept

Authors: Astorga-Trejo Rebeca, Fonseca-Peralta Héctor Manuel, Beltrán-Arredondo Laura Ivonne, Castro-Martínez Claudia

Abstract:

The use of biomass as feedstock for the production of fuels and other chemicals of interest is an ever-growing accepted option in the way to the development of biorefinery complexes; in the Mexican state of Sinaloa, two million tons of residues from corn crops are produced every year, most of which can be converted to bioethanol and other products through biotechnological conversion using yeast and other microorganisms. Therefore, the objective of this work was to take advantage of corn stover and evaluate its potential as a substrate for the production of second-generation bioethanol (2G), enzymes, and xylitol. To produce bioethanol 2G, an acid-alkaline pretreatment was carried out prior to saccharification and fermentation. The microorganisms used for the production of enzymes, as well as for the production of xylitol, were isolated and characterized in our workgroup. Statistical analysis was performed using Design Expert version 11.0. The results showed that it is possible to obtain 2G bioethanol employing corn stover as a carbon source and Saccharomyces cerevisiae ItVer01 and Candida intermedia CBE002 with yields of 0.42 g and 0.31 g, respectively. It was also shown that C. intermedia has the ability to produce xylitol with a good yield (0.46 g/g). On the other hand, qualitative and quantitative studies showed that the native strains of Fusarium equiseti (0.4 IU/mL - xylanase), Bacillus velezensis (1.2 IU/mL – xylanase and 0.4 UI/mL - amylase) and Penicillium funiculosum (1.5 IU / mL - cellulases) have the capacity to produce xylanases, amylases or cellulases using corn stover as raw material. This study allowed us to demonstrate that it is possible to use corn stover as a carbon source, a low-cost raw material with high availability in our country, to obtain bioproducts of industrial interest, using processes that are more environmentally friendly and sustainable. It is necessary to continue the optimization of each bioprocess.

Keywords: biomass, corn stover, biorefinery, bioethanol 2G, enzymes, xylitol

Procedia PDF Downloads 170
612 Extracellular Enzymes from Halophilic Bacteria with Potential in Agricultural Secondary Flow Recovery Products

Authors: Madalin Enache, Simona Neagu, Roxana Cojoc, Ioana Gomoiu, Delia Ionela Dobre, Ancuta Roxana Trifoi

Abstract:

Various types of halophilic and halotolerant microorganisms able to be cultivated in laboratory on culture media with a wide range of sodium chloride content are isolated from several salted environments. The extracellular enzymes of these microorganisms showed the enzymatic activity in these spectrums of salinity thus being attractive for several biotechnological processes developed at high ionic strength. In present work, a number of amylase, protease, esterase, lipase, cellulase, pectinase, xilanases and innulinase were identified for more than 50th bacterial strains isolated from water samples and sapropelic mud from four saline and hypersaline lakes located in Romanian plain. On the other hand, the cellulase and pectinase activity were also detected in some halotolerant microorganisms isolated from secondary agricultural flow of grapes processing. The preliminary data revealed that from totally tested strains seven harbor proteases activity, eight amylase activity, four for esterase and another four for lipase, three for pectinase and for one strain were identified either cellulase or pectinase activity. There were no identified enzymes able to hydrolase innulin added to culture media. Several strains isolated from sapropelic mud showed multiple extracellular enzymatic activities, namely three strains harbor three activities and another seven harbor two activities. The data revealed that amylase and protease activities were frequently detected if compare with other tested enzymes. In the case of pectinase were investigated, their ability to be used for increasing resveratrol recovery from material resulted after grapes processing. In this way, the resulted material from grapes processing was treated with microbial supernatant for several times (two, four and 24 hours) and the content of resveratrol was detected by High Performance Liquid Chromatography method (HPLC). The preliminary data revealed some positive results of this treatment.

Keywords: halophilic microorganisms, enzymes, pectinase, salinity

Procedia PDF Downloads 193
611 The Modeling of Viscous Microenvironment for the Coupled Enzyme System of Bioluminescence Bacteria

Authors: Irina E. Sukovataya, Oleg S. Sutormin, Valentina A. Kratasyuk

Abstract:

Effect of viscosity of media on kinetic parameters of the coupled enzyme system NADH:FMN-oxidoreductase–luciferase was investigated with addition of organic solvents (glycerol and sucrose), because bioluminescent enzyme systems based on bacterial luciferases offer a unique and general tool for analysis of the many analytes and enzymes in the environment, research, and clinical laboratories and other fields. The possibility of stabilization and increase of activity of the coupled enzyme system NADH:FMN-oxidoreductase–luciferase activity in vicious aqueous-organic mixtures have been shown.

Keywords: coupled enzyme system of bioluminescence bacteria NAD(P)H:FMN-oxidoreductase–luciferase, glycerol, stabilization of enzymes, sucrose

Procedia PDF Downloads 395
610 Adaptive Responses of Carum copticum to in vitro Salt Stress

Authors: R. Razavizadeh, F. Adabavazeh, M. Rezaee Chermahini

Abstract:

Salinity is one of the most widespread agricultural problems in arid and semi-arid areas that limits the plant growth and crop productivity. In this study, the salt stress effects on protein, reducing sugar, proline contents and antioxidant enzymes activities of Carum copticum L. under in vitro conditions were studied. Seeds of C. copticum were cultured in Murashige and Skoog (MS) medium containing 0, 25, 50, 100 and 150 mM NaCl and calli were cultured in MS medium containing 1 μM 2, 4-dichlorophenoxyacetic acid, 4 μM benzyl amino purine and different levels of NaCl (0, 25, 50, 100 and 150 mM). After NaCl treatment for 28 days, the proline and reducing sugar contents of shoots, roots and calli increased significantly in relation to the severity of the salt stress. The highest amount of proline and carbohydrate were observed at 150 and 100 mM NaCl, respectively. The reducing sugar accumulation in shoots was the highest as compared to roots, whereas, proline contents did not show any significant difference in roots and shoots under salt stress. The results showed significant reduction of protein contents in seedlings and calli. Based on these results, proteins extracted from the shoots, roots and calli of C. copticum treated with 150 mM NaCl showed the lowest contents. The positive relationships were observed between activity of antioxidant enzymes and the increase in stress levels. Catalase, ascorbate peroxidase and superoxide dismutase activity increased significantly under salt concentrations in comparison to the control. These results suggest that the accumulation of proline and sugars, and activation of antioxidant enzymes play adaptive roles in the adaptation of seedlings and callus of C. copticum to saline conditions.

Keywords: antioxidant enzymes, Carum copticum, organic solutes, salt stress

Procedia PDF Downloads 281
609 Synthesis and Application of Oligosaccharides Representing Plant Cell Wall Polysaccharides

Authors: Mads H. Clausen

Abstract:

Plant cell walls are structurally complex and contain a larger number of diverse carbohydrate polymers. These plant fibers are a highly valuable bio-resource and the focus of food, energy and health research. We are interested in studying the interplay of plant cell wall carbohydrates with proteins such as enzymes, cell surface lectins and antibodies. However, detailed molecular level investigations of such interactions are hampered by the heterogeneity and diversity of the polymers of interest. To circumvent this, we target well-defined oligosaccharides with representative structures that can be used for characterizing protein-carbohydrate binding. The presentation will highlight chemical syntheses of plant cell wall oligosaccharides from our group and provide examples from studies of their interactions with proteins.

Keywords: oligosaccharides, carbohydrate chemistry, plant cell walls, carbohydrate-acting enzymes

Procedia PDF Downloads 310
608 Improving the Utilization of Telfairia occidentalis Leaf Meal with Cellulase-Glucanase-Xylanase Combination and Selected Probiotic in Broiler Diets

Authors: Ayodeji Fasuyi

Abstract:

Telfairia occidentalis is a leafy vegetable commonly grown in the tropics for nutritional benefits. The use of enzymes and probiotics is becoming prominent due to the ban on antibiotics as growth promoters in many parts of the world. It is conceived that with enzymes and probiotics additives, fibrous leafy vegetables can be incorporated into poultry feeds as protein source. However, certain antinutrients were also found in the leaves of Telfairia occidentalis. Four broiler starter and finisher diets were formulated for the two phases of the broiler experiments. A mixture of fiber degrading enzymes, Roxazyme G2 (combination of cellulase, glucanase and xylanase) and probiotics (Turbotox), a growth promoter, were used in broiler diets at 1:1. The Roxazyme G2/Turbotox mixtures were used in diets containing four varying levels of Telfairia occidentalis leaf meal (TOLM) at 0, 10, 20 and 30%. Diets 1 were standard broiler diets without TOLM and Roxazyme G2 and Turbotox additives. Diets 2, 3 and 4 had enzymes and probiotics additives. Certain mineral elements such as Ca, P, K, Na, Mg, Fe, Mn, Cu and Zn were found in notable quantities viz. 2.6 g/100 g, 1.2 g/100 g, 6.2 g/100 g, 5.1 g/100 g, 4.7 g/100 g, 5875 ppm, 182 ppm, 136 ppm and 1036 ppm, respectively. Phytin, phytin-P, oxalate, tannin and HCN were also found in ample quantities viz. 189.2 mg/100 g, 120.1 mg/100 g, 80.7 mg/100 g, 43.1 mg/100 g and 61.2 mg/100 g, respectively. The average weight gain was highest at 46.3 g/bird/day for birds on 10% TOLM diet but similar (P > 0.05) to 46.2 g/bird/day for birds on 20% TOLM. The feed conversion ratio (FCR) of 2.27 was the lowest and optimum for birds on 10% TOLM although similar (P > 0.05) to 2.29 obtained for birds on 20% TOLM. FCR of 2.61 was the highest at 2.61 for birds on 30% TOLM diet. The lowest FCR of 2.27 was obtained for birds on 10% TOLM diet although similar (P > 0.05) to 2.29 for birds on 20% TOLM diet. Most carcass characteristics and organ weights were similar (P > 0.05) for the experimental birds on the different diets except for kidney, gizzard and intestinal length. The values for kidney, gizzard and intestinal length were significantly higher (P < 0.05) for birds on the TOLM diets. The nitrogen retention had the highest value of 72.37 ± 0.10% for birds on 10% TOLM diet although similar (P > 0.05) to 71.54 ± 1.89 obtained for birds on the control diet without TOLM and enzymes/probiotics mixture. There was evidence of a better utilization of TOLM as a plant protein source. The carcass characteristics and organ weights all showed evidence of uniform tissue buildup and muscles development particularly in diets containing 10% of TOLM level. There was also better nitrogen utilization in birds on the 10% TOLM diet. Considering the cheap cost of TOLM, it is envisaged that its introduction into poultry feeds as a plant protein source will ultimately reduce the cost of poultry feeds.

Keywords: Telfairia occidentalis leaf meal, enzymes, probiotics, additives

Procedia PDF Downloads 136
607 Isolation of Protease Producing Bacteria from Soil Sediments of Ayiramthengu Mangrove Ecosystem

Authors: Reshmi Vijayan

Abstract:

Alkaline protease is one of the most important enzymes in the biological world. Microbial production of alkaline protease is getting more attention from researchers due to its unique properties and substantial activity. Microorganisms are the most common sources of commercial enzymes due to their physiological and biochemical properties. The study was conducted on Ayiramthenghu mangrove sediments to isolate protease producing bacteria. All the isolates were screened for proteolytic activity on a skim milk agar plate at 37˚C for 48hrs. Protease activities were determined by the formation of a clear zone around the colonies on Skim milk agar medium. The activity of the enzyme was measured by the tyrosine standard curve, and it was found to be 0.186285 U/ml/min.

Keywords: protease, protease assay, skim milk agar medium, mangrove ecosystem

Procedia PDF Downloads 98
606 The Investigation of Enzymatic Activity in the Soils Under the Impact of Metallurgical Industrial Activity in Lori Marz, Armenia

Authors: T. H. Derdzyan, K. A. Ghazaryan, G. A. Gevorgyan

Abstract:

Beta-glucosidase, chitinase, leucine-aminopeptidase, acid phosphomonoestearse and acetate-esterase enzyme activities in the soils under the impact of metallurgical industrial activity in Lori marz (district) were investigated. The results of the study showed that the activities of the investigated enzymes in the soils decreased with increasing distance from the Shamlugh copper mine, the Chochkan tailings storage facility and the ore transportation road. Statistical analysis revealed that the activities of the enzymes were positively correlated (significant) to each other according to the observation sites which indicated that enzyme activities were affected by the same anthropogenic factor. The investigations showed that the soils were polluted with heavy metals (Cu, Pb, As, Co, Ni, Zn) due to copper mining activity in this territory. The results of Pearson correlation analysis revealed a significant negative correlation between heavy metal pollution degree (Nemerow integrated pollution index) and soil enzyme activity. All of this indicated that copper mining activity in this territory causing the heavy metal pollution of the soils resulted in the inhabitation of the activities of the enzymes which are considered as biological catalysts to decompose organic materials and facilitate the cycling of nutrients.

Keywords: Armenia, metallurgical industrial activity, heavy metal pollutionl, soil enzyme activity

Procedia PDF Downloads 296
605 Chlorhexidine, Effects in Application to Hybrid Layers

Authors: Ilma Robo, Saimir Heta, Edona Hasanaj, Vera Ostreni

Abstract:

The hybrid layer, the way it is created and how it is protected against degradation over time, is the key to the clinical success of a composite restoration. The composite supports the dentinal structure exactly with the realized surface of microretension. Thus, this surface is in direct proportion to its size versus the duration of clinical use of composite dental restoration. Micro-retention occurs between dentin or acidified enamel and adhesive resin extensions versus pre-prepared spaces, such as hollow dentinal tubules. The way the adhesive resin binds to the acidified dentinal structure depends on the physical or chemical factors of this interrelationship between two structures with very different characteristics. During the acidification process, a precursor to the placement of the adhesive resin layer, activation of metaloproteinases of dental origin occurs, enzymes which are responsible for the degradation of the hybrid layer. These enzymes have expressed activity depending on the presence of Zn2 + or Ca2 + ions. There are several ways to inhibit these enzymes, and consequently, there are several ways to inhibit the degradation process of the hybrid layer. The study aims to evaluate chlorhexidine as a solution element, inhibitor of dentin activated metalloproteinases, as a result of the application of acidification. This study aims to look at this solution in advantage or contraindication theories, already published in the literature.

Keywords: hybrid layer, chlorhexidine, degradation, application

Procedia PDF Downloads 132