Search results for: absorption properties
9405 Study on the Morphology and Dynamic Mechanical and Thermal Properties of HIPS/Graphene Nanocomposites
Authors: Amirhosein Rostampour, Mehdi Sharif
Abstract:
In this article, a series of high impact polystyrene/graphene (HIPS/Gr) nanocomposites were prepared by solution mixing method and their morphology and dynamic mechanical properties were investigated as a function of graphene content. SEM images and X-Ray diffraction data confirm that the graphene platelets are well dispersed in HIPS matrix for the nanocomposites with Gr contents up to 5.0 wt%. Mechanical properties analysis demonstrates that yielding strength and initial modulus of HIPS/Gr nanocomposites are highly improved with the increment of Gr content compared to pure HIPS.Keywords: nanocomposite, graphene, dynamic mechanical properties, morphology
Procedia PDF Downloads 5359404 Optimization of Highly Oriented Pyrolytic Graphite Crystals for Neutron Optics
Authors: Hao Qu, Xiang Liu, Michael Crosby, Brian Kozak, Andreas K. Freund
Abstract:
The outstanding performance of highly oriented pyrolytic graphite (HOPG) as an optical element for neutron beam conditioning is unequaled by any other crystalline material in the applications of monochromator, analyzer, and filter. This superiority stems from the favorable nuclear properties of carbon (small absorption and incoherent scattering cross-sections, big coherent scattering length) and the specific crystalline structure (small thermal diffuse scattering cross-section, layered crystal structure). The real crystal defect structure revealed by imaging techniques is correlated with the parameters used in the mosaic model (mosaic spread, mosaic block size, uniformity). The diffraction properties (rocking curve width as determined by both the intrinsic mosaic spread and the diffraction process, peak and integrated reflectivity, filter transmission) as a function of neutron wavelength or energy can be predicted with high accuracy and reliability by diffraction theory using empirical primary extinction coefficients extracted from a great amount of existing experimental data. The results of these calculations are given as graphs and tables permitting to optimize HOPG characteristics (mosaic spread, thickness, curvature) for any given experimental situation.Keywords: neutron optics, pyrolytic graphite, mosaic spread, neutron scattering, monochromator, analyzer
Procedia PDF Downloads 1429403 Light-Scattering Characteristics of Ordered Arrays Nobel Metal Nanoparticles
Authors: Yassine Ait-El-Aoud, Michael Okomoto, Andrew M. Luce, Alkim Akyurtlu, Richard M. Osgood III
Abstract:
Light scattering of metal nanoparticles (NPs) has a unique, and technologically important effect on enhancing light absorption in substrates because most of the light scatters into the substrate near the localized plasmon resonance of the NPs. The optical response, such as the resonant frequency and forward- and backward-scattering, can be tuned to trap light over a certain spectral region by adjusting the nanoparticle material size, shape, aggregation state, Metallic vs. insulating state, as well as local environmental conditions. In this work, we examined the light scattering characteristics of ordered arrays of metal nanoparticles and the light trapping, in order to enhance absorption, by measuring the forward- and backward-scattering using a UV/VIS/NIR spectrophotometer. Samples were fabricated using the popular self-assembly process method: dip coating, combined with nanosphere lithography.Keywords: dip coating, light-scattering, metal nanoparticles, nanosphere lithography
Procedia PDF Downloads 3269402 Effects of Water Content on Dielectric Properties of Mineral Transformer Oil
Authors: Suwarno, M. Helmi Prakoso
Abstract:
Mineral oil is commonly used for high voltage transformer insulation. The insulation quality of mineral oil is affecting the operation process of high voltage transformer. There are many contaminations which could decrease the insulation quality of mineral oil. One of them is water. This research talks about the effect of water content on dielectric properties, physic properties, and partial discharge pattern on mineral oil. Samples were varied with 10 varieties of water content value. And then all samples were tested to measure the dielectric properties, physic properties, and partial discharge pattern. The result of this research showed that an increment of water content value would decrease the insulation quality of mineral oil.Keywords: dielectric properties, high voltage transformer, mineral oil, water content
Procedia PDF Downloads 3979401 Utilising Unground Oil Palm Ash in Producing Foamed Concrete and Its Implementation as an Interlocking Mortar-Less Block
Authors: Hanizam Awang, Mohammed Zuhear Al-Mulali
Abstract:
In this study, the possibility of using unground oil palm ash (UOPA) for producing foamed concrete is investigated. The UOPA used in this study is produced by incinerating palm oil biomass at a temperature exceeding 1000ºC. A semi-structural density of 1300kg/m3 was used with filler to binder ratio of 1.5 and preliminary water to binder ratio of 0.45. Cement was replaced by UOPA at replacement levels of 0, 25, 35, 45, 55 and 65% by weight of binder. Properties such as density, compressive strength, drying shrinkage and water absorption were investigated to the age of 90 days. The mix with a 35% of UOPA content was chosen to be used as the base material of a newly designed interlocking, mortar-less block system.Keywords: foamed concrete, oil palm ash, strength, interlocking block
Procedia PDF Downloads 2629400 Enhancement of Dielectric Properties of Co-Precipitated Spinel Ferrites NiFe₂O₄/Carbon Nano Fibers Nanohybrid
Authors: Iftikhar Hussain Gul, Syeda Aatika
Abstract:
Nickel ferrite was prepared via wet chemical co-precipitation route. Carbon Nano Fibers (CNFs) were used to prepare NiFe₂O₄/CNFs nanohybrids. Polar solvent (ortho-xylene) was used for the dispersion of CNFs in ferrite matrix. X-ray diffraction patterns confirmed the formation of NiFe₂O₄/CNFs nanohybrids without any impurity peak. FTIR patterns showed two consistent characteristic absorption bands for tetrahedral and octahedral sites, confirming the formation of spinel structure of NiFe₂O₄. Scanning Electron Microscopy (SEM) images confirmed the coating of nickel ferrite nanoparticles on CNFs, which confirms the efficiency of deployed method. The dielectric properties were measured as a function of frequency at room temperature. Pure NiFe₂O₄ showed dielectric constant of 1.79 ×10³ at 100 Hz, which increased massively to 2.92 ×10⁶ at 100 Hz with the addition of 20% by weight of CNFs, proving it to be potential candidate for applications in supercapacitors. The impedance analysis showed a considerable decrease of resistance, reactance and cole-cole plot which confirms the decline of impedance on addition of CNFs. The pure NiFe₂O₄ has highest impedance values of 5.89 ×10⁷ Ohm at 100 Hz while the NiFe₂O₄/CNFs nanohybrid with CNFs (20% by weight) has the lowest impedance values of 4.25×10³ Ohm at 100 Hz, which proves this nanohybrid is useful for high-frequency applications.Keywords: AC impedance, co-precipitation, nanohybrid, Fourier transform infrared spectroscopy, x-ray diffraction
Procedia PDF Downloads 1359399 Construction of Green Aggregates from Waste Processing
Authors: Fahad K. Alqahtani
Abstract:
Nowadays construction industry is developing means to incorporate waste products in concrete to ensure sustainability. To meet the need of construction industry, a synthetic aggregate was developed using optimized technique called compression moulding press technique. The manufactured aggregate comprises mixture of plastic, waste which acts as binder, together with by-product waste which acts as fillers. The physical properties and microstructures of the inert materials and the manufactured aggregate were examined and compared with the conventional available aggregates. The outcomes suggest that the developed aggregate has potential to be used as substitution of conventional aggregate due to its less weight and water absorption. The microstructure analysis confirmed the efficiency of the manufacturing process where the final product has the same mixture of binder and filler.Keywords: fly ash, plastic waste, quarry fine, red sand, synthetic aggregate
Procedia PDF Downloads 2299398 Performance Analysis of Three Absorption Heat Pump Cycles, Full and Partial Loads Operations
Authors: B. Dehghan, T. Toppi, M. Aprile, M. Motta
Abstract:
The environmental concerns related to global warming and ozone layer depletion along with the growing worldwide demand for heating and cooling have brought an increasing attention toward ecological and efficient Heating, Ventilation, and Air Conditioning (HVAC) systems. Furthermore, since space heating accounts for a considerable part of the European primary/final energy use, it has been identified as one of the sectors with the most challenging targets in energy use reduction. Heat pumps are commonly considered as a technology able to contribute to the achievement of the targets. Current research focuses on the full load operation and seasonal performance assessment of three gas-driven absorption heat pump cycles. To do this, investigations of the gas-driven air-source ammonia-water absorption heat pump systems for small-scale space heating applications are presented. For each of the presented cycles, both full-load under various temperature conditions and seasonal performances are predicted by means of numerical simulations. It has been considered that small capacity appliances are usually equipped with fixed geometry restrictors, meaning that the solution mass flow rate is driven by the pressure difference across the associated restrictor valve. Results show that gas utilization efficiency (GUE) of the cycles varies between 1.2 and 1.7 for both full and partial loads and vapor exchange (VX) cycle is found to achieve the highest efficiency. It is noticed that, for typical space heating applications, heat pumps operate over a wide range of capacities and thermal lifts. Thus, partially, the novelty introduced in the paper is the investigation based on a seasonal performance approach, following the method prescribed in a recent European standard (EN 12309). The overall result is a modest variation in the seasonal performance for analyzed cycles, from 1.427 (single-effect) to 1.493 (vapor-exchange).Keywords: absorption cycles, gas utilization efficiency, heat pump, seasonal performance, vapor exchange cycle
Procedia PDF Downloads 1099397 Mitigation of Size Effects in Woven Fabric Composites Using Finite Element Analysis Approach
Authors: Azeez Shaik, Yagnik Kalariya, Amit Salvi
Abstract:
High-performance requirements and emission norms were forcing the automobile industry to opt for lightweight materials which improve the fuel efficiency and absorb energy during crash applications. In such scenario, the woven fabric composites are providing better energy absorption compared to metals. Woven fabric composites have a repetitive unit cell (RUC) and the mechanical properties of these materials are highly dependent on RUC. This work investigates the importance of detailed modelling of the RUC, the size effects associated and the mitigation techniques to avoid them using Finite element analysis approach.Keywords: repetitive unit cell, representative volume element, size effects, cohesive zone, finite element analysis
Procedia PDF Downloads 2539396 Technological Properties and Characterization of Ceramic Slurries Based on Yttrium Iii Oxide for Shell Moulds Preparation
Authors: D. Jakubowska, M. Malek, P. Wisniewski, J. Mizera, K. J. Kurzydlowski
Abstract:
The goal of this study was to analyze the technological properties of ceramic slurries based on Ytttria (Y2O3) for fabrication “prime coat” in ceramic shell moulds for investment casting process. The Yttria with two different granulation of (200# and 325#) in ratio-65%-35% by weight were used for preparation the ceramic slurries. Solid phase was 77 wt.%. The experiment was carried out for 96h. Main technological properties like: viscosity, pH, plate weight test, and density were measured every 24h. Additionally, dynamic viscosity was performed after 96h of test. For further material characterization SEM observations, Zeta potential, XRD measurements were done. Those research showed that Yttria ceramic slurries had very promising properties and there are perspective for future fabrication.Keywords: ceramic slurries, mechanizal properties, viscosity, fabrication
Procedia PDF Downloads 5419395 First Principle Calculations of the Structural and Optoelectronic Properties of Cubic Perovskite CsSrF3
Authors: Meriem Harmel, Houari Khachai
Abstract:
We have investigated the structural, electronic and optical properties of a compound perovskite CsSrF3 using the full-potential linearized augmented plane wave (FP-LAPW) method within density functional theory (DFT). In this approach, both the local density approximation (LDA) and the generalized gradient approximation (GGA) were used for exchange-correlation potential calculation. The ground state properties such as lattice parameter, bulk modulus and its pressure derivative were calculated and the results are compared whit experimental and theoretical data. Electronic and bonding properties are discussed from the calculations of band structure, density of states and electron charge density, where the fundamental energy gap is direct under ambient conditions. The contribution of the different bands was analyzed from the total and partial density of states curves. The optical properties (namely: the real and the imaginary parts of the dielectric function ε(ω), the refractive index n(ω) and the extinction coefficient k(ω)) were calculated for radiation up to 35.0 eV. This is the first quantitative theoretical prediction of the optical properties for the investigated compound and still awaits experimental confirmations.Keywords: DFT, fluoroperovskite, electronic structure, optical properties
Procedia PDF Downloads 4769394 Mechanical Properties of Waste Clay Brick Based Geopolymer Cured at Various Temperature
Authors: Shihab Ibrahim
Abstract:
Geopolymer binders as an alternative binder system to ordinary Portland cement are the focus of the past 2 decades of researches. In order to eliminate CO2 emission by cement manufacturing and utilizing construction waste as a source material, clean waste clay bricks which are the waste from Levent Brick factory was activated with a mixture of sodium hydroxide and sodium silicate solution. 12 molarity of sodium hydroxide solution was used and the ratio of sodium silicate to sodium hydroxide was 2.5. Alkaline solution to clay brick powder ratio of 0.35, 0.4, 0.45, and 0.5 was studied. Alkaline solution to powder ratio of 0.4 was found to be optimum ratio to have the same workability as ordinary Portland cement paste. Compressive strength of the clay brick based geopolymer paste samples was evaluated under different curing temperatures and curing durations. One day compressive strength of 57.3 MPa after curing at 85C for 24 hours was obtained which was higher than 7 days compressive strength of ordinary Portland cement paste. The highest compressive strength 71.4 MPa was achieved at seventh day age for the geopolymer paste samples cured at 85C for 24 hours. It was found that 8 hour curing at elevated temperature 85C, is sufficient to get 96% of total strength. 37.4 MPa strength at seventh day of clay brick based geopolymer sample cured at room temperature was achieved. Water absorption around 10% was found for clay brick based geopolymer samples cured at different temperatures with compare to 9.14% water absorption of ordinary Portland cement paste. The clay brick based geopolymer binder can have the potentiality to be used as an alternative binder to Portland cement in a case that the heat treatment provided. Further studies are needed in order to produce the binder in a way that can harden and gain strength without any elevated curing.Keywords: construction and demolition waste, geopolymer, clay brick, compressive strength.
Procedia PDF Downloads 2589393 Effects of Different Drying Methods on the Properties of Viscose Single Jersey Fabrics
Authors: Merve Kucukali Ozturk, Yesim Beceren, Banu Nergis
Abstract:
The study discussed in this paper was conducted in an attempt to investigate effects of different drying methods (line dry and tumble dry) on viscose single jersey fabrics knitted with ring yarn.Keywords: color change, dimensional properties, drying method, fabric tightness, physical properties
Procedia PDF Downloads 2869392 Corrosion Behvaior of CS1018 in Various CO2 Capture Solvents
Authors: Aida Rafat, Ramazan Kahraman, Mert Atilhan
Abstract:
The aggressive corrosion behavior of conventional amine solvents is one of main barriers against large scale commerizaliation of amine absorption process for carbon capture application. Novel CO2 absorbents that exhibit minimal corrosivity against operation conditions are essential to lower corrosion damage and control and ensure more robustness in the capture plant. This work investigated corrosion behavior of carbon steel CS1018 in various CO2 absrobent solvents. The tested solvents included the classical amines MEA, DEA and MDEA, piperazine activated solvents MEA/PZ, MDEA/PZ and MEA/MDEA/PZ as well as mixtures of MEA and Room Temperature Ionic Liquids RTIL, namely MEA/[C4MIM][BF4] and MEA/[C4MIM][Otf]. Electrochemical polarization technique was used to determine the system corrosiveness in terms of corrosion rate and polarization behavior. The process parameters of interest were CO2 loading and solution temperature. Electrochemical resulted showed corrosivity order of classical amines at 40°C is MDEA> MEA > DEA wherase at 80°C corrosivity ranking changes to MEA > DEA > MDEA. Corrosivity rankings were mainly governed by CO2 absorption capacity at the test temperature. Corrosivity ranking for activated amines at 80°C was MEA/PZ > MDEA/PZ > MEA/MDEA/PZ. Piperazine addition seemed to have a dual advanatge in terms of enhancing CO2 absorption capacity as well as nullifying corrosion. For MEA/RTIL mixtures, the preliminary results showed that the partial repalcement of aqueous phase in MEA solution by the more stable nonvolatile RTIL solvents reduced corrosion rates considerably.Keywords: corrosion, amines, CO2 capture, piperazine, ionic liquids
Procedia PDF Downloads 4589391 In-Situ LDH Formation of Sodium Aluminate Activated Slag
Authors: Tao Liu, Qingliang Yu, H. J. H. Brouwers
Abstract:
Among the reaction products in the alkali-activated ground granulated blast furnace slag (AAS), the layered double hydroxides (LDHs) have a remarkable capacity of chloride and heavy metal ions absorption. The promotion of LDH phases in the AAS matrix can increase chloride resistance. The objective of this study is that use the different dosages of sodium aluminate to activate slag, consequently promoting the formation of in-situ LDH. The hydration kinetics of the sodium aluminate activated slag (SAAS) was tested by the isothermal calorimetry. Meanwhile, the reaction products were determined by X-ray diffraction (XRD), thermogravimetric analysis (TGA), and Fourier-transform infrared spectroscopy (FTIR). The sodium hydroxide-activated slag is selected as the reference. The results of XRD, TGA, and FTIR showed that the formation of LDH in SAAS was increased by the aluminate dosages.Keywords: ground granulated blast furnace slag, sodium aluminate activated slag, in-situ LDH formation, chloride absorption
Procedia PDF Downloads 2669390 Comparison of Physicochemical Properties of DNA-Ionic Liquids Complexes
Authors: Ewelina Nowak, Anna Wisla-Swider, Gohar Khachatryan, Krzysztof Danel
Abstract:
Complexes of ionic liquids with different heterocyclic-rings were synthesized by ion exchange reactions with pure salmon DNA. Ionic liquids (ILs) like 1-hexyl-3-methylimidazolium chloride, 1-butyl-4-methylpyridinium chloride and 1-ethyl-1-methylpyrrolidinium bromide were used. The ILs were built into helical state and confirmed by IR spectrometric techniques. Patterns of UV-Vis, photoluminescence, IR, and CD spectra indicated inclusion of small molecules into DNA structure. Molecular weight and radii of gyrations values of ILs-DNA complexes chains were established by HPSEC–MALLS–RI method. Modification DNA with 1-ethyl-1-methylpyrrolidinium bromide gives more uniform material and leads to elimination of high molecular weight chains. Thus, the incorporation DNA double helical structure with both 1-hexyl-3-methylimidazolium chloride and 1-butyl-4-methylpyridinium chloride exhibited higher molecular weight values. Scanning electron microscopy images indicate formation of nanofibre structures in all DNA complexes. Fluorescence depends strongly on the environment in which the chromophores are inserted and simultaneously on the molecular interactions with the biopolymer matrix. The most intensive emission was observed for DNA-imidazole ring complex. Decrease in intensity UV-Vis peak absorption is a consequence of a reduction in the spatial order of polynucleotide strands and provides different π–π stacking structure. Changes in optical properties confirmed by spectroscopy methods make DNA-ILs complexes potential biosensor applications.Keywords: biopolymers, biosensors, cationic surfactant, DNA, DNA-gels
Procedia PDF Downloads 1829389 Use of Residues from Water Treatment and Porcelain Coatings Industry for Producing Eco-Bricks
Authors: Flavio Araujo, Fabiolla Lima, Julio Lima, Paulo Scalize, Antonio Albuquerque, Heitor Reis
Abstract:
One of the great environmental problems in the management of water treatment (WTP) is on the disposal of waste generated during the treatment process. The same occurs with the waste generated during rectification of porcelain tiles. Despite environmental laws in Brazil the residues does not have an ecologically balanced destination. Thus, with the purpose to identify an environmentally sustainable disposal, residues were used to replace part of the soil, for production soil-cement bricks. It was used the residues from WTP and coatings industry Cecrisa (Brazil). Consequently, a greater amount of fine aggregate in the two samples of residues was found. The residue affects the quality of bricks produced, compared to the sample without residues. However, the results of compression and water absorption tests were obtained values that meet the standards, respectively 2.0 MPa and 20% absorption.Keywords: water treatment residue, porcelain tile residue, WTP, brick
Procedia PDF Downloads 4829388 Thermoelectric Properties of Doped Polycrystalline Silicon Film
Authors: Li Long, Thomas Ortlepp
Abstract:
The transport properties of carriers in polycrystalline silicon film affect the performance of polycrystalline silicon-based devices. They depend strongly on the grain structure, grain boundary trap properties and doping concentration, which in turn are determined by the film deposition and processing conditions. Based on the properties of charge carriers, phonons, grain boundaries and their interactions, the thermoelectric properties of polycrystalline silicon are analyzed with the relaxation time approximation of the Boltz- mann transport equation. With this approach, thermal conductivity, electrical conductivity and Seebeck coefficient as a function of grain size, trap properties and doping concentration can be determined. Experiment on heavily doped polycrystalline silicon is carried out and measurement results are compared with the model.Keywords: conductivity, polycrystalline silicon, relaxation time approximation, Seebeck coefficient, thermoelectric property
Procedia PDF Downloads 1229387 Mechanical Properties of Die-Cast Nonflammable Mg Alloy
Authors: Myoung-Gon Yoon, Jung-Ho Moon, Tae Kwon Ha
Abstract:
Tensile specimens of nonflammable AZ91D Mg alloy were fabricated in this study via cold chamber die-casting process. Dimensions of tensile specimens were 25mm in length, 4mm in width, and 0.8 or 3.0mm in thickness. Microstructure observation was conducted before and after tensile tests at room temperature. In the die casting process, various injection distances from 150 to 260mm were employed to obtain optimum process conditions. Distribution of Al12Mg17 phase was the key factor to determine the mechanical properties of die-cast Mg alloy. Specimens with 3mm of thickness showed superior mechanical properties to those with 0.8mm of thickness. Closed networking of Al12Mg17 phase along grain boundary was found to be detrimental to mechanical properties of die-cast Mg alloy.Keywords: non-flammable magnesium alloy, AZ91D, die-casting, microstructure, mechanical properties
Procedia PDF Downloads 3069386 Silver Nanoparticles Loaded Cellulose Nanofibers (Cnf)/mesoporous Bioactive Glass Hydrogels For Periodontitis Treatment
Authors: Anika Pallapothu
Abstract:
Periodontitis, a severe gum disease, poses a significant threat to the integrity of bone and soft tissues supporting teeth, primarily initiated by bacterial accumulation around the gum line. Conventional treatments like scaling/root planning and plaque removal are widely employed, but integrating modern technologies such as nanotechnology holds promise for innovative therapeutic approaches. This study explores the utilization of silver nanoparticles encapsulated within cellulose nanofiber (CNF) and mesoporous bioactive glass hydrogel matrices for periodontitis management. Silver nanoparticles exhibit potent antimicrobial properties by disrupting microbial cell membranes, inducing reactive oxygen species (ROS) generation, and interfering with vital cellular processes like ATP production and nucleic acid synthesis. Mesoporous bioactive glass, renowned for its high surface area, osteoconductive, and bioactivity, presents a favorable platform for pharmaceutical applications. Incorporating CNF enhances the properties of the hydrogel due to its biocompatibility, biodegradability, and water absorption capacity. The proposed composite material is anticipated to exert beneficial effects in periodontitis treatment by demonstrating antibacterial and anti-inflammatory activities, offering a promising avenue for future therapeutic interventions.Keywords: periodontitis, cellulose nanofibers, silver nanoparticles, mesoporous bioactive glass, antibacterial activity, anti-inflammatory activity
Procedia PDF Downloads 509385 A Study on the Influence of Internal Sulfate on the Properties of Self-Compacting Concrete
Authors: Abbas S. Al-Ameeri Rawaa H. Issa
Abstract:
The internal sulfate attack is considered as a very important problem of concrete manufacture in Iraq and Middle East countries. Sulfate drastically influences the properties of concrete. This experimental study is aimed at investigating the effect of internal sulfates on fresh and some of the hardened properties of self compacting concrete (SCC) made from locally available materials. Tests were conducted on five mixes, with five SO3 levels (3.9, 5, 6, 7 and 8) (% by wt. of cement). The last four SO3 levels are outside the limits of the Iraqi specifications (IQS NO.45/1984). The results indicated that sulfate passively influenced the fresh properties such as decreased workability, and effect on hardened properties of the self compacting concrete. Also, the result indicated the optimum SO3 content which gives maximum strength and little tendency to expanding, which showed up at a content equal to 5% (by wt of cement), is more than acceptable limits of Iraqi specifications. Further increase in sulfates content in concrete after this optimum value showed a considerable reduction in mechanical properties of self-compacting concrete, and increment in expansion of concrete. The percentages of reduction in compressive strength, splitting tensile strength, flexural strength, static modulus of elasticity and ultrasonic pulse velocity at their later age were ranged between 10.89-36.14%, 12.90-33.33%, 7.98-36.35%, 16.36 -38.37% and 1.03-10.88% respectively.Keywords: self-compacting concrete, sulfate attack, internal sulfate attack, fresh properties, harden properties, optimum SO3 content
Procedia PDF Downloads 2669384 Quality Assessment Of Instant Breakfast Cereals From Yellow Maize (Zea mays), Sesame (Sesamum indicium), And Mushroom (Pleurotusostreatus) Flour Blends
Authors: Mbaeyi-Nwaoha, Ifeoma Elizabeth, Orngu, Africa Orngu
Abstract:
Composite flours were processed from blends of yellow maize (Zea mays), sesame seed (Sesamum indicum) and oyster mushroom (Pleurotus ostreatus) powder in the ratio of 80:20:0; 75:20:5; 70:20:10; 65:20:10 and 60:20:20, respectively to produce the breakfast cereal coded as YSB, SMB, TMB, PMB and OMB with YSB as the control. The breakfast cereals were produced by hydration and toasting of yellow maize and sesame to 160oC for 25 minutes and blended together with oven dried and packaged oyster mushroom. The developed products (flours and breakfast cereals) were analyzed for proximate composition, vitamins, minerals, anti-nutrients, phytochemicals, functional, microbial and sensory properties. Results for the flours showed: proximate composition (%): moisture (2.59-7.27), ash (1.29-7.57), crude fat (0.98-14.91), fibre (1.03-16.02), protein (10.13-35.29), carbohydrate (75.48-38.18) and energy (295.18-410.75kcal). Vitamins ranged as: vitamin A (0.14-9.03 ug/100g), vitamin B1 (0.14-0.38), vitamin B2 (0.07-0.15), vitamin B3(0.89-4.88) and Vitamin C (0.03-4.24). Minerals (mg/100g) were reported thus: calcium (8.01-372.02), potassium (1.40-1.85), magnesium (12.09-13.15), iron (1.23-5.25) and zinc (0.85-2.20). The results for anti-nutrients and phytochemical ranged from: tannin (1.50-1.61mg/g), Phytate (0.40-0.71mg/g), Oxalate(1.81-2.02mg/g), Flavonoid (0.21-1.27%) and phenolic (1.12-2.01%). Functional properties showed: bulk density (0.51-0.77g/ml), water absorption capacity (266.0-301.5%), swelling capacity (136.0-354.0%), least Gelation (0.55-1.45g/g) and reconstitution index (35.20-69.60%). The total viable count ranged from 6.4× 102to1.0× 103cfu/g while the total mold count was from 1.0× 10to 3.0× 10 cfu/g. For the breakfast cereals, proximate composition (%) ranged thus: moisture (4.07-7.08), ash (3.09-2.28), crude fat(16.04-12.83), crude fibre(4.30-8.22), protein(16.14-22.54), carbohydrate(56.34-47.04) and energy (434.34-393.83Kcal).Vitamin A (7.99-5.98 ug/100g), vitamin B1(0.08-0.42mg/100g), vitamin B2(0.06-0.15 mg/100g), vitamin B3(1.91-4.52 mg/100g) and Vitamin C(3.55-3.32 mg/100g) were reported while Minerals (mg/100g) were: calcium (75.31-58.02), potassium (0.65-4.01), magnesium(12.25-12.62), iron (1.21-4.15) and zinc (0.40-1.32). The anti-nutrients and phytochemical revealed the range (mg/g) as: tannin (1.12-1.21), phytate (0.69-0.53), oxalate (1.21-0.43), flavonoid (0.23-1.22%) and phenolic (0.23-1.23%). The bulk density (0.77-0.63g/ml), water absorption capacity (156.5-126.0%), swelling capacity (309.5-249.5%), least gelation (1.10-0.75g/g) and reconstitution index (49.95-39.95%) were recorded. From the total viable count, it ranged from 3.3× 102to4.2× 102cfu/g but no mold growth was detected. Sensory scores revealed that the breakfast cereals were acceptable to the panelist with oyster mushroom supplementation up to 10%.Keywords: oyster mushroom (Pleurotus ostreatus), sesame seed (Sesamum indicum), yellow maize (Zea mays, instant breakfast cereals
Procedia PDF Downloads 2019383 Characterization of Sintered Fe-Cr-Mn Powder Mixtures Containing Intermetallics
Authors: A. Yonetken, A. Erol, M. Cakmakkaya
Abstract:
Intermetallic materials are among advanced technology materials that have outstanding mechanical and physical properties for high temperature applications. Especially creep resistance, low density and high hardness properties stand out in such intermetallics. The microstructure, mechanical properties of %88Ni-%10Cr and %2Mn powders were investigated using specimens produced by tube furnace sintering at 900-1300°C temperature. A composite consisting of ternary additions, a metallic phase, Fe ,Cr and Mn have been prepared under Ar shroud and then tube furnace sintered. XRD, SEM (Scanning Electron Microscope), were investigated to characterize the properties of the specimens. Experimental results carried out for composition %88Ni-%10Cr and %2Mn at 1300°C suggest that the best properties as 138,80HV and 6,269/cm3 density were obtained at 1300°C.Keywords: composite, high temperature, intermetallic, sintering
Procedia PDF Downloads 4069382 Generative Design of Acoustical Diffuser and Absorber Elements Using Large-Scale Additive Manufacturing
Authors: Saqib Aziz, Brad Alexander, Christoph Gengnagel, Stefan Weinzierl
Abstract:
This paper explores a generative design, simulation, and optimization workflow for the integration of acoustical diffuser and/or absorber geometry with embedded coupled Helmholtz-resonators for full-scale 3D printed building components. Large-scale additive manufacturing in conjunction with algorithmic CAD design tools enables a vast amount of control when creating geometry. This is advantageous regarding the increasing demands of comfort standards for indoor spaces and the use of more resourceful and sustainable construction methods and materials. The presented methodology highlights these new technological advancements and offers a multimodal and integrative design solution with the potential for an immediate application in the AEC-Industry. In principle, the methodology can be applied to a wide range of structural elements that can be manufactured by additive manufacturing processes. The current paper focuses on a case study of an application for a biaxial load-bearing beam grillage made of reinforced concrete, which allows for a variety of applications through the combination of additive prefabricated semi-finished parts and in-situ concrete supplementation. The semi-prefabricated parts or formwork bodies form the basic framework of the supporting structure and at the same time have acoustic absorption and diffusion properties that are precisely acoustically programmed for the space underneath the structure. To this end, a hybrid validation strategy is being explored using a digital and cross-platform simulation environment, verified with physical prototyping. The iterative workflow starts with the generation of a parametric design model for the acoustical geometry using the algorithmic visual scripting editor Grasshopper3D inside the building information modeling (BIM) software Revit. Various geometric attributes (i.e., bottleneck and cavity dimensions) of the resonator are parameterized and fed to a numerical optimization algorithm which can modify the geometry with the goal of increasing absorption at resonance and increasing the bandwidth of the effective absorption range. Using Rhino.Inside and LiveLink for Revit, the generative model was imported directly into the Multiphysics simulation environment COMSOL. The geometry was further modified and prepared for simulation in a semi-automated process. The incident and scattered pressure fields were simulated from which the surface normal absorption coefficients were calculated. This reciprocal process was repeated to further optimize the geometric parameters. Subsequently the numerical models were compared to a set of 3D concrete printed physical twin models, which were tested in a .25 m x .25 m impedance tube. The empirical results served to improve the starting parameter settings of the initial numerical model. The geometry resulting from the numerical optimization was finally returned to grasshopper for further implementation in an interdisciplinary study.Keywords: acoustical design, additive manufacturing, computational design, multimodal optimization
Procedia PDF Downloads 1569381 Fexofenadine Hydrochloride Orodispersisble Tablets: Formulation and in vitro/in vivo Evaluation in Healthy Human Volunteers
Authors: Soad Ali Yehia, Mohamed Shafik El-Ridi, Mina Ibrahim Tadros, Nolwa Gamal El-Sherif
Abstract:
Fexofenadine hydrochloride (FXD) is a slightly soluble, bitter-tasting, drug having an oral bioavailability of 35%. The maximum plasma concentration is reached 2.6 hours (Tmax) post-dose. The current work aimed to develop taste-masked FXD orodispersible tablets (ODTs) to increase extent of drug absorption and reduce Tmax. Taste masking was achieved via solid dispersion (SD) with chitosan (CS) or sodium alginate (ALG). FT-IR, DSC and XRD were performed to identify physicochemical interactions and FXD crystallinity. Taste-masked FXD-ODTs were developed via addition of superdisintegrants (crosscarmelose sodium or sodium starch glycolate, 5% and 10%, w/w) or sublimable agents (camphor, menthol or thymol; 10% and 20%, w/w) to FXD-SDs. ODTs were evaluated for weight variation, drug-content, friability, wetting time, disintegration time and drug release. Camphor-based (20%, w/w) FXD-ODT (F12) was optimized (F23) by incorporation of a more hydrophilic lubricant, sodium stearyl fumarate (Pruv®). The topography of the latter formula was examined via scanning electron microscopy (SEM). The in vivo estimation of FXD pharmacokinetics, relative to Allegra® tablets, was evaluated in healthy human volunteers. Based on the gustatory sensation test in healthy volunteers, FXD:CS (1:1) and FXD:ALG (1:0.5) SDs were selected. Taste-masked FXD-ODTs had appropriate physicochemical properties and showed short wetting and disintegration times. Drug release profiles of F23 and phenylalanine-containing Allegra® ODT were similar (f2 = 96) showing a complete release in two minutes. SEM micrographs revealed pores following camphor sublimation. Compared to Allegra® tablets, pharmacokinetic studies in healthy volunteers proved F23 ability to increase extent of FXD absorption (14%) and reduce Tmax to 1.83 h.Keywords: fexofenadine hydrochloride, taste masking, chitosan, orodispersible
Procedia PDF Downloads 3429380 A Relative Analysis of Carbon and Dust Uptake by Important Tree Species in Tehran, Iran
Authors: Sahar Elkaee Behjati
Abstract:
Air pollution, particularly with dust, is one of the biggest issues Tehran is dealing with, and the city's green space which consists of trees has a critical role in absorption of it. The question this study aimed to investigate was which tree species the highest uptake capacity of the dust and carbon have suspended in the air. On this basis, 30 samples of trees from two different districts in Tehran were collected, and after washing and centrifuging, the samples were oven dried. The results of the study revealed that Ulmus minor had the highest amount of deposited dust in both districts. In addition, it was found that in Chamran district Ailanthus altissima and in Gandi district Ulmus minor has had the highest absorption of deposited carbon. Therefore, it could be argued that decision making on the selection of species for urban green spaces should take the above-mentioned parameters into account.Keywords: dust, leaves, uptake total carbon, Tehran, tree species
Procedia PDF Downloads 1389379 Characterization and Nanostructure Formation of Banana Peels Nanosorbent with Its Application
Authors: Opeyemi Atiba-Oyewo, Maurice S. Onyango, Christian Wolkersdorfer
Abstract:
Characterization and nanostructure formation of banana peels as sorbent material are described in this paper. The transformation of this agricultural waste via mechanical milling to enhance its properties such as changed in microstructure and surface area for water pollution control and other applications were studied. Mechanical milling was employed using planetary continuous milling machine with ethanol as a milling solvent and the samples were taken at time intervals between 10 h to 30 h to examine the structural changes. The samples were characterised by X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infra-red (FTIR), Transmission electron microscopy (TEM) and Brunauer Emmett and teller (BET). Results revealed three typical structures with different deformation mechanisms and the grain-sizes within the range of (71-12 nm), nanostructure of the particles and fibres. The particle size decreased from 65µm to 15 nm as the milling progressed for a period of 30 h. The morphological properties of the materials indicated that the particle shapes becomes regular and uniform as the milling progresses. Furthermore, particles fracturing resulted in surface area increment from 1.0694-4.5547 m2/g. The functional groups responsible for the banana peels capacity to coordinate and remove metal ions, such as the carboxylic and amine groups were identified at absorption bands of 1730 and 889 cm-1, respectively. However, the choice of this sorbent material for the sorption or any application will depend on the composition of the pollutant to be eradicated.Keywords: characterization, nanostructure, nanosorbent, eco-friendly, banana peels, mechanical milling, water quality
Procedia PDF Downloads 2839378 A New Seperation / Precocentration and Determination Procedure Based on Solidified Floating Organic Drop Microextraction (SFODME) of Lead by Using Graphite Furnace Atomic Absorption Spectrometry
Authors: Seyda Donmez, Oya Aydin Urucu, Ece Kok Yetimoglu
Abstract:
Solidified floating organic drop microextraction was used for a preconcentration method of trace amount of lead. The analyte was complexed with 1-(2-pyridylazo)-2-naphtol and 1-undecanol, acetonitrile was added as an extraction and dispersive solvent respectively. The influences of some analytical parameters pH, volumes of extraction and disperser solvent, concentration of chelating agent, and concentration of salt were optimized. Under the optimum conditions the detection limits of Pb (II) was determined. The procedure was validated for the analysis of NCS DC 73347a hair standard reference material with satisfactory result. The developed procedure was successfully applied to food and water samples for detection of Pb (II) ions.Keywords: analytical methods, graphite furnace atomic absorption spectrometry, heavy metals, solidified floating organic drop microextraction
Procedia PDF Downloads 2759377 The Effect of Composite Hybridization on the Back Face Deformation of Armor Plates
Authors: Attef Kouadria, Yehya Bouteghrine, Amar Manaa, Tarek Mouats, Djalel Eddine Tria, Hamid Abdelhafid Ghouti
Abstract:
Personal protection systems have been used in several forms for centuries. The need for light-weight composite structures has been in great demand due to their weight and high mechanical properties ratios in comparison to heavy and cumbersome steel plates. In this regard, lighter ceramic plates with a backing plate made of high strength polymeric fibers, mostly aramids, are widely used for protection against ballistic threats. This study aims to improve the ballistic performance of ceramic/composite plates subjected to ballistic impact by reducing the back face deformation (BFD) measured after each test. A new hybridization technique was developed in this investigation to increase the energy absorption capabilities of the backing plates. The hybridization consists of combining different types of aramid fabrics with different linear densities of aramid fibers (Dtex) and areal densities with an epoxy resin to form the backing plate. Therefore, several composite structures architectures were prepared and tested. For better understanding the effect of the hybridization, a serial of tensile, compression, and shear tests were conducted to determine the mechanical properties of the homogeneous composite materials prepared from different fabrics. It was found that the hybridization allows the backing plate to combine between the mechanical properties of the used fabrics. Aramid fabrics with higher Dtex were found to increase the mechanical strength of the backing plate, while those with lower Dtex found to enhance the lateral wave dispersion ratio due to their lower areal density. Therefore, the back face deformation was significantly reduced in comparison to a homogeneous composite plate.Keywords: aramid fabric, ballistic impact, back face deformation, body armor, composite, mechanical testing
Procedia PDF Downloads 1509376 Dielectric Properties in Frequency Domain of Main Insulation System of Printed Circuit Board
Authors: Xize Dai, Jian Hao, Claus Leth Bak, Gian Carlo Montanari, Huai Wang
Abstract:
Printed Circuit Board (PCB) is a critical component applicable to power electronics systems, especially for high-voltage applications involving several high-voltage and high-frequency SiC/GaN devices. The insulation system of PCB is facing more challenges from high-voltage and high-frequency stress that can alter the dielectric properties. Dielectric properties of the PCB insulation system also determine the electrical field distribution that correlates with intrinsic and extrinsic aging mechanisms. Hence, investigating the dielectric properties in the frequency domain of the PCB insulation system is a must. The paper presents the frequency-dependent, temperature-dependent, and voltage-dependent dielectric properties, permittivity, conductivity, and dielectric loss tangents of PCB insulation systems. The dielectric properties mechanisms associated with frequency, temperature, and voltage are revealed from the design perspective. It can be concluded that the dielectric properties of PCB in the frequency domain show a strong dependence on voltage, frequency, and temperature. The voltage-, frequency-, and temperature-dependent dielectric properties are associated with intrinsic conduction behavior and polarization patterns from the perspective of dielectric theory. The results may provide some reference for the PCB insulation system design in high voltage, high frequency, and high-temperature power electronics applications.Keywords: electrical insulation system, dielectric properties, high voltage and frequency, printed circuit board
Procedia PDF Downloads 91