Search results for: nursing interventions classification
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4633

Search results for: nursing interventions classification

4123 Methods for Enhancing Ensemble Learning or Improving Classifiers of This Technique in the Analysis and Classification of Brain Signals

Authors: Seyed Mehdi Ghezi, Hesam Hasanpoor

Abstract:

This scientific article explores enhancement methods for ensemble learning with the aim of improving the performance of classifiers in the analysis and classification of brain signals. The research approach in this field consists of two main parts, each with its own strengths and weaknesses. The choice of approach depends on the specific research question and available resources. By combining these approaches and leveraging their respective strengths, researchers can enhance the accuracy and reliability of classification results, consequently advancing our understanding of the brain and its functions. The first approach focuses on utilizing machine learning methods to identify the best features among the vast array of features present in brain signals. The selection of features varies depending on the research objective, and different techniques have been employed for this purpose. For instance, the genetic algorithm has been used in some studies to identify the best features, while optimization methods have been utilized in others to identify the most influential features. Additionally, machine learning techniques have been applied to determine the influential electrodes in classification. Ensemble learning plays a crucial role in identifying the best features that contribute to learning, thereby improving the overall results. The second approach concentrates on designing and implementing methods for selecting the best classifier or utilizing meta-classifiers to enhance the final results in ensemble learning. In a different section of the research, a single classifier is used instead of multiple classifiers, employing different sets of features to improve the results. The article provides an in-depth examination of each technique, highlighting their advantages and limitations. By integrating these techniques, researchers can enhance the performance of classifiers in the analysis and classification of brain signals. This advancement in ensemble learning methodologies contributes to a better understanding of the brain and its functions, ultimately leading to improved accuracy and reliability in brain signal analysis and classification.

Keywords: ensemble learning, brain signals, classification, feature selection, machine learning, genetic algorithm, optimization methods, influential features, influential electrodes, meta-classifiers

Procedia PDF Downloads 75
4122 Sustainable Lighting Solutions in Residential Interiors to Combat the Ever-Growing Problem of Environmental Degradation

Authors: Ankita Sharma, Reenu Singh

Abstract:

In order to conserve the ecology and the environment, there is a need to focus on sustainable lighting solutions such as LED bulbs instead of incandescent bulbs, candle-powered lamps, self-cooling smart bulbs, and many more, that are both eco-friendly and practical. This paper focuses on such sustainable solutions to lighting, which will have a major positive impact on the environment in the coming future. A questionnaire survey was conducted to note the responses of people living in high-rise buildings in metropolitan cities with regards to such sustainable lighting choices in their homes. The result of such questionnaire survey has helped to design parameters which are used to ideate design interventions in this field of sustainable lighting choices. This paper includes proposals to facilitate the reduction of electric power in interior lighting through various lighting accessory design interventions. Thus, such design interventions will allow us to design more sustainable interior spaces, and renewable energy strategies can be developed in the field of lighting, which will not only help to save energy but also positively affect other aspects of human well-being such as productivity, heritage conservation and economic well-being too!

Keywords: sustainable, interior lighting, lighting design, environmental impact, metropolitan cities

Procedia PDF Downloads 205
4121 Common Orthodontic Indices and Classification in the United Kingdom

Authors: Ashwini Mohan, Haris Batley

Abstract:

An orthodontic index is used to rate or categorise an individual’s occlusion using a numeric or alphanumeric score. Indexing of malocclusions and their correction is important in epidemiology, diagnosis, communication between clinicians as well as their patients and assessing treatment outcomes. Many useful indices have been put forward, but to the author’s best knowledge, no one method to this day appears to be equally suitable for the use of epidemiologists, public health program planners and clinicians. This article describes the common clinical orthodontic indices and classifications used in United Kingdom.

Keywords: classification, indices, orthodontics, validity

Procedia PDF Downloads 151
4120 Detection and Classification of Myocardial Infarction Using New Extracted Features from Standard 12-Lead ECG Signals

Authors: Naser Safdarian, Nader Jafarnia Dabanloo

Abstract:

In this paper we used four features i.e. Q-wave integral, QRS complex integral, T-wave integral and total integral as extracted feature from normal and patient ECG signals to detection and localization of myocardial infarction (MI) in left ventricle of heart. In our research we focused on detection and localization of MI in standard ECG. We use the Q-wave integral and T-wave integral because this feature is important impression in detection of MI. We used some pattern recognition method such as Artificial Neural Network (ANN) to detect and localize the MI. Because these methods have good accuracy for classification of normal and abnormal signals. We used one type of Radial Basis Function (RBF) that called Probabilistic Neural Network (PNN) because of its nonlinearity property, and used other classifier such as k-Nearest Neighbors (KNN), Multilayer Perceptron (MLP) and Naive Bayes Classification. We used PhysioNet database as our training and test data. We reached over 80% for accuracy in test data for localization and over 95% for detection of MI. Main advantages of our method are simplicity and its good accuracy. Also we can improve accuracy of classification by adding more features in this method. A simple method based on using only four features which extracted from standard ECG is presented which has good accuracy in MI localization.

Keywords: ECG signal processing, myocardial infarction, features extraction, pattern recognition

Procedia PDF Downloads 454
4119 Domain-Specific Deep Neural Network Model for Classification of Abnormalities on Chest Radiographs

Authors: Nkechinyere Joy Olawuyi, Babajide Samuel Afolabi, Bola Ibitoye

Abstract:

This study collected a preprocessed dataset of chest radiographs and formulated a deep neural network model for detecting abnormalities. It also evaluated the performance of the formulated model and implemented a prototype of the formulated model. This was with the view to developing a deep neural network model to automatically classify abnormalities in chest radiographs. In order to achieve the overall purpose of this research, a large set of chest x-ray images were sourced for and collected from the CheXpert dataset, which is an online repository of annotated chest radiographs compiled by the Machine Learning Research Group, Stanford University. The chest radiographs were preprocessed into a format that can be fed into a deep neural network. The preprocessing techniques used were standardization and normalization. The classification problem was formulated as a multi-label binary classification model, which used convolutional neural network architecture to make a decision on whether an abnormality was present or not in the chest radiographs. The classification model was evaluated using specificity, sensitivity, and Area Under Curve (AUC) score as the parameter. A prototype of the classification model was implemented using Keras Open source deep learning framework in Python Programming Language. The AUC ROC curve of the model was able to classify Atelestasis, Support devices, Pleural effusion, Pneumonia, A normal CXR (no finding), Pneumothorax, and Consolidation. However, Lung opacity and Cardiomegaly had a probability of less than 0.5 and thus were classified as absent. Precision, recall, and F1 score values were 0.78; this implies that the number of False Positive and False Negative is the same, revealing some measure of label imbalance in the dataset. The study concluded that the developed model is sufficient to classify abnormalities present in chest radiographs into present or absent.

Keywords: transfer learning, convolutional neural network, radiograph, classification, multi-label

Procedia PDF Downloads 127
4118 Evidence-Based Practice Attributes across Nursing Roles at a Children’s Hospital

Authors: Rose Chapman Rodriguez

Abstract:

Problem: Evidence-based practice (EBP) attributes are significantly associated with EBP implementation science, which improves patient care outcomes. Nurses influence EBP, yet little is known of the specific EBP attributes of pediatric nurses in their clinical sub-specialties. Aim: This study aims to investigate the relationship between nursing academic degree, years of experience, and clinical specialty, with mean survey scores on EBP belief, organizational culture, and implementation scales across all levels of nursing in a Children’s Hospital. Methods: A convenience sample of nurses (n=185) participated in a descriptive, cross-sectional, correlational study in May 2023. The electronic surveys comprised 11 demographic questions and nine survey items from the short-version EBP Beliefs Scale (Cronbach α = 0.81), Organizational Culture and Readiness Scale for System-wide Integration Scale (Cronbach α = 0.87), and EBP Implementation Scale (Cronbach α = 0.89). Findings: EBP belief scores were notably higher in nurses working in neonatology (m=4.33), critical care (m=4.47), and among nurse leaders (m=4.50). There was a statistically significant difference in EBP organizational culture among nurse leaders (m = 3.95, p=0.039) compared to clinical nurses (m = 3.34) and advanced practice nurses (m = 3.34). EBP implementation was favorable in neonatology (m=4.20), acute care (m=4.05), and nurse leaders (m=4.33). No significant difference or correlation was found in EBP belief, organizational culture, or implementation mean scores related to nurses' age, academic nursing degree, or years of experience in our cohort (EBP beliefs (r = -.06, p = .400), organizational readiness (r = .02, p = .770), and implementation scales (r = .01, p = .867). Conclusions: This study identified nurse’s EBP attributes in a Children’s Hospital using key variables studied in EBP social cognitive theory and learning theory. Magnet status, shared governance structure, specialty certification, and nurse leaders play a significant role in favorable EBP culture and implementation. Nurses’ unit level ‘group culture’ may vary depending on the EBP attributes and collaborative efforts of local teams. Opportunities for mentoring were identified, which may continue to enhance EBP implementation science across all nursing roles in our pediatric organization.

Keywords: evidence-based practice, peditrics, nursing roles, implementation

Procedia PDF Downloads 70
4117 Assessing the Impact of High Fidelity Human Patient Simulation on Teamwork among Nursing, Medicine and Pharmacy Undergraduate Students

Authors: S. MacDonald, A. Manuel, R. Law, N. Bandruak, A. Dubrowski, V. Curran, J. Smith-Young, K. Simmons, A. Warren

Abstract:

High fidelity human patient simulation has been used for many years by health sciences education programs to foster critical thinking, engage learners, improve confidence, improve communication, and enhance psychomotor skills. Unfortunately, there is a paucity of research on the use of high fidelity human patient simulation to foster teamwork among nursing, medicine and pharmacy undergraduate students. This study compared the impact of high fidelity and low fidelity simulation education on teamwork among nursing, medicine and pharmacy students. For the purpose of this study, two innovative teaching scenarios were developed based on the care of an adult patient experiencing acute anaphylaxis: one high fidelity using a human patient simulator and one low fidelity using case based discussions. A within subjects, pretest-posttest, repeated measures design was used with two-treatment levels and random assignment of individual subjects to teams of two or more professions. A convenience sample of twenty-four (n=24) undergraduate students participated, including: nursing (n=11), medicine (n=9), and pharmacy (n=4). The Interprofessional Teamwork Questionnaire was used to assess for changes in students’ perception of their functionality within the team, importance of interprofessional collaboration, comprehension of roles, and confidence in communication and collaboration. Student satisfaction was also assessed. Students reported significant improvements in their understanding of the importance of interprofessional teamwork and of the roles of nursing and medicine on the team after participation in both the high fidelity and the low fidelity simulation. However, only participants in the high fidelity simulation reported a significant improvement in their ability to function effectively as a member of the team. All students reported that both simulations were a meaningful learning experience and all students would recommend both experiences to other students. These findings suggest there is merit in both high fidelity and low fidelity simulation as a teaching and learning approach to foster teamwork among undergraduate nursing, medicine and pharmacy students. However, participation in high fidelity simulation may provide a more realistic opportunity to practice and function as an effective member of the interprofessional health care team.

Keywords: acute anaphylaxis, high fidelity human patient simulation, low fidelity simulation, interprofessional education

Procedia PDF Downloads 231
4116 The Effect of a Computer-Assisted Glycemic Surveillance Protocol on Nursing Workload

Authors: Özlem Canbolat, Sevgisun Kapucu

Abstract:

The aim of this study was to determine the effect of a computer-assisted glycemic surveillance protocol on nursing workload in intensive care unit. The study is completed in an Education and Research Hospital in Ankara with the attendance of volunteered 19 nurse who had been worked in reanimation unit. Nurses used the written protocol and computer-assisted glycemic surveillance protocol for glycemic follow-up approach of the intensive care patients. Nurses used the written protocol first in the glycemic follow-up of the patient, then used the computer-assisted protocol. (Nurses used the written protocol first, then the computer-assisted protocol in the glycemic follow-up of the patient). Less time was spent in glycemic control with computerized protocol than written protocol and this difference is statistically significant (p < 0.001). It was determined that the computerized protocol application was completed in about 10 seconds (25% shorter) than the written protocol implementation. The computer-assisted glycemic surveillance protocol was found to be more easy and appropriate by nurses and the satisfaction level of the users was higher than with written protocol. While 79% of the nurses find it confusing to implement the written protocol, 79% were satisfied with the use of computerized protocol.

Keywords: computer-assisted protocol, glycemic control, insulin infusion protocol, intensive care, nursing workload

Procedia PDF Downloads 221
4115 Identifying the Hidden Curriculum Components in the Nursing Education

Authors: Alice Khachian, Shoaleh Bigdeli, Azita Shoghie, Leili Borimnejad

Abstract:

Background and aim: The hidden curriculum is crucial in nursing education and can determine professionalism and professional competence. It has a significant effect on their moral performance in relation to patients. The present study was conducted with the aim of identifying the hidden curriculum components in the nursing and midwifery faculty. Methodology: The ethnographic study was conducted over two years using the Spradley method in one of the nursing schools located in Tehran. In this focused ethnographic research, the approach of Lincoln and Goba, i.e., transferability, confirmability, and dependability, was used. To increase the validity of the data, they were collected from different sources, such as participatory observation, formal and informal interviews, and document review. Two hundred days of participatory observation, fifty informal interviews, and fifteen formal interviews from the maximum opportunities and conditions available to obtain multiple and multilateral information added to the validity of the data. Due to the situation of COVID, some interviews were conducted virtually, and the activity of professors and students in the virtual space was also monitored. Findings: The components of the hidden curriculum of the faculty are: the atmosphere (physical environment, organizational structure, rules and regulations, hospital environment), the interaction between activists, and teaching-learning activities, which ultimately lead to “A disconnection between goals, speech, behavior, and result” had revealed. Conclusion: The mutual effects of the atmosphere and various actors and activities on the process of student development, since the students have the most contact with their peers first, which leads to the most learning, and secondly with the teachers. Clinicians who have close and person-to-person contact with students can have very important effects on students. Students who meet capable and satisfied professors on their way become interested in their field and hope for their future by following the mentor of these professors. On the other hand, weak and dissatisfied professors lead students to feel abandoned, and by forming a colony of peers with different backgrounds, they distort the personality of a group of students and move away from family values, which necessitates a change in some cultural practices at the faculty level.

Keywords: hidden curriculum, nursing education, ethnography, nursing

Procedia PDF Downloads 109
4114 Using Deep Learning for the Detection of Faulty RJ45 Connectors on a Radio Base Station

Authors: Djamel Fawzi Hadj Sadok, Marrone Silvério Melo Dantas Pedro Henrique Dreyer, Gabriel Fonseca Reis de Souza, Daniel Bezerra, Ricardo Souza, Silvia Lins, Judith Kelner

Abstract:

A radio base station (RBS), part of the radio access network, is a particular type of equipment that supports the connection between a wide range of cellular user devices and an operator network access infrastructure. Nowadays, most of the RBS maintenance is carried out manually, resulting in a time consuming and costly task. A suitable candidate for RBS maintenance automation is repairing faulty links between devices caused by missing or unplugged connectors. A suitable candidate for RBS maintenance automation is repairing faulty links between devices caused by missing or unplugged connectors. This paper proposes and compares two deep learning solutions to identify attached RJ45 connectors on network ports. We named connector detection, the solution based on object detection, and connector classification, the one based on object classification. With the connector detection, we get an accuracy of 0:934, mean average precision 0:903. Connector classification, get a maximum accuracy of 0:981 and an AUC of 0:989. Although connector detection was outperformed in this study, this should not be viewed as an overall result as connector detection is more flexible for scenarios where there is no precise information about the environment and the possible devices. At the same time, the connector classification requires that information to be well-defined.

Keywords: radio base station, maintenance, classification, detection, deep learning, automation

Procedia PDF Downloads 200
4113 Developing Cultural Competence as Part of Nursing Studies: Language, Customs and Health Issues

Authors: Mohammad Khatib, Salam Hadid

Abstract:

Introduction: Developing nurses' cultural competence begins in their basic training and requires them to participate in an array of activities which raise their awareness and stimulate their interest, desire and curiosity about different cultures, by creating opportunities for intercultural meetings promoting the concept of 'culture' and its components, including recognition of cultural diversity and the legitimacy of the other. Importantly, professionals need to acquire specific cultural knowledge and thorough understanding of the values, norms, customs, beliefs and symbols of different cultures. Similarly, they need to be given opportunities to practice the verbal and non-verbal communication skills of other cultures according to their cultural codes. Such a system is being implemented as part of nursing studies at Zefat Academic College in two study frameworks; firstly, a course integrating nursing theory and practice in multicultural nursing; secondly, a course in learning the languages spoken in Israel focusing on medical and nursing terminology. Methods: Students participating in the 'Transcultural Nursing' course come from a variety of backgrounds: Jews, or Arabs, religious, or secular; Muslim, Christian, new immigrants, Ethiopians or from other cultural affiliations. They are required to present and discuss cultural practices that affect health. In addition, as part of the language course, students learn and teach their friends 5 spoken languages (Arabic, Russian, Amharian, Yidish, and Sign language) focusing on therapeutic interaction and communication using the vocabulary and concepts necessary for the therapeutic encounter. An evaluation of the process and the results was done using a structured questionnaire which includes series of questions relating to the contributions of the courses to their cultural knowledge, awareness and skills. 155 students completed the questionnaire. Results: A preliminary assessment of this educational system points an increase in cultural awareness and knowledge among the students as well as in their willingness to recognize the other's difference. A positive atmosphere of multiculturalism is reflected in students' mutual interest and respect was created. Students showed a deep understanding of cultural issues relating to health and care (consanguinity and genetics, food customs; cultural events, reincarnation, traditional treatments etc.). Most of the students were willing to recommend the courses to others and suggest some changes relating learning methods (more simulations, role playing and activities).

Keywords: cultural competence, nursing education, culture, language

Procedia PDF Downloads 277
4112 A Similarity Measure for Classification and Clustering in Image Based Medical and Text Based Banking Applications

Authors: K. P. Sandesh, M. H. Suman

Abstract:

Text processing plays an important role in information retrieval, data-mining, and web search. Measuring the similarity between the documents is an important operation in the text processing field. In this project, a new similarity measure is proposed. To compute the similarity between two documents with respect to a feature the proposed measure takes the following three cases into account: (1) The feature appears in both documents; (2) The feature appears in only one document and; (3) The feature appears in none of the documents. The proposed measure is extended to gauge the similarity between two sets of documents. The effectiveness of our measure is evaluated on several real-world data sets for text classification and clustering problems, especially in banking and health sectors. The results show that the performance obtained by the proposed measure is better than that achieved by the other measures.

Keywords: document classification, document clustering, entropy, accuracy, classifiers, clustering algorithms

Procedia PDF Downloads 518
4111 Therapeutic Touch from Primary Care to Tertiary Care in Health Services

Authors: Ayşegül Bilge, Hacer Demirkol, Merve Uğuryol

Abstract:

Therapeutic touch is one of the most important methods of complementary and alternative treatments. Therapeutic touch requires the sharing of universal energy. Therapeutic touch (TT) provides the interaction between the patient and the nurse. In addition, nurses can be aware of physical and mental symptoms of patients through therapeutic touch. Therapeutic touch (TT) is short-term provides the advantage for the nurse. For this reason, nurses have to be aware of the importance of therapeutic touch and they can use it from the primary care to tertiary care in nursing practices at in health field.

Keywords: health care services, complementary treatment, nursing, therapeutic touch

Procedia PDF Downloads 347
4110 Theoretical Discussion on the Classification of Risks in Supply Chain Management

Authors: Liane Marcia Freitas Silva, Fernando Augusto Silva Marins, Maria Silene Alexandre Leite

Abstract:

The adoption of a network structure, like in the supply chains, favors the increase of dependence between companies and, by consequence, their vulnerability. Environment disasters, sociopolitical and economical events, and the dynamics of supply chains elevate the uncertainty of their operation, favoring the occurrence of events that can generate break up in the operations and other undesired consequences. Thus, supply chains are exposed to various risks that can influence the profitability of companies involved, and there are several previous studies that have proposed risk classification models in order to categorize the risks and to manage them. The objective of this paper is to analyze and discuss thirty of these risk classification models by means a theoretical survey. The research method adopted for analyzing and discussion includes three phases: The identification of the types of risks proposed in each one of the thirty models, the grouping of them considering equivalent concepts associated to their definitions, and, the analysis of these risks groups, evaluating their similarities and differences. After these analyses, it was possible to conclude that, in fact, there is more than thirty risks types identified in the literature of Supply Chains, but some of them are identical despite of be used distinct terms to characterize them, because different criteria for risk classification are adopted by researchers. In short, it is observed that some types of risks are identified as risk source for supply chains, such as, demand risk, environmental risk and safety risk. On the other hand, other types of risks are identified by the consequences that they can generate for the supply chains, such as, the reputation risk, the asset depreciation risk and the competitive risk. These results are consequence of the disagreements between researchers on risk classification, mainly about what is risk event and about what is the consequence of risk occurrence. An additional study is in developing in order to clarify how the risks can be generated, and which are the characteristics of the components in a Supply Chain that leads to occurrence of risk.

Keywords: sisks classification, survey, supply chain management, theoretical discussion

Procedia PDF Downloads 632
4109 Discerning Divergent Nodes in Social Networks

Authors: Mehran Asadi, Afrand Agah

Abstract:

In data mining, partitioning is used as a fundamental tool for classification. With the help of partitioning, we study the structure of data, which allows us to envision decision rules, which can be applied to classification trees. In this research, we used online social network dataset and all of its attributes (e.g., Node features, labels, etc.) to determine what constitutes an above average chance of being a divergent node. We used the R statistical computing language to conduct the analyses in this report. The data were found on the UC Irvine Machine Learning Repository. This research introduces the basic concepts of classification in online social networks. In this work, we utilize overfitting and describe different approaches for evaluation and performance comparison of different classification methods. In classification, the main objective is to categorize different items and assign them into different groups based on their properties and similarities. In data mining, recursive partitioning is being utilized to probe the structure of a data set, which allow us to envision decision rules and apply them to classify data into several groups. Estimating densities is hard, especially in high dimensions, with limited data. Of course, we do not know the densities, but we could estimate them using classical techniques. First, we calculated the correlation matrix of the dataset to see if any predictors are highly correlated with one another. By calculating the correlation coefficients for the predictor variables, we see that density is strongly correlated with transitivity. We initialized a data frame to easily compare the quality of the result classification methods and utilized decision trees (with k-fold cross validation to prune the tree). The method performed on this dataset is decision trees. Decision tree is a non-parametric classification method, which uses a set of rules to predict that each observation belongs to the most commonly occurring class label of the training data. Our method aggregates many decision trees to create an optimized model that is not susceptible to overfitting. When using a decision tree, however, it is important to use cross-validation to prune the tree in order to narrow it down to the most important variables.

Keywords: online social networks, data mining, social cloud computing, interaction and collaboration

Procedia PDF Downloads 157
4108 Developing Guidelines for Public Health Nurse Data Management and Use in Public Health Emergencies

Authors: Margaret S. Wright

Abstract:

Background/Significance: During many recent public health emergencies/disasters, public health nursing data has been missing or delayed, potentially impacting the decision-making and response. Data used as evidence for decision-making in response, planning, and mitigation has been erratic and slow, decreasing the ability to respond. Methodology: Applying best practices in data management and data use in public health settings, and guided by the concepts outlined in ‘Disaster Standards of Care’ models leads to the development of recommendations for a model of best practices in data management and use in public health disasters/emergencies by public health nurses. As the ‘patient’ in public health disasters/emergencies is the community (local, regional or national), guidelines for patient documentation are incorporated in the recommendations. Findings: Using model public health nurses could better plan how to prepare for, respond to, and mitigate disasters in their communities, and better participate in decision-making in all three phases bringing public health nursing data to the discussion as part of the evidence base for decision-making.

Keywords: data management, decision making, disaster planning documentation, public health nursing

Procedia PDF Downloads 221
4107 Identification of High-Rise Buildings Using Object Based Classification and Shadow Extraction Techniques

Authors: Subham Kharel, Sudha Ravindranath, A. Vidya, B. Chandrasekaran, K. Ganesha Raj, T. Shesadri

Abstract:

Digitization of urban features is a tedious and time-consuming process when done manually. In addition to this problem, Indian cities have complex habitat patterns and convoluted clustering patterns, which make it even more difficult to map features. This paper makes an attempt to classify urban objects in the satellite image using object-oriented classification techniques in which various classes such as vegetation, water bodies, buildings, and shadows adjacent to the buildings were mapped semi-automatically. Building layer obtained as a result of object-oriented classification along with already available building layers was used. The main focus, however, lay in the extraction of high-rise buildings using spatial technology, digital image processing, and modeling, which would otherwise be a very difficult task to carry out manually. Results indicated a considerable rise in the total number of buildings in the city. High-rise buildings were successfully mapped using satellite imagery, spatial technology along with logical reasoning and mathematical considerations. The results clearly depict the ability of Remote Sensing and GIS to solve complex problems in urban scenarios like studying urban sprawl and identification of more complex features in an urban area like high-rise buildings and multi-dwelling units. Object-Oriented Technique has been proven to be effective and has yielded an overall efficiency of 80 percent in the classification of high-rise buildings.

Keywords: object oriented classification, shadow extraction, high-rise buildings, satellite imagery, spatial technology

Procedia PDF Downloads 155
4106 Systematic Review of Digital Interventions to Reduce the Carbon Footprint of Primary Care

Authors: Anastasia Constantinou, Panayiotis Laouris, Stephen Morris

Abstract:

Background: Climate change has been reported as one of the worst threats to healthcare. The healthcare sector is a significant contributor to greenhouse gas emissions with primary care being responsible for 23% of the NHS’ total carbon footprint. Digital interventions, primarily focusing on telemedicine, offer a route to change. This systematic review aims to quantify and characterize the carbon footprint savings associated with the implementation of digital interventions in the setting of primary care. Methods: A systematic review of published literature was conducted according to PRISMA (Preferred Reporting Item for Systematic Reviews and Meta-Analyses) guidelines. MEDLINE, PubMed, and Scopus databases as well as Google scholar were searched using key terms relating to “carbon footprint,” “environmental impact,” “sustainability”, “green care”, “primary care,”, and “general practice,” using citation tracking to identify additional articles. Data was extracted and analyzed in Microsoft Excel. Results: Eight studies were identified conducted in four different countries between 2010 and 2023. Four studies used interventions to address primary care services, three studies focused on the interface between primary and specialist care, and one study addressed both. Digital interventions included the use of mobile applications, online portals, access to electronic medical records, electronic referrals, electronic prescribing, video-consultations and use of autonomous artificial intelligence. Only one study carried out a complete life cycle assessment to determine the carbon footprint of the intervention. It estimate that digital interventions reduced the carbon footprint at primary care level by 5.1 kgCO2/visit, and at the interface with specialist care by 13.4 kg CO₂/visit. When assessing the relationship between travel-distance saved and savings in emissions, we identified a strong correlation, suggesting that most of the carbon footprint reduction is attributed to reduced travel. However, two studies also commented on environmental savings associated with reduced use of paper. Patient savings in the form of reduced fuel cost and reduced travel time were also identified. Conclusion: All studies identified significant reductions in carbon footprint following implementation of digital interventions. In the future, controlled, prospective studies incorporating complete life cycle assessments and accounting for double-consulting effects, use of additional resources, technical failures, quality of care and cost-effectiveness are needed to fully appreciate the sustainable benefit of these interventions

Keywords: carbon footprint, environmental impact, primary care, sustainable healthcare

Procedia PDF Downloads 61
4105 Increasing Adherence to Preventative Care Bundles for Healthcare-Associated Infections: The Impact of Nurse Education

Authors: Lauren G. Coggins

Abstract:

Catheter-associated urinary tract infections (CAUTI) and central line-associated bloodstream infections (CLABSI) are among the most common healthcare-associated infections (HAI), contributing to prolonged lengths of stay, greater costs of patient care, and increased patient mortality. Evidence-based preventative care bundles exist to establish consistent, safe patient-care practices throughout an entire organization, helping to ensure the collective application of care strategies that aim to improve patient outcomes and minimize complications. The cardiac intensive care unit at a nationally ranked teaching and research hospital in the United States exceeded its annual CAUTI and CLABSI targets in the fiscal year 2019, prompting examination into the unit’s infection prevention efforts that included preventative care bundles for both HAIs. Adherence to the CAUTI and CLABSI preventative care bundles was evaluated through frequent audits conducted over three months, using standards and resources from The Joint Commission, a globally recognized leader in quality improvement in healthcare and patient care safety. The bundle elements with the lowest scores were identified as the most commonly missed elements. Three elements from both bundles, six elements in total, served as key content areas for the educational interventions targeted to bedside nurses. The CAUTI elements included appropriate urinary catheter order, appropriate continuation criteria, and urinary catheter care. The CLABSI elements included primary tubing compliance, needleless connector compliance, and dressing change compliance. An integrated, multi-platform education campaign featured content on each CAUTI and CLABSI preventative care bundle in its entirety, with additional reinforcement focused on the lowest scoring elements. One-on-one educational materials included an informational pamphlet, badge buddy, a presentation to reinforce nursing care standards, and real-time application through case studies and electronic health record demonstrations. A digital hub was developed on the hospital’s Intranet for quick access to unit resources, and a bulletin board helped track the number of days since the last CAUTI and CLABSI incident. Audits continued to be conducted throughout the education campaign, and staff were given real-time feedback to address any gaps in adherence. Nearly every nurse in the cardiac intensive care unit received all educational materials, and adherence to all six key bundle elements increased after the implementation of educational interventions. Recommendations from this implementation include providing consistent, comprehensive education across multiple teaching tools and regular audits to track adherence. The multi-platform education campaign brought focus to the evidence-based CAUTI and CLABSI bundles, which in turn will help to reduce CAUTI and CLABSI rates in clinical practice.

Keywords: education, healthcare-associated infections, infection, nursing, prevention

Procedia PDF Downloads 116
4104 Design and Implementation of Generative Models for Odor Classification Using Electronic Nose

Authors: Kumar Shashvat, Amol P. Bhondekar

Abstract:

In the midst of the five senses, odor is the most reminiscent and least understood. Odor testing has been mysterious and odor data fabled to most practitioners. The delinquent of recognition and classification of odor is important to achieve. The facility to smell and predict whether the artifact is of further use or it has become undesirable for consumption; the imitation of this problem hooked on a model is of consideration. The general industrial standard for this classification is color based anyhow; odor can be improved classifier than color based classification and if incorporated in machine will be awfully constructive. For cataloging of odor for peas, trees and cashews various discriminative approaches have been used Discriminative approaches offer good prognostic performance and have been widely used in many applications but are incapable to make effectual use of the unlabeled information. In such scenarios, generative approaches have better applicability, as they are able to knob glitches, such as in set-ups where variability in the series of possible input vectors is enormous. Generative models are integrated in machine learning for either modeling data directly or as a transitional step to form an indeterminate probability density function. The algorithms or models Linear Discriminant Analysis and Naive Bayes Classifier have been used for classification of the odor of cashews. Linear Discriminant Analysis is a method used in data classification, pattern recognition, and machine learning to discover a linear combination of features that typifies or divides two or more classes of objects or procedures. The Naive Bayes algorithm is a classification approach base on Bayes rule and a set of qualified independence theory. Naive Bayes classifiers are highly scalable, requiring a number of restraints linear in the number of variables (features/predictors) in a learning predicament. The main recompenses of using the generative models are generally a Generative Models make stronger assumptions about the data, specifically, about the distribution of predictors given the response variables. The Electronic instrument which is used for artificial odor sensing and classification is an electronic nose. This device is designed to imitate the anthropological sense of odor by providing an analysis of individual chemicals or chemical mixtures. The experimental results have been evaluated in the form of the performance measures i.e. are accuracy, precision and recall. The investigational results have proven that the overall performance of the Linear Discriminant Analysis was better in assessment to the Naive Bayes Classifier on cashew dataset.

Keywords: odor classification, generative models, naive bayes, linear discriminant analysis

Procedia PDF Downloads 387
4103 Line Manager’s Role Involvement towards Creating a Coaching Culture in Nursing Area

Authors: N. S. A. Rahim, N. N. Abu Mansor, M. I. Saidi, N. R. A. Rahim, K. F. Adrutdin

Abstract:

The use of coaching as one of organizational culture with the contribution of the involvement of line manager roles is an important to update employees’ knowledge and skills continuously. In healthcare sector, it is dynamic that nurse must update their knowledge and skills to keep pace with change. This paper attempts to discuss the involvement of line manager roles towards creating a coaching culture who give their support and innovation towards motivate nurses to give their best performance either in public or private hospitals.

Keywords: nursing, line managers’ roles, coaching, coaching culture

Procedia PDF Downloads 448
4102 Results of an Educative Procedure by Nursing on Patients Subjected to a Transplant from Hematopoietic Parents

Authors: C. Catalina Zapata, Z. Claudia Montoya

Abstract:

Transplant from hematopoietic parents (THP) or medulla (MT) is a procedure used to replace the medulla that does not work as part of a disease or when it is destroyed either by a treatment of high medication doses against cancer or by radiation. The transplant process has three stages, a stage prior to transplant, during and after the transplant. It is held with the help of an interdisciplinary team, including nursing, carrying out mainly educative procedures to warrant the adhesion and the changes in lifestyles needed to whom will undergo this procedure. The aim of the study was to assess the results of an educative procedure by nursing, on adult patients subjected to a transplant from hematopoietic parents at a high complexity institution of Medellin city, Colombia. This study had an observational longitudinal design. According to the rules of protocol, the educative activity must be held on all patients joining the procedure. Four instruments were designed in order to collect all the information. One of them to measure the sociodemographic variables, another one to measure self-care practices, another one to measure transplant knowledge and its cares and the other one to measure the 30-day post-transplant complications. The last three instruments were applied before and after the educative procedure. A univaried analysis was carried out but the bivaried analysis was not carried out since there were not statistically meaningful differences before and after. Within the results, ten patients were evaluated. The average age was 38.2 (13.38 SD – standard deviation), 8/10 were men. Some self-care practices such us having pets and plants and consuming some specific food as well as little use of UV protection are all present in this type of patients and are not modified after the procedure. In measuring the knowledge, something stands out among the answers. It is the fact that some patients do not know what the medulla is, the nature of separating wastes at home and the need to consult about vomit and nausea. The most frequent complications during the first thirty days were: nausea, vomit, fever, and rash. They are considered to be expected within this period. Patients do not exhibit differences in their level of knowledge before and after the educative procedure by nursing. The patients’ self-care practices do not involve all the necessary ones to avoid complications. During the first 30 days, most of the complications are typical of the transplant process from hematopoietic parents.

Keywords: bone marrow transplant, education, family, nursing, patients, Transplantation of hematopoietic progenitors

Procedia PDF Downloads 126
4101 A Comparative Study for Various Techniques Using WEKA for Red Blood Cells Classification

Authors: Jameela Ali, Hamid A. Jalab, Loay E. George, Abdul Rahim Ahmad, Azizah Suliman, Karim Al-Jashamy

Abstract:

Red blood cells (RBC) are the most common types of blood cells and are the most intensively studied in cell biology. The lack of RBCs is a condition in which the amount of hemoglobin level is lower than normal and is referred to as “anemia”. Abnormalities in RBCs will affect the exchange of oxygen. This paper presents a comparative study for various techniques for classifyig the red blood cells as normal, or abnormal (anemic) using WEKA. WEKA is an open source consists of different machine learning algorithms for data mining applications. The algorithm tested are Radial Basis Function neural network, Support vector machine, and K-Nearest Neighbors algorithm. Two sets of combined features were utilized for classification of blood cells images. The first set, exclusively consist of geometrical features, was used to identify whether the tested blood cell has a spherical shape or non-spherical cells. While the second set, consist mainly of textural features was used to recognize the types of the spherical cells. We have provided an evaluation based on applying these classification methods to our RBCs image dataset which were obtained from Serdang Hospital-Malaysia, and measuring the accuracy of test results. The best achieved classification rates are 97%, 98%, and 79% for Support vector machines, Radial Basis Function neural network, and K-Nearest Neighbors algorithm respectively

Keywords: red blood cells, classification, radial basis function neural networks, suport vector machine, k-nearest neighbors algorithm

Procedia PDF Downloads 480
4100 The Factors Affecting on Promoting Productivity from Nurses' View

Authors: Mahnaz Sanjari, Sedigheh Salemi, Mohammad Mirzabeigi

Abstract:

Nowadays, the world is facing a crisis of workforce and one of the most striking examples is the shortage of nurses. Nursing workforce productivity is related by various factors such as absenteeism, professional effectiveness and quality care. This cross-sectional study was conducted in 700 nurses who work in government hospitals from 35 hospitals of 9 provinces in Iran. The study was approved by the Nursing Council and was carried out with the authorization of the Research Ethics Committee. The questionnaire included 33 questions and 4 sub categories such as human resource, education and management. The reliability was evaluated by Cronbach's alpha (α=0/85). Statistical analyzes were performed, using SPSS version 16. The result showed that nurses emphasized on "respect to nurse-to-bed ratio" and less importance item was "using less experienced nurse". In addition, another important factor in clinical productivity is "Proper physical structure and amenities","good communication with colleagues" and "having good facilities". Also, "human resources at all levels of standard", "promoting on merit" and "well defined relationship in health system" are another important factors in productivity from nurse` view. The main managerial factor is "justice between employees" and the main educational component of productivity is “updating nursing knowledge”. The results show that more than half of the participants emphasized on the management and educational factors. Productivity as one of the main part of the health care quality leads to appropriate use of human and organizational resources, reduce cost services, and organizational development.

Keywords: productivity, nursing services, workforce, cost services

Procedia PDF Downloads 344
4099 A Spatial Hypergraph Based Semi-Supervised Band Selection Method for Hyperspectral Imagery Semantic Interpretation

Authors: Akrem Sellami, Imed Riadh Farah

Abstract:

Hyperspectral imagery (HSI) typically provides a wealth of information captured in a wide range of the electromagnetic spectrum for each pixel in the image. Hence, a pixel in HSI is a high-dimensional vector of intensities with a large spectral range and a high spectral resolution. Therefore, the semantic interpretation is a challenging task of HSI analysis. We focused in this paper on object classification as HSI semantic interpretation. However, HSI classification still faces some issues, among which are the following: The spatial variability of spectral signatures, the high number of spectral bands, and the high cost of true sample labeling. Therefore, the high number of spectral bands and the low number of training samples pose the problem of the curse of dimensionality. In order to resolve this problem, we propose to introduce the process of dimensionality reduction trying to improve the classification of HSI. The presented approach is a semi-supervised band selection method based on spatial hypergraph embedding model to represent higher order relationships with different weights of the spatial neighbors corresponding to the centroid of pixel. This semi-supervised band selection has been developed to select useful bands for object classification. The presented approach is evaluated on AVIRIS and ROSIS HSIs and compared to other dimensionality reduction methods. The experimental results demonstrate the efficacy of our approach compared to many existing dimensionality reduction methods for HSI classification.

Keywords: dimensionality reduction, hyperspectral image, semantic interpretation, spatial hypergraph

Procedia PDF Downloads 306
4098 Government (Big) Data Ecosystem: Definition, Classification of Actors, and Their Roles

Authors: Syed Iftikhar Hussain Shah, Vasilis Peristeras, Ioannis Magnisalis

Abstract:

Organizations, including governments, generate (big) data that are high in volume, velocity, veracity, and come from a variety of sources. Public Administrations are using (big) data, implementing base registries, and enforcing data sharing within the entire government to deliver (big) data related integrated services, provision of insights to users, and for good governance. Government (Big) data ecosystem actors represent distinct entities that provide data, consume data, manipulate data to offer paid services, and extend data services like data storage, hosting services to other actors. In this research work, we perform a systematic literature review. The key objectives of this paper are to propose a robust definition of government (big) data ecosystem and a classification of government (big) data ecosystem actors and their roles. We showcase a graphical view of actors, roles, and their relationship in the government (big) data ecosystem. We also discuss our research findings. We did not find too much published research articles about the government (big) data ecosystem, including its definition and classification of actors and their roles. Therefore, we lent ideas for the government (big) data ecosystem from numerous areas that include scientific research data, humanitarian data, open government data, industry data, in the literature.

Keywords: big data, big data ecosystem, classification of big data actors, big data actors roles, definition of government (big) data ecosystem, data-driven government, eGovernment, gaps in data ecosystems, government (big) data, public administration, systematic literature review

Procedia PDF Downloads 162
4097 Canadian Undergraduate and Graduate Nursing Students: Interest in Education in Medical and Recreational Cannabis for Practice and Career Development

Authors: Margareth S. Zanchetta, Kateryna Metersky, Valerie Tan, Charissa Cordon, Stephanie Lucchese, Yana Siganevich, Prasha Sivasundaram, Truong Binh Nguyen, Imran Qureshi

Abstract:

Due to a new area of practice, Canadian nurses possess knowledge gaps regarding the use of cannabis-based therapies by clients/patients. Education related to medical cannabis (MC) and recreational cannabis (RC) is required to promote nurses’ competency and confidence in supporting clients/patients using MC/RC toward the improvement of health outcomes. A team composed of nursing researchers and undergraduate/graduate students implemented a national survey to explore this theme with the population of undergraduate, graduate (MN and NP), and Post-Diploma (RN Bridging) nursing students enrolled in Canadian Universities Nursing Programs. Upon Research Ethics Board approval, survey recruitment was supported by major nursing stakeholders. The research questions were : (a) Which are the most preferred sources of information on MC/RC for nursing students? (b) Which are the factors and preferred learning modalities that could increase interest in learning about MC/RC, and (c) What are the future career plans among nursing students, and how would they consider the prospective use of cannabis in their practice? The survey was available from Sept. 2022 to Feb. 2023, hosted by a remote platform. An original questionnaire (English-French) was composed of 18 multiple choice questions and 2 open-ended questions. Sociodemographic information and closed-ended responses were compiled as descriptive statistics, while narrative accounts will be analysed through thematic analysis. Respondents (n=153) were from 7 Canadian provinces, national (99%) and international students (1%); the majority of respondents (61%) were in the age range of 21-30 years old. Results indicated that respondents perceive a gap in the undergraduate curriculum on the topics of MC/RC (91%) and that their learning needs include regulations (90%), data on effectiveness (88%), dosing best practices (86%), contraindications (83%), and clinical and medical indications (76%). Respondents reported motivation to learn more about MC/RC through online lectures/videos (65%), e-learning modules or online interactive training (61%), workshops (51%), webinars (36%), and social media (35%). Their primary career-related motivations regarding MC/RC knowledge include enhancing nursing practice (76%), learning about this growing scope of practice (61%), keeping up-to-date responding to scientific curiosity (59%), learning about evidence-based practice (59%), and utilizing alternative forms of medical treatment (37%). Respondents indicated that the integration of topics on cannabis in any course in the undergraduate and/or graduate curriculum would increase their desire to learn about MC/RC as equally as exposure within a clinical setting (75%). The emerging trend in the set of narrative responses (n=130) suggests that respondents believe educational MC/RC content should be integrated into core nursing courses. Respondents also urged educators to be well-informed about evidence-based practice related to MC/RC and to reflect upon stigma and biases surrounding its use. Future knowledge dissemination and translation activities include scholarly products and presentations to stimulate discussion amongst nursing faculty and students, as well as nurses in clinical settings. The goal is to mobilise talents and build collaboration for the development of a socially responsive curriculum on MC/RC competency to address the education-related expectations of all these social actors.

Keywords: Canada, medical cannabis, nursing education, nursing graduate student, nursing undergraduate student, online survey, recreational cannabis

Procedia PDF Downloads 90
4096 Towards a Balancing Medical Database by Using the Least Mean Square Algorithm

Authors: Kamel Belammi, Houria Fatrim

Abstract:

imbalanced data set, a problem often found in real world application, can cause seriously negative effect on classification performance of machine learning algorithms. There have been many attempts at dealing with classification of imbalanced data sets. In medical diagnosis classification, we often face the imbalanced number of data samples between the classes in which there are not enough samples in rare classes. In this paper, we proposed a learning method based on a cost sensitive extension of Least Mean Square (LMS) algorithm that penalizes errors of different samples with different weight and some rules of thumb to determine those weights. After the balancing phase, we applythe different classifiers (support vector machine (SVM), k- nearest neighbor (KNN) and multilayer neuronal networks (MNN)) for balanced data set. We have also compared the obtained results before and after balancing method.

Keywords: multilayer neural networks, k- nearest neighbor, support vector machine, imbalanced medical data, least mean square algorithm, diabetes

Procedia PDF Downloads 531
4095 Autism Management in Ghana: Comparative Analyses of Creative Art forms

Authors: Edwina Owusu Panin, Kwame Baah Owusu Panin

Abstract:

This abstract intends to demonstrate multiple strategies of autism management in Ghana by exploring the possibilities. The advantages of adopting creative art forms as a therapeutic method. Autism is a developmental disorder that includes social interaction, communication, and repetitive behaviours. In Ghana, as in many other countries, there is a rising demand for effective intervention and support for people with autism and their families. Creative arts such as music, dance, drama and visual arts have shown promise in promoting communication, social interaction and inclusion of people with autism. These art forms provide alternative channels for self-expression and can be powerful tools for autistic people to interact with the world, their friends and families around them. Creative art forms interventions have been found to improve social skills, improve emotion regulation, promote creativity and increase self-confidence in people with autism. This study examines existing programs and interventions in Ghana involving creative art forms for people with autism through a comparative analysis. It explores the different approaches, methods and results of these interventions. By comparing and evaluating these programs, the study aims to identify best practices, challenges and areas for development in managing autism through the creative arts in Ghana. Although many schools and rehabilitation centres employ various forms in therapeutic approaches for autism. There is no comparative analysis of which type of autism and which creative art forms is suitable. The results of this study will contribute to the development of evidence-based practices for the management of autism in Ghana. It provides valuable information about the effectiveness of creative arts interventions and helps inform policy makers, educators, therapists and other stakeholders involved in autism support. Ultimately, the goal is to improve the well-being and quality of life of people with autism in Ghana and their families by promoting inclusive and accessible interventions that harness the power of creative art forms.

Keywords: autism, therapeutic, creative art, art form

Procedia PDF Downloads 76
4094 Assessment of the Spatio-Temporal Distribution of Pteridium aquilinum (Bracken Fern) Invasion on the Grassland Plateau in Nyika National Park

Authors: Andrew Kanzunguze, Lusayo Mwabumba, Jason K. Gilbertson, Dominic B. Gondwe, George Z. Nxumayo

Abstract:

Knowledge about the spatio-temporal distribution of invasive plants in protected areas provides a base from which hypotheses explaining proliferation of plant invasions can be made alongside development of relevant invasive plant monitoring programs. The aim of this study was to investigate the spatio-temporal distribution of bracken fern on the grassland plateau of Nyika National Park over the past 30 years (1986-2016) as well as to determine the current extent of the invasion. Remote sensing, machine learning, and statistical modelling techniques (object-based image analysis, image classification and linear regression analysis) in geographical information systems were used to determine both the spatial and temporal distribution of bracken fern in the study area. Results have revealed that bracken fern has been increasing coverage on the Nyika plateau at an estimated annual rate of 87.3 hectares since 1986. This translates to an estimated net increase of 2,573.1 hectares, which was recorded from 1,788.1 hectares (1986) to 4,361.9 hectares (2016). As of 2017 bracken fern covered 20,940.7 hectares, approximately 14.3% of the entire grassland plateau. Additionally, it was observed that the fern was distributed most densely around Chelinda camp (on the central plateau) as well as in forest verges and roadsides across the plateau. Based on these results it is recommended that Ecological Niche Modelling approaches be employed to (i) isolate the most important factors influencing bracken fern proliferation as well as (ii) identify and prioritize areas requiring immediate control interventions so as to minimize bracken fern proliferation in Nyika National Park.

Keywords: bracken fern, image classification, Landsat-8, Nyika National Park, spatio-temporal distribution

Procedia PDF Downloads 179