Search results for: RAPD and comet assay
703 An Approach to Make an Adaptive Immunoassay to Detect an Unknown Disease
Authors: Josselyn Mata Calidonio, Arianna I. Maddox, Kimberly Hamad-Schifferli
Abstract:
Rapid diagnostics are critical infectious disease tools that are designed to detect a known biomarker using antibodies specific to that biomarker. However, a way to detect unknown viruses has not yet been achieved in a paper test format. We describe here a route to make an adaptable paper immunoassay that can detect an unknown biomarker, demonstrating it on SARS-CoV-2 variants. The immunoassay repurposes cross-reactive antibodies raised against the alpha variant. Gold nanoparticles of two different colors conjugated to two different antibodies create a colorimetric signal, and machine learning of the resulting colorimetric pattern is used to train the assay to discriminate between variants of alpha and Omicron BA.5. By using principal component analysis, the colorimetric test patterns can pick up and discriminate an unknown that it has not encountered before, Omicron BA.1. The test has an accuracy of 100% and a potential calculated discriminatory power of 900. We show that it can be used adaptively and that it can be used to pick up emerging variants without the need to raise new antibodies.Keywords: adaptive immunoassay, detecting unknown viruses, gold nanoparticles, paper immunoassay, repurposing antibodies
Procedia PDF Downloads 114702 New Isolate of Cucumber Mosaic Virus Infecting Banana
Authors: Abdelsabour G. A. Khaled, Ahmed W. A. Abdalla And Sabry Y. M. Mahmoud
Abstract:
Banana plants showing typical mosaic and yellow stripes on leaves as symptoms were collected from Assiut Governorate in Egypt. The causal agent was identified as Cucumber mosaic virus (CMV) on the basis of symptoms, transmission, serology, transmission electron microscopy and reverse transcription polymerase chain reaction (RT-PCR). Coat protein (CP) gene was amplified using gene specific primers for coat protein (CP), followed by cloning into desired cloning vector for sequencing. In this study the CMV was transmitted into propagation host either by aphid or mechanically. The transmission was confirmed through Direct Antigen Coating Enzyme Linked Immuno Sorbent Assay (DAC-ELISA). Analysis of the 120 deduced amino acid sequence of the coat protein gene revealed that the EG-A strain of CMV shared from 97.50 to 98.33% with those strains belonging to subgroup IA. The cluster analysis grouped the Egyptian isolate with strains Fny and Ri8 belonging sub-group IA. It appears that there occurs a high incidence of CMV infecting banana belonging to IA subgroup in most parts of Egypt.Keywords: banana, CMV, transmission, CP gene, RT-PCR
Procedia PDF Downloads 341701 CRISPR Technology: A Tool in the Potential Cure for COVID-19 Virus
Authors: Chijindu Okpalaoka, Charles Chinedu Onuselogu
Abstract:
COVID-19, humanity's coronavirus disease caused by SARS-CoV-2, was first detected in late 2019 in Wuhan, China. COVID-19 lacked an established conventional pharmaceutical therapy, and as a result, the outbreak quickly became an epidemic affecting the entire World. Only a qPCR assay is reliable for diagnosing COVID-19. Clustered, regularly interspaced short palindromic repeats (CRISPR) technology is being researched for speedy and specific identification of COVID-19, among other therapeutic techniques. Apart from its therapeutic capabilities, the CRISPR technique is being evaluated to develop antiviral therapies; nevertheless, no CRISPR-based medication has been approved for human use to date. Prophylactic antiviral CRISPR in living being cells, a Cas 13-based approach against coronavirus, has been developed. While this method can be evolved into a treatment approach, it may face substantial obstacles in human clinical trials for licensure. This study discussed the potential applications of CRISPR-based techniques for developing a speedy and accurate feasible treatment alternative for the COVID-19 virus.Keywords: COVID-19, CRISPR technique, Cas13, SARS-CoV-2, prophylactic antiviral
Procedia PDF Downloads 125700 Evaluation of Physical Parameters and in-Vitro and in-Vivo Antidiabetic Activity of a Selected Combined Medicinal Plant Extracts Mixture
Authors: S. N. T. I. Sampath, J. M. S. Jayasinghe, A. P. Attanayake, V. Karunaratne
Abstract:
Diabetes mellitus is one of the major public health posers throughout the world today that incidence and associated with increasing mortality. Insufficient regulation of the blood glucose level might be serious effects for health and its necessity to identify new therapeutics that have ability to reduce hyperglycaemic condition in the human body. Even though synthetic antidiabetic drugs are more effective to control diabetes mellitus, there are considerable side effects have been reported. Thus, there is an increasing demand for searching new natural products having high antidiabetic activity with lesser side effects. The purposes of the present study were to evaluate different physical parameters and in-vitro and in-vivo antidiabetic potential of the selected combined medicinal plant extracts mixture composed of leaves of Murraya koenigii, cloves of Allium sativum, fruits of Garcinia queasita and seeds of Piper nigrum. The selected plants parts were mixed and ground together and extracted sequentially into the hexane, ethyl acetate and methanol. Solvents were evaporated and they were further dried by freeze-drying to obtain a fine powder of each extract. Various physical parameters such as moisture, total ash, acid insoluble ash and water soluble ash were evaluated using standard test procedures. In-vitro antidiabetic activity of combined plant extracts mixture was screened using enzyme assays such as α-amylase inhibition assay and α-glucosidase inhibition assay. The acute anti-hyperglycaemic activity was performed using oral glucose tolerance test for the streptozotocin induced diabetic Wistar rats to find out in-vivo antidiabetic activity of combined plant extracts mixture and it was assessed through total oral glucose tolerance curve (TAUC) values. The percentage of moisture content, total ash content, acid insoluble ash content and water soluble ash content were ranged of 7.6-17.8, 8.1-11.78, 0.019-0.134 and 6.2-9.2 respectively for the plant extracts and those values were less than standard values except the methanol extract. The hexane and ethyl acetate extracts exhibited highest α-amylase (IC50 = 25.7 ±0.6; 27.1 ±1.2 ppm) and α-glucosidase (IC50 = 22.4 ±0.1; 33.7 ±0.2 ppm) inhibitory activities than methanol extract (IC50 = 360.2 ±0.6; 179.6 ±0.9 ppm) when compared with the acarbose positive control (IC50 = 5.7 ±0.4; 17.1 ±0.6 ppm). The TAUC values for hexane, ethyl acetate, and methanol extracts and glibenclamide (positive control) treated rats were 8.01 ±0.66; 8.05 ±1.07; 8.40±0.50; 5.87 ±0.93 mmol/L.h respectively, whereas in diabetic control rats the TAUC value was 13.22 ±1.07 mmol/L.h. Administration of plant extracts treated rats significantly suppressed (p<0.05) the rise in plasma blood glucose levels compared to control rats but less significant than glibenclamide. The obtained results from in-vivo and in-vitro antidiabetic study showed that the hexane and ethyl acetate extracts of selected combined plant mixture might be considered as a potential source to isolate natural antidiabetic agents and physical parameters of hexane and ethyl acetate extracts will helpful to develop antidiabetic drug with further standardize properties.Keywords: diabetes mellitus, in-vitro antidiabetic assays, medicinal plants, standardization
Procedia PDF Downloads 131699 Efficacy of Microwave against Oryzaephilus Mercator Pest Infesting Dried Figs and Evaluation of the Product Color Changes Using an Image Processing Technique
Authors: Reza Sadeghi
Abstract:
In this study, microwave heating was employed for controlling Oryzaephilus mercator. adults infesting stored Iranian dried fig. For this purpose, the dried fig samples were artificially infested with O. mercator and then heated in a microwave oven (2450 MHz) at the power outputs of 450, 720, and 900 W for 10, 20, 30, and 40 s, respectively. Subsequently, changes in the colors of the product samples under the effects of the varied microwave applications were investigated in terms of lightness (ΔL*), redness (Δa*), and yellowness (Δb*) using an image processing technique. The results revealed that both parameters of microwave power and exposure time had significant impacts on the pest mortality rates (p<0.01). In fact, a direct positive relationship was obtained between the mortality rate and microwave irradiation power. Complete mortality was achieved for the pest at the power of 900 W and exposure time of 40 s. The dried fig samples experienced fewer changes in their color parameters. Considering the successful pest control and acceptable changes in the product quality, microwave irradiation can be introduced as an appropriate alternative to chemical fumigants.Keywords: colorimetric assay, microwave heating, Oryzaephilus mercator, mortality
Procedia PDF Downloads 88698 Pancreatic Lipase and Cholesterol Esterase Inhibitors from Thai Medicinal Plants
Authors: Kwanchai Ratanamanee, Pattra Ahmadi Pirshahid, Yaowaluk Khamphan, Sirinan Thubthimthad
Abstract:
Obesity is a main global health problem. The obesity rated has continued to be higher and higher. It causes to serious systems, diabetes, coronary artery disease, stroke, and some types of cancer. Oristat is one of the best drugs worldwide used as a pancreatic lipase inhibitor. To develop the new therapeutic drugs from medicinal plant always explored. In this study, 24 medicinal plants were investigated for their pancreatic lipase and cholesterol esterase inhibitory effects with Fluorometer assay and oristat as a positive control. It showed that the ethanolic extract of pods of Acacia concinna (Willd.) D.C., possess pancreatic lipase and cholesterol esterase inhibitory activities of IC50 at 2.73 and 3.77 mg/ml respectively as well as oral acute toxicity of the extract (LD50) was 6,300 mg/kg body weight. The extract of A.concinna should be further investigated in animal testing. The results of pancreatic lipase and cholesterol esterase inhibitor of the extracts will lead us to utilize A.concinna for developing as obesity dietary supplement from a medicinal plant.Keywords: Acacia concinna (Willd.) D. C., cholesterol esterase, obesity, pancreatic lipase
Procedia PDF Downloads 478697 South African Breast Cancer Mutation Spectrum: Pitfalls to Copy Number Variation Detection Using Internationally Designed Multiplex Ligation-Dependent Probe Amplification and Next Generation Sequencing Panels
Authors: Jaco Oosthuizen, Nerina C. Van Der Merwe
Abstract:
The National Health Laboratory Services in Bloemfontien has been the diagnostic testing facility for 1830 patients for familial breast cancer since 1997. From the cohort, 540 were comprehensively screened using High-Resolution Melting Analysis or Next Generation Sequencing for the presence of point mutations and/or indels. Approximately 90% of these patients stil remain undiagnosed as they are BRCA1/2 negative. Multiplex ligation-dependent probe amplification was initially added to screen for copy number variation detection, but with the introduction of next generation sequencing in 2017, was substituted and is currently used as a confirmation assay. The aim was to investigate the viability of utilizing internationally designed copy number variation detection assays based on mostly European/Caucasian genomic data for use within a South African context. The multiplex ligation-dependent probe amplification technique is based on the hybridization and subsequent ligation of multiple probes to a targeted exon. The ligated probes are amplified using conventional polymerase chain reaction, followed by fragment analysis by means of capillary electrophoresis. The experimental design of the assay was performed according to the guidelines of MRC-Holland. For BRCA1 (P002-D1) and BRCA2 (P045-B3), both multiplex assays were validated, and results were confirmed using a secondary probe set for each gene. The next generation sequencing technique is based on target amplification via multiplex polymerase chain reaction, where after the amplicons are sequenced parallel on a semiconductor chip. Amplified read counts are visualized as relative copy numbers to determine the median of the absolute values of all pairwise differences. Various experimental parameters such as DNA quality, quantity, and signal intensity or read depth were verified using positive and negative patients previously tested internationally. DNA quality and quantity proved to be the critical factors during the verification of both assays. The quantity influenced the relative copy number frequency directly whereas the quality of the DNA and its salt concentration influenced denaturation consistency in both assays. Multiplex ligation-dependent probe amplification produced false positives due to ligation failure when ligation was inhibited due to a variant present within the ligation site. Next generation sequencing produced false positives due to read dropout when primer sequences did not meet optimal multiplex binding kinetics due to population variants in the primer binding site. The analytical sensitivity and specificity for the South African population have been proven. Verification resulted in repeatable reactions with regards to the detection of relative copy number differences. Both multiplex ligation-dependent probe amplification and next generation sequencing multiplex panels need to be optimized to accommodate South African polymorphisms present within the genetically diverse ethnic groups to reduce the false copy number variation positive rate and increase performance efficiency.Keywords: familial breast cancer, multiplex ligation-dependent probe amplification, next generation sequencing, South Africa
Procedia PDF Downloads 231696 Determination of Biofilm Formation in Different Clinical Candida Species and Investigation of Effects of Some Plant Substances on These Biofilms
Authors: Gulcan Sahal, Isil Seyis Bilkay
Abstract:
Candida species which often exist as commensal microorganisms in healthy individuals are major causes of important infections, especially in AIDS and immunocompromised patients, by means of their biofilm formation abilities. Therefore, in this study, determination of biofilm formation in different clinical strains of Candida species, investigation of strong biofilm forming Candida strains, examination of clinical information of each strong and weak biofilm forming Candida strains and investigation of some plant substances’ effects on biofilm formation of strong biofilm forming strains were aimed. In this respect, biofilm formation of Candida strains was analyzed via crystal violet binding assay. According to our results, biofilm levels of strains belong to different Candida species were different from each other. Additionally, it is also found that some plant substances effect biofilm formation. All these results indicate that, as well as C. albicans strains, other non-albicans Candida species also emerge as causative agents of infections and have biofilm formation abilities. In addition, usage of some plant substances in different concentrations may provide a new treatment against biofilm related Candida infections.Keywords: anti-biofilm, biofilm formation, Candida species, biosystems engineering
Procedia PDF Downloads 483695 Serological Screening of Cytomegalovirus Infection among Sudanese Patients with Leukemia, Breast and Prostate Cancers at Radiation-Isotope Center in Khartoum
Authors: Abuelquasim. M. Hassan, Namarig .S. Mohammed, Samah F. Mohammed, Wafaa. A. Mohammed, Wafaa M. Edriss, Amel A. Ahmed, Elfadil M. Abass
Abstract:
Introduction: Cytomegalovirus (CMV), a common virus, usually causes asymptomatic infections in immunocompetent hosts; however, it may lead to serious complications especially in cancer patients. Objectives: This study was conducted to determine the seroprevalence of human cytomegalovirus (HCMV) among leukemia, breast and prostate cancer patients attending at Radiation Isotope-Center-Khartoum (RICK) from April to August 2016. Material and Methods: A total of 91 subjects were included: 30 leukemic, 22 breast cancer and 29 prostate cancer patients.10 of them were healthy and used as control group, serum samples were collected and tested for CMV IgG & IgM using enzyme-linked immune sorbent assay (ELISA). Result: Of the control group, 9/10 (9.9%) were seropositive for CMV IgG and 1/10 (1.09%) were sero positive for IgM. Also, all cancer groups demonstrated presence of IgG antibody classes as: The percentage of positive results in prostate, breast cancer and leukemia were 35.8 %, 37.2%, and 35.3% respectively. Conclusion: There was no significant correlation between leukemia, breast, prostate and HCMV.Keywords: cytomegalovirus, serodiagnostic, breast cancer, leukemia
Procedia PDF Downloads 384694 Short-Term Exposing Effects of 4,4'-DDT on Mitochondrial Electron Transport Complexes in Eyes of Zebrafish
Authors: Eun Ko, Moonsung Choi, Sooim Shin
Abstract:
4,4’-Dichlorodiphenyltrichloroethane (4,4’-DDT) is colorless, odorless organochlorine and known as persistent toxic organic pollutant accumulated in organs. In this study, effects of 4,4’-DDT on activities of mitochondrial electron transport chain system was analyzed. 4,4’-DDT is directly treated to isolated mitochondria from eyes of zebrafish and then activities of mitochondrial complex I, II, III, IV were measured spectrophotometrically. The reaction was proceeded immediately after adding 4,4’-DDT to examine the short-term exposing effects of persistent organic pollutant. As a result, high concentration of 4,4’-DDT treated mitochondria exhibited slightly enhanced activity in all complexes than non-treated one except complex III in male. Particularly, 4,4’-DDT was more effective on enzymatic activity in mitochondria isolated from eyes of male zebrafish. These results represented that 4,4’-DDT might temporarily induce to open up ion channel on isolated mitochondria resulting in increasing the functional activity of mitochondrial electron transport chain system.Keywords: electron transport chain, mitochondrial function, persistent organic pollutant, spectrophotometric assay, zebrafish
Procedia PDF Downloads 228693 Isolation of New C₁₅ Acetogenins from the Red Alga Laurencia obtusa
Authors: Nahed O. Bawakid, Walied M. Alarif
Abstract:
With regard to the uniqueness of the red algae of the genus Laurencia as the source of C₁₅-acetogenins, along with the diversity of biological applications; the acetogenin content of the Red Sea L. obtusa was investigated. Fractionation and purification of the CH₂Cl₂/MeOH extract were done by applying several chromatographic techniques, including column and preparative thin-layer chromatography; followed by a series of ¹H nuclear magnetic resonance measurements to give rise of some interesting notes. A new rare chloroallene-based C₁₅ acetogenin, laurentusenin (1) along with a new furan ring containing C₁₅ acetogenin, laurenfuresenin (2), were isolated from the red alga L. obtusa. Comparing 1D and 2D NMR, MS, UV and IR spectral data for the new isolated compounds with the reported bromoallene containing acetogenins spectral data was played the crucial role for characterization of their hemical structures. The apoptosis induced by these two compounds was demonstrated by DNA fragmentation assay and microscopic observation. These observations suggest that (1) and (2) may be involved in regulation of programmed death in the initiation and propagation of inflammatory responses. The isolated metabolite (1) showed unusual substituted allene side chain, while (2) inserted furan ring as a new acetogenin nucleus.Keywords: cyclic enyne, anti-inflammatory, fatty acids, marine algae, halogenations
Procedia PDF Downloads 151692 Evaluation of the Diagnostic Potential of IL-2 as Biomarker for the Discrimination of Active and Latent Tuberculosis
Authors: Shima Mahmoudi, Setareh Mamishi, Babak Pourakbari, Majid Marjani
Abstract:
In the last years, the potential role of distinct T-cell subsets as biomarkers of active tuberculosis TB and/or latent tuberculosis infection (LTBI) has been studied. The aim of this study was to investigate the potential role of interleukin-2 (IL-2) in whole blood stimulated with M. tuberculosis-specific antigens in the QuantiFERON-TB Gold In Tube (QFT-G-IT) for the discrimination of active and latent tuberculosis. After 72-h of stimulation by antigens from the QFT-G-IT assay, IL-2 secretion was quantitated in supernatants by using ELISA (Mabtech AB, Sweden). Observing the level of IL-2 released after 72-h of incubation, we found that the level of IL-2 were significantly higher in LTBI group than in patients with active TB infection or control group (P value=0.019, Kruskal–Wallis test). The discrimination performance (assessed by the area under ROC curve) between LTBI and patients with active TB was 0.816 (95%CI: 0.72-0.97). Maximum discrimination was reached at a cut-off of 13.9 pg/mL for IL-2 following stimulation with 82% sensitivity and 86% specificity. In conclusion, although cytokine analysis has greatly contributed to the understanding of TB pathogenesis, data on cytokine profiles that might distinguish progression from latency of TB infection are scarce and even controversial. Our data indicate that the concomitant evaluation of IFN- γ and IL-2 could be instrumental in discriminating of active and latent TB infection.Keywords: interleukin-2, discrimination, active TB, latent TB
Procedia PDF Downloads 408691 Cytotoxic Activity against Hepatocarcinoma and Cholangiocarcinoma Cells of Four Cathartic Herbal Medicines
Authors: Pranporn Kuropakornpong, Srisopa Ruangnoo, Arunporn Itharat
Abstract:
Liver cancer has the highest prevalence rate in the North and Northeast of Thailand. Four Thai medicinal plants such as resin of Ferula asafoetida Regel, latex of Aloe barbadensis Miller leaves, roots of Baliospermum manotanum, and latex of Garcinia hanburyi Hook are used in Thai traditional medicine as cathartic drug and detoxification in liver cancer patients. Thus, this research aimed to evaluate the cytotoxic activity of these plants against hepatocarcinoma (HepG2) and cholangiocarcinoma (KKU-M156) cells by SRB assay. These plants were macerated in 95% ethanol. The results showed that roots of Baliospermum manotanum and latex of Garcinia hanburyi Hook showed the strongest cytotoxicity against HepG2 (IC50 = 3.03+0.91 and 0.62+0.01µg/ml, respectively) and KKU-M156 (IC50 = 0.978+0.663 and 0.006+0.005 µg/ml, respectively). Latex of Garcinia hanburyi Hook also showed high cytotoxicity against normal cell line (IC50=8.86+0.31 µg/ml), and even though its selective values are high, dose of this herb should be limited.Keywords: cholangiocarcinoma, cytotoxic activity, Garcinia hanburyi Hook, hepatocarcinoma
Procedia PDF Downloads 449690 The Effect of Thymoquinone and Sorafenib Combination on Hepatocellular Carcinoma Cell Line
Authors: Nabila N. El-Maraghy, Amany Essa, Yousra Abdel–Mottaleb, Nada Ismail
Abstract:
The use of combination of chemotherapy and natural products to influence the cell death with low doses of chemotherapeutic agents and few side effects has recently emerged as a new method of cancer therapy. Aim: Evaluation the modulatory effect of Thymoquinone on HepG2 cells treated with Sorafenib. Methods: Hepatocellular Carcinoma HepG2 cell line was treated with Sorafenib and TQ individually and in combination. The effect of these treatments on cell viability (MTT assay), apoptosis (Expression of Caspase-3) and oxidative markers (GSH content and extent of lipid peroxidation) was determined. Results: When compared the effect of both agents alone and the combination of the IC50 of Sorafenib and the IC50 TQ, the combination resulted in reduction of cell inhibition and apoptosis and antagonize their actions on GSH content and extent of lipid peroxidation which are increased. This study showed potent anti-tumor activity of both TQ and Sorafenib separately on HepG2 but upon combination surprisingly they interacted and give antagonistic effect. Conclusion: Co-treatment resulted in antagonistic interaction between Sorafenib and Thymoquinone.Keywords: antagonism, hepatocellular carcinoma, sorafenib, thymoquinone
Procedia PDF Downloads 553689 Isolation of Antimicrobial Compounds from Marine Sponge Neopetrosia exigua
Authors: Haitham Qaralleh, Syed Z. Idid, Shahbudin Saad, Deny Susanti, Osama Althunibat
Abstract:
This study was carried out to isolate the active antimicrobial compounds from Neopetrosia exigua using bio-guided assay isolation against Staphylococcus aureus. N. exigua was extracted using methanol and subjected to liquid-liquid extraction using solvents with different polarity (n-hexane, carbon tetrachloride, dichloromethane, n-butanol and water). Purification of the active components of n-butanol and dichloromethane fractions was done using Sephadex LH-20 and reverse phase chromatography. Based on the biological guided fractionation results, dichloromethane and n-butanol fractions showed the highest antimicrobial activity. Purification of the active components of n-butanol and dichloromethane fractions yielded three compounds. The structure of the isolated compounds were elucidated and found to be 5-hydroxy-1H-indole-3-carboxylic acid methyl ester, cyclo-1`-demethylcystalgerone and avarol derivative. Avarol was showed potent bactericidal effect against S. aureus. N. exigua appears to be rich source of natural antimicrobial agents. Further studies are needed to investigate the mode of action of these compounds.Keywords: antimicrobial, avarol, Neopetrosia exigua, Staphylococcus aureus
Procedia PDF Downloads 433688 Cytotoxic Metabolites from Tagetes minuta L. Growing in Saudi Arabia
Authors: Ali A. A. Alqarni, Gamal A. Mohamed, Hossam M. Abdallah, Sabrin R. M. Ibrahim
Abstract:
Phytochemical investigation of the methanolic extract of aerial parts of Tagetes minuta L. (Family: Asteraceae) using different chromatographic techniques led to the isolation of five compounds; ecliptal (1), scopoletin (2), P-hydroxy benzoic acid (3), patuletin (4), and patuletin-7-O-β-D-glucopyranoside (5) (Figure 1). Their structures were established based on physical, chemical, and spectral data [Ultraviolet (UV), Proton ¹H, Carbon thirteen ¹³C, and Heteronuclear Multiple Bond Correlation (HMBC) NMR], as well as Electrospray Ionization Mass Spectroscopy (ESIMS) and comparison with literature data. Their cytotoxic activity was assessed towards human liver hepatocellular carcinoma (HepG2), human breast cancer (MCF-7), and human colon cancer (HCT116) cancer cell lines using sulphorhodamine B (SRB) assay. It is noteworthy that compound 1 demonstrated a significant cytotoxic potential towards HepG2, MCF7, and HCT116 cells with IC₅₀s ranging from 2.74 to 7.01 μM, compared to doxorubicin (IC₅₀ 0.18, 0.60, and 0.20 μM, respectively), whereas compounds 2, 4, and 5 showed moderate cytotoxic potential with IC50s ranging from 11.71 to 35.64 μM. However, 3 was inactive up to a concentration of 100 μM towards the three tested cancer cell lines.Keywords: Asteraceae, cytotoxicity, metabolites, Tagetes minuta
Procedia PDF Downloads 163687 Fine Characterization of Glucose Modified Human Serum Albumin by Different Biophysical and Biochemical Techniques at a Range
Authors: Neelofar, Khursheed Alam, Jamal Ahmad
Abstract:
Protein modification in diabetes mellitus may lead to early glycation products (EGPs) or amadori product as well as advanced glycation end products (AGEs). Early glycation involves the reaction of glucose with N-terminal and lysyl side chain amino groups to form Schiff’s base which undergoes rearrangements to form more stable early glycation product known as Amadori product. After Amadori, the reactions become more complicated leading to the formation of advanced glycation end products (AGEs) that interact with various AGE receptors, thereby playing an important role in the long-term complications of diabetes. Millard reaction or nonenzymatic glycation reaction accelerate in diabetes due to hyperglycation and alter serum protein’s structure, their normal functions that lead micro and macro vascular complications in diabetic patients. In this study, Human Serum Albumin (HSA) with a constant concentration was incubated with different concentrations of glucose at 370C for a week. At 4th day, Amadori product was formed that was confirmed by colorimetric method NBT assay and TBA assay which both are authenticate early glycation product. Conformational changes in native as well as all samples of Amadori albumin with different concentrations of glucose were investigated by various biophysical and biochemical techniques. Main biophysical techniques hyperchromacity, quenching of fluorescence intensity, FTIR, CD and SDS-PAGE were used. Further conformational changes were observed by biochemical assays mainly HMF formation, fructoseamine, reduction of fructoseamine with NaBH4, carbonyl content estimation, lysine and arginine residues estimation, ANS binding property and thiol group estimation. This study find structural and biochemical changes in Amadori modified HSA with normal to hyperchronic range of glucose with respect to native HSA. When glucose concentration was increased from normal to chronic range biochemical and structural changes also increased. Highest alteration in secondary and tertiary structure and conformation in glycated HSA was observed at the hyperchronic concentration (75mM) of glucose. Although it has been found that Amadori modified proteins is also involved in secondary complications of diabetes as AGEs but very few studies have been done to analyze the conformational changes in Amadori modified proteins due to early glycation. Most of the studies were found on the structural changes in Amadori protein at a particular glucose concentration but no study was found to compare the biophysical and biochemical changes in HSA due to early glycation with a range of glucose concentration at a constant incubation time. So this study provide the information about the biochemical and biophysical changes occur in Amadori modified albumin at a range of glucose normal to chronic in diabetes. Although many implicates currently in use i.e. glycaemic control, insulin treatment and other chemical therapies that can control many aspects of diabetes. However, even with intensive use of current antidiabetic agents more than 50 % of diabetic patient’s type 2 suffers poor glycaemic control and 18 % develop serious complications within six years of diagnosis. Experimental evidence related to diabetes suggests that preventing the nonenzymatic glycation of relevant proteins or blocking their biological effects might beneficially influence the evolution of vascular complications in diabetic patients or quantization of amadori adduct of HSA by authentic antibodies against HSA-EGPs can be used as marker for early detection of the initiation/progression of secondary complications of diabetes. So this research work may be helpful for the same.Keywords: diabetes mellitus, glycation, albumin, amadori, biophysical and biochemical techniques
Procedia PDF Downloads 272686 Clonal Evaluation of Malignant Mesothelioma
Authors: Sabahattin Comertpay, Sandra Pastorino, Rosanna Mezzapelle, Mika Tanji, Oriana Strianese, Andrea Napolitano, Tracey Weigel, Joseph Friedberg, Paul Sugarbaker, Thomas Krausz, Ena Wang, Amy Powers, Giovanni Gaudino, Harvey I. Pass, Fatmagul Ozcelik, Barbara L. Parsons, Haining Yang, Michele Carbone
Abstract:
Tumors are thought to be monoclonal in origin. This paradigm arose decades ago, primarily from the study of hematopoietic malignancies and sarcomas. The clonal origin of malignant mesothelioma (MM), a deadly cancer resistant to the current therapies, has not been investigated. Examination of the pleura from patients with MM shows often the presence of multiple pleural nodules, raising the question of whether they represent independent or metastatic growth processes. To investigate the clonality patterns of MM, we used the HUMARA (Human Androgen Receptor) assay to examine 14 sporadic and 2 familial Malignant Mesotheliomas (MM). Of 16 specimens studied, 15 were informative and 14/15 revealed two electrophoretically distinct methylated HUMARA alleles, indicating a polyclonal origin for these tumors. This discovery has important clinical implications, because an accurate assessment of tumor clonality is key to the design of novel molecular strategies for the treatment of MM.Keywords: malignant mesothelioma, clonal origin, HUMARA, sarcomas
Procedia PDF Downloads 458685 Coating of Polyelectrolyte Multilayer Thin Films on Poly(S/EGDMA) HIPE Loaded with Hydroxyapatite as a Scaffold for Tissue Engineering Application
Authors: Kornkanok Noulta, Pornsri Pakeyangkoon, Stephen T. Dubas, Pomthong Malakul, Manit Nithithanakul
Abstract:
In recent years, interest in the development of material for tissue engineering application has increased considerably. Poly(High Internal Phase Emulsion) (PolyHIPE) foam is a material that is good candidate for used in tissue engineering application due to its 3D structure and highly porous with interconnected pore. The PolyHIPE was prepared from poly (styrene/ethylene glycol dimethacrylate) through high internal phase emulsion polymerization technique and loaded with hydroxyapatite (HA) to improve biocompatibility. To further increase hydrophilicity of the obtained polyHIPE, layer-by-layer polyelectrolyte multilayers (PEM) technique was used. A surface property of polyHIPE was characterized by contact angle measurement. Morphology and pore size was observed by scanning electron microscope (SEM). The cell viability was revealed by the 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay technique.Keywords: polyelectrolyte multilayer thin film, high internal phase emulsion, polyhipe foam, scaffold, tissue engineering
Procedia PDF Downloads 351684 The Construction of a Probiotic Lactic Acid Bacterium Expressing Acid-Resistant Phytase Enzyme
Authors: R. Majidzadeh Heravi, M. Sankian, H. Kermanshahi, M. R. Nassiri, A. Heravi Moussavi, S. A. Lari, A. R. Varasteh
Abstract:
The use of probiotics engineered to express specific enzymes has been the subject of considerable attention in poultry industry because of increased nutrient availability and reduced cost of enzyme supplementation. Phytase enzyme is commonly added to poultry feed to improve digestibility and availability of phosphorus from plant sources. To construct a probiotic with potential of phytate degradation, phytase gene (appA) from E. coli was cloned and transformed into two probiotic bacteria Lactobacillus salivarius and Lactococcus lactis. L. salivarous showed plasmid instability, unable to express the gene. The expression of appA gene in L. lactis was analyzed by detecting specific RNA and zymography assay. Phytase enzyme was isolated from cellular extracts of recombinant L. lactis, showing a 46 kDa band upon the SDS-PAGE analysis. Zymogram also confirmed the phytase activity of the 46 kDa band corresponding to the enzyme. An enzyme activity of 4.9U/ml was obtained in cell extracts of L. lactis. The growth of native and recombinant L. lactis was similar in the presence of two concentrations of ox bile.Keywords: Lactobacillus salivarus, Lactococcuslactis, recombinant, phytase, poultry
Procedia PDF Downloads 490683 Synthesis and Pharmaco-Potential Evaluation of Quinoline Hybrids
Authors: Paul Awolade, Parvesh Singh
Abstract:
The global threat of pathogenic resistance to available therapeutic agents has become a menace to clinical practice, public health and man’s existence inconsequential. This has therefore led to an exigency in the development of new molecular scaffolds with profound activity profiles. In this vein, a versatile synthetic tool for accessing new molecules by incorporating two or more pharmacophores into a single entity with the unique ability to be recognized by multiple receptors hence leading to an improved bioactivity, known as molecular hybridization, has been explored with tremendous success. Accordingly, aware of the similarity in pharmacological activity spectrum of quinoline and 1,2,3-triazole pharmacophores such as; anti-Alzheimer, anticancer, anti-HIV, antimalarial and antimicrobial to mention but a few, the present study sets out to synthesize hybrids of quinoline and 1,2,3-triazole. The hybrids were accessed via click chemistry using copper catalysed azide-alkyne 1,3-dipolar cycloaddition reaction. All synthesized compounds were evaluated for their pharmaco-potential in an antimicrobial assay out of which the 3-OH derivative emerged as the most active with MIC value of 4 μg/mL against Cryptococcus neoformans; a value superior to standard Fluconazole and comparable to Amphotericin B. Structures of synthesized hybrids were elucidated using appropriate spectroscopic techniques (1H, 13C and 2D NMR, FT-IR and HRMS).Keywords: bioisostere, click chemistry, molecular hybridization, quinoline, 1, 2, 3-triazole
Procedia PDF Downloads 129682 Extracellular Protein Secreted by Bacillus subtilis ATCC21332 in the Presence of Streptomycin Sulfate
Authors: M. N. Hanina, M. Hairul Shahril, I. Ismatul Nurul Asyikin, A. K. Abdul Jalil, M. R. Salina, M. R. Maryam, M. Rosfarizan
Abstract:
The extracellular proteins secreted by bacteria may be increased in stressful surroundings, such as in the presence of antibiotics. It appears that many antibiotics, when used at low concentrations, have in common the ability to activate or repress gene transcription, which is distinct from their inhibitory effect. There have been comparatively few studies on the potential of antibiotics as a specific chemical signal that can trigger a variety of biological functions. Therefore, this study was carried out to determine the effect of Streptomycin Sulfate in regulating extracellular proteins secreted by Bacillus subtilis ATCC21332. Results of Microdilution assay showed that the Minimum Inhibition Concentration (MIC) of Streptomycin Sulfate on B. subtilis ATCC21332 was 2.5 mg/ml. The bacteria cells were then exposed to Streptomycin Sulfate at concentration of 0.01 MIC before being further incubated for 48h to 72 h. The extracellular proteins secreted were then isolated and analyzed by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). Proteins profile revealed that three additional bands with approximate sizes of 30 kDa, 22 kDa and 23 kDa were appeared for the treated bacteria with Streptomycin Sulfate. Thus, B. subtilis ATCC21332 in stressful condition with the presence of Streptomycin Sulfate at low concentration could induce the extracellular proteins secretion.Keywords: Bacillus subtilis ATCC21332, streptomycin sulfate, extracellular proteins, antibiotics
Procedia PDF Downloads 284681 Synthesis, Biological Evaluation and Molecular Modeling Studies on Chiral Chloroquine Analogues as Antimalarial Agents
Authors: Srinivasarao Kondaparla, Utsab Debnath, Awakash Soni, Vasantha Rao Dola, Manish Sinha, Kumkum Kumkum Srivastava, Sunil K. Puri, Seturam B. Katti
Abstract:
In a focused exploration, we have designed synthesized and biologically evaluated chiral conjugated new chloroquine (CQ) analogs with substituted piperazines as antimalarial agents. In vitro as well as in vivo studies revealed that compound 7c showed potent activity [for in vitro IC₅₀= 56.98nM (3D7), 97.76nM (K1); for in vivo (up to at the dose of 12.5 mg/kg); SI = 3510] as a new lead of antimalarial agent. Other compounds 6b, 6d, 7d, 7h, 8c, 8d, 9a, and 9c are also showing moderate activity against CQ-sensitive (3D7) strain and superior activity against resistant (K1) strain of P. falciparum. Furthermore, we have carried out docking and 3D-QSAR studies of all in-house data sets (168 molecules) of chiral CQ analogs to explain the structure activity relationships (SAR). Our new findings specified the significance of H-bond interaction with the side chain of heme for biological activity. In addition, the 3D-QSAR study against 3D7 strain indicated the favorable and unfavorable sites of CQ analogs for incorporating steric, hydrophobic and electropositive groups to improve the antimalarial activity.Keywords: piperazines, CQ-sensitive strain-3D7, in-vitro and in-vivo assay, docking, 3D-QSAR
Procedia PDF Downloads 171680 Mutagenicity Evaluation of Locally Produced Biphasic Calcium Phosphate Using Ames Test
Authors: Nur Fathin Alia Che Wahab, Thirumulu Ponnuraj Kannan, Zuliani Mahmood, Ismail Ab. Rahman, Hanafi Ismail
Abstract:
Locally produced Biphasic Calcium Phosphate (BCP) consists of hydroxyapatite (HA) and β-tricalcium phosphate (β-TCP) which is a promising material for dentin and bone regeneration as well as in tissue engineering applications. The study was carried out to investigate the mutagenic effect of locally produced BCP using Ames test. Mutagenicity was evaluated with and without the addition of metabolic activation system (S9). This study was performed on Salmonella typhimurium TA98, TA102, TA1537, and TA1538 strains using preincubation assay method. The doses tested were 5000, 2500, 1250, 625, 313 µg/plate. Negative and positive controls were also included. The bacteria were incubated for 48 hours at 37 ± 0.5 °C. Then, the revertant colonies were counted. Data obtained were evaluated using non-statistical method. The mean number of revertant colonies in strains with and without S9 mix treated with locally produced BCP was less than double when compared to negative control for all the tested concentrations. The results from this study indicate that the locally produced BCP is non-mutagenic under the present test conditions.Keywords: ames test, biphasic calcium phosphate, dentin regeneration, mutagenicity
Procedia PDF Downloads 323679 Cytotoxicity of a Short Chain Fatty Acid Histone Deactylase Inhibitor on HCT116 Human Colorectal Carcinoma Cell Line
Authors: N. A. Kazemi Sefat, M. M. Mohammadi, J. Hadjati, S. Talebi, M. Ajami, H. Daneshvar
Abstract:
Colorectal cancer metastases result in a significant number of cancer related deaths. Histone deacetylase (HDAC) inhibitors induce growth arrest and apoptosis in a variety of human cancer cells. Sodium butyrate (SB) is a short chain fatty acid, belongs to HDAC inhibitors which is released in the colonic lumen as a consequence of fiber fermentation. In this study, we are about to assess the effect of sodium butyrate on HCT116 human colorectal carcinoma cell line. The viability of cells was measured by microscopic morphologic study and MTT assay. After 48 hours, treatments more than 10 mM lead to cell injury in HCT116 by increasing cell granulation and decreasing cell adhesion (p>0.05). After 72 hours, treatments at 10 mM and more lead to significant cell injury (p<0.05). Our results may suggest that the gene expression which is contributed in cell proliferation and apoptosis has been changed under pressure of HDAC inhibition.Keywords: colorectal cancer, sodium butyrate, cytotoxicity, MTT
Procedia PDF Downloads 361678 Self-Efficacy and Self-Worth of Elderly in Geriatric Institutions
Authors: Melasurej C. Francisco, Sophia D. Rusit
Abstract:
Old age is a record of one’s own life; this is the crucial phase for most. However, there are individuals who believe that old people retain self-efficacy and self-worth throughout their existence. Geriatric institutions focus on the health of elderly, in which they have been supported with medicines and therapies by clinician thus, indicating that these may suffice physical, emotional, and mental health of the elderly. This study focuses on (1) Describing the level or degree of self-efficacy; (2) Recognizing the extent of self-worth; (3) Determining the significant relationship between self-efficacy and self-worth. It is a mixed method design. A combination of correlational research and in-depth interview. Purposive sampling technique was used to select participants, considering that this assay focused on elderly in geriatric institutions, it follows that respondents and participants are at least sixty years of age and must be living inside the institution. 121 senior citizens took part in this study. Scores from both General Self-Efficacy Scale (GSE) and Rosenberg Self-Esteem Scale (RSES) showed varying levels of self-efficacy and self-worth. SE had μ=28.099, σ=6.6262, σ²=43.9067 while; SW had μ=14.9669, σ=5.3789, σ²28.9322 which denotes that rₒbₜ (121)=0.3164 is higher than rcᵢₜ which is 0.150. Although this exhibits the positive moderate correlation between SE and SW, the relationship between variables is weak. Likewise, the pᵥₐₗᵤₑ (pᵥₐₗᵤₑ=0.000406) is lower than the significance level alpha=0.01, thus, rejecting the null hypothesis, and accepting the alternative hypothesis.Keywords: elderly, geriatric, self-efficacy, self-worth
Procedia PDF Downloads 297677 Oncolytic Efficacy of Thymidine Kinase-Deleted Vaccinia Virus Strain Tiantan (oncoVV-TT) in Glioma
Authors: Seyedeh Nasim Mirbahari, Taha Azad, Mehdi Totonchi
Abstract:
Oncolytic viruses, which only replicate in tumor cells, are being extensively studied for their use in cancer therapy. A particular virus known as the vaccinia virus, a member of the poxvirus family, has demonstrated oncolytic abilities glioma. Treating Glioma with traditional methods such as chemotherapy and radiotherapy is quite challenging. Even though oncolytic viruses have shown immense potential in cancer treatment, their effectiveness in glioblastoma treatment is still low. Therefore, there is a need to improve and optimize immunotherapies for better results. In this study, we have designed oncoVV-TT, which can more effectively target tumor cells while minimizing replication in normal cells by replacing the thymidine kinase gene with a luc-p2a-GFP gene expression cassette. Human glioblastoma cell line U251 MG, rat glioblastoma cell line C6, and non-tumor cell line HFF were plated at 105 cells in a 12-well plates in 2 mL of DMEM-F2 medium with 10% FBS added to each well. Then incubated at 37°C. After 16 hours, the cells were treated with oncoVV-TT at an MOI of 0.01, 0.1 and left in the incubator for a further 24, 48, 72 and 96 hours. Viral replication assay, fluorescence imaging and viability tests, including trypan blue and crystal violet, were conducted to evaluate the cytotoxic effect of oncoVV-TT. The finding shows that oncoVV-TT had significantly higher cytotoxic activity and proliferation rates in tumor cells in a dose and time-dependent manner, with the strongest effect observed in U251 MG. To conclude, oncoVV-TT has the potential to be a promising oncolytic virus for cancer treatment, with a more cytotoxic effect in human glioblastoma cells versus rat glioma cells. To assess the effectiveness of vaccinia virus-mediated viral therapy, we have tested U251mg and C6 tumor cell lines taken from human and rat gliomas, respectively. The study evaluated oncoVV-TT's ability to replicate and lyse cells and analyzed the survival rates of the tested cell lines when treated with different doses of oncoVV-TT. Additionally, we compared the sensitivity of human and mouse glioma cell lines to the oncolytic vaccinia virus. All experiments regarding viruses were conducted under biosafety level 2. We engineered a Vaccinia-based oncolytic virus called oncoVV-TT to replicate specifically in tumor cells. To propagate the oncoVV-TT virus, HeLa cells (5 × 104/well) were plated in 24-well plates and incubated overnight to attach to the bottom of the wells. Subsequently, 10 MOI virus was added. After 48 h, cells were harvested by scraping, and viruses were collected by 3 sequential freezing and thawing cycles followed by removal of cell debris by centrifugation (1500 rpm, 5 min). The supernatant was stored at −80 ◦C for the following experiments. To measure the replication of the virus in Hela, cells (5 × 104/well) were plated in 24-well plates and incubated overnight to attach to the bottom of the wells. Subsequently, 5 MOI virus or equal dilution of PBS was added. At the treatment time of 0 h, 24 h, 48 h, 72 h and 96 h, the viral titers were determined under the fluorescence microscope (BZ-X700; Keyence, Osaka, Japan). Fluorescence intensity was quantified using the imagej software according to the manufacturer’s protocol. For the isolation of single-virus clones, HeLa cells seeded in six-well plates (5×105 cells/well). After 24 h (100% confluent), the cells were infected with a 10-fold dilution series of TianTan green fluorescent protein (GFP)virus and incubated for 4 h. To examine the cytotoxic effect of oncoVV-TT virus ofn U251mg and C6 cell, trypan blue and crystal violet assay was used.Keywords: oncolytic virus, immune therapy, glioma, vaccinia virus
Procedia PDF Downloads 79676 Sheep Pox Virus Recombinant Proteins To Develop Subunit Vaccines
Authors: Olga V. Chervyakova, Elmira T. Tailakova, Vitaliy M. Strochkov, Kulyaisan T. Sultankulova, Nurlan T. Sandybayev, Lev G. Nemchinov, Rosemarie W. Hammond
Abstract:
Sheep pox is a highly contagious infection that OIE regards to be one of the most dangerous animal diseases. It causes enormous economic losses because of death and slaughter of infected animals, lower productivity, cost of veterinary and sanitary as well as quarantine measures. To control spread of sheep pox infection the attenuated vaccines are widely used in the Republic of Kazakhstan and other Former Soviet Union countries. In spite of high efficiency of live vaccines, the possible presence of the residual virulence, potential genetic instability restricts their use in disease-free areas that leads to necessity to exploit new approaches in vaccine development involving recombinant DNA technology. Vaccines on the basis of recombinant proteins are the newest generation of prophylactic preparations. The main advantage of these vaccines is their low reactogenicity and this fact makes them widely used in medical and veterinary practice for vaccination of humans and farm animals. The objective of the study is to produce recombinant immunogenic proteins for development of the high-performance means for sheep pox prophylaxis. The SPV proteins were chosen for their homology with the known immunogenic vaccinia virus proteins. Assay of nucleotide and amino acid sequences of the target SPV protein genes. It has been shown that four proteins SPPV060 (ortholog L1), SPPV074 (ortholog H3), SPPV122 (ortholog A33) and SPPV141 (ortholog B5) possess transmembrane domains at N- or C-terminus while in amino acid sequences of SPPV095 (ortholog А 4) and SPPV117 (ortholog А 27) proteins these domains were absent. On the basis of these findings the primers were constructed. Target genes were amplified and subsequently cloned into the expression vector рЕТ26b(+) or рЕТ28b(+). Six constructions (pSPPV060ΔТМ, pSPPV074ΔТМ, pSPPV095, pSPPV117, pSPPV122ΔТМ and pSPPV141ΔТМ) were obtained for expression of the SPV genes under control of T7 promoter in Escherichia coli. To purify and detect recombinant proteins the amino acid sequences were modified by adding six histidine molecules at C-terminus. Induction of gene expression by IPTG was resulted in production of the proteins with molecular weights corresponding to the estimated values for SPPV060, SPPV074, SPPV095, SPPV117, SPPV122 and SPPV141, i.e. 22, 30, 20, 19, 17 and 22 kDa respectively. Optimal protocol of expression for each gene that ensures high yield of the recombinant protein was identified. Assay of cellular lysates by western blotting confirmed expression of the target proteins. Recombinant proteins bind specifically with antibodies to polyhistidine. Moreover all produced proteins are specifically recognized by the serum from experimentally SPV-infected sheep. The recombinant proteins SPPV060, SPPV074, SPPV117, SPPV122 and SPPV141 were also shown to induce formation of antibodies with virus-neutralizing activity. The results of the research will help to develop a new-generation high-performance means for specific sheep pox prophylaxis that is one of key moments in animal health protection. The research was conducted under the International project ISTC # K-1704 “Development of methods to construct recombinant prophylactic means for sheep pox with use of transgenic plants” and under the Grant Project RK MES G.2015/0115RK01983 "Recombinant vaccine for sheep pox prophylaxis".Keywords: prophylactic preparation, recombinant protein, sheep pox virus, subunit vaccine
Procedia PDF Downloads 242675 Development of Peptide Inhibitors against Dengue Virus Infection by in Silico Design
Authors: Aussara Panya, Nunghathai Sawasdee, Mutita Junking, Chatchawan Srisawat, Kiattawee Choowongkomon, Pa-Thai Yenchitsomanus
Abstract:
Dengue virus (DENV) infection is a global public health problem with approximately 100 million infected cases a year. Presently, there is no approved vaccine or effective drug available; therefore, the development of anti-DENV drug is urgently needed. The clinical reports revealing the positive association between the disease severity and viral titer has been reported previously suggesting that the anti-DENV drug therapy can possibly ameliorate the disease severity. Although several anti-DENV agents showed inhibitory activities against DENV infection, to date none of them accomplishes clinical use in the patients. The surface envelope (E) protein of DENV is critical for the viral entry step, which includes attachment and membrane fusion; thus, the blocking of envelope protein is an attractive strategy for anti-DENV drug development. To search the safe anti-DENV agent, this study aimed to search for novel peptide inhibitors to counter DENV infection through the targeting of E protein using a structure-based in silico design. Two selected strategies has been used including to identify the peptide inhibitor which interfere the membrane fusion process whereby the hydrophobic pocket on the E protein was the target, the destabilization of virion structure organization through the disruption of the interaction between the envelope and membrane proteins, respectively. The molecular docking technique has been used in the first strategy to search for the peptide inhibitors that specifically bind to the hydrophobic pocket. The second strategy, the peptide inhibitor has been designed to mimic the ectodomain portion of membrane protein to disrupt the protein-protein interaction. The designed peptides were tested for the effects on cell viability to measure the toxic to peptide to the cells and their inhibitory assay to inhibit the DENV infection in Vero cells. Furthermore, their antiviral effects on viral replication, intracellular protein level and viral production have been observed by using the qPCR, cell-based flavivirus immunodetection and immunofluorescence assay. None of tested peptides showed the significant effect on cell viability. The small peptide inhibitors achieved from molecular docking, Glu-Phe (EF), effectively inhibited DENV infection in cell culture system. Its most potential effect was observed for DENV2 with a half maximal inhibition concentration (IC50) of 96 μM, but it partially inhibited other serotypes. Treatment of EF at 200 µM on infected cells also significantly reduced the viral genome and protein to 83.47% and 84.15%, respectively, corresponding to the reduction of infected cell numbers. An additional approach was carried out by using peptide mimicking membrane (M) protein, namely MLH40. Treatment of MLH40 caused the reduction of foci formation in four individual DENV serotype (DENV1-4) with IC50 of 24-31 μM. Further characterization suggested that the MLH40 specifically blocked viral attachment to host membrane, and treatment with 100 μM could diminish 80% of viral attachment. In summary, targeting the hydrophobic pocket and M-binding site on the E protein by using the peptide inhibitors could inhibit DENV infection. The results provide proof of-concept for the development of antiviral therapeutic peptide inhibitors to counter DENV infection through the use of a structure-based design targeting conserved viral protein.Keywords: dengue virus, dengue virus infection, drug design, peptide inhibitor
Procedia PDF Downloads 357674 Production of Poly-β-Hydroxybutyrate (PHB) by a Thermophilic Strain of Bacillus and Pseudomonas Species
Authors: Patience Orobosa Olajide
Abstract:
Five hydrocarbon degrading bacterial strains isolated from contaminated environment were investigated with respect to polyhydroxybutyrate (PHB) biosynthesis. Screening for bioplastic production was done on assay mineral salts agar medium containing 0.2% poly (3-hydroxybutyrate) as the sole carbon source. Two of the test bacteria were positive for PHB biosynthesis and were identified based on gram staining, biochemical tests, 16S rRNA gene sequence analysis as Pseudomonas aeruginosa and Bacillus licheniformis which grew at 37 and up to 65 °C respectively, thus suggesting the later to be thermotolerant. In this study, the effects of different carbon and nitrogen sources on PHB production in these strains were investigated. Maximum PHB production was obtained in 48 hr for the two strains and amounted to yields of 72.86 and 62.22 percentages for Bacillus licheniformis and Pseudomonas aeruginosa respectively. In these strains, glycine was the most efficient carbon sources for the production of PHB compared with other carbon (glucose, lactose, sucrose, Arabinose) and nitrogen (L- glycine, L-cysteine, DL-Tryptophan, and Potassium Nitrate) sources. The screening of microbial strains for industrial PHB production should be based on several factors including the cell’s capability to mineralize an inexpensive substrate, rate of growth and the extent of polymer accumulation.Keywords: bacteria, poly-3-hydroxybutyrate (PHB), hydrocarbon, thermotolerant
Procedia PDF Downloads 197