Search results for: environmental virtues
1572 A Method to Assess Aspect of Sustainable Development: Walkability
Authors: Amna Ali Al-Saadi, Riken Homma, Kazuhisa Iki
Abstract:
Despite the fact that many places have successes in achieving some aspects of sustainable urban development, there are no scientific facts to convince decision makers. Also, each of them was developed to fulfill the need of specific city only. Therefore, objective method to generate the solutions from a successful case is the aim of this research. The questions were: how to learn the lesson from each case study; how to distinguish the potential criteria and negative one; snd how to quantify their effects in the future development. Walkability has been selected as a goal. This is because it has been found as a solution to achieve healthy life style as well as social, environmental and economic sustainability. Moreover, it has complication as every aspect of sustainable development. This research is stand on quantitative- comparative methodology in order to assess pedestrian oriented development. Three analyzed area (AAs) were selected. One site is located in Oman in which hypotheses as motorized oriented development, while two sites are in Japan where the development is pedestrian friendly. The study used Multi- criteria evaluation method (MCEM). Initially, MCEM stands on analytic hierarchy process (AHP). The later was structured into main goal (walkability), objectives (functions and layout) and attributes (the urban form criteria). Secondly, the GIS were used to evaluate the attributes in multi-criteria maps. Since each criterion has different scale of measurement, all results were standardized by z-score and used to measure the co-relations among criteria. As results, different scenario was generated from each AA. MCEM (AHP-OWA)-GIS measured the walkability score and determined the priority of criteria development in the non-walker friendly environment. The comparison criteria for z-score presented a measurable distinguished orientation of development. This result has been used to prove that Oman is motorized environment while Japan is walkable. Also, it defined the powerful criteria and week criteria regardless to the AA. This result has been used to generalize the priority for walkable development. In conclusion, the method was found successful in generate scientific base for policy decisions.Keywords: walkability, policy decisions, sustainable development, GIS
Procedia PDF Downloads 4401571 Study on Principals Using Change Leadership to Promote School Innovation: A Case Study of a Primary School in Taiwan
Authors: Chih-Wen Fan
Abstract:
Backgrounds/ Research goals : School improvement requires change leadership, which often means discomfort. Principals are the key people that determine the effectiveness of schools. In an era of organization’s pursuit of speed and effectiveness, school administration has to be accountable and innovative. Effective principals work to improve achievement by focusing on the administrative and teaching quality of improvement. However, there is a lack of literature addressing the relevant case studies on school change leadership. This article explores how principals can use change leadership to drive school change. It analyze the driving factors of principal changes in the case school, the beliefs of change leadership, specific methods, and what impact they have. Methods: This study applies the case study research method to the selected primary school located in an urban area for case study, which has achieved excellent performance after reform and innovation. The researchers selected an older primary school located in an urban area that was transformed into a high-performance primary school after changes were enacted by the principal. The selected case was recommended by three supervisors of the Education Department. The case school underwent leadership change by the new principal during his term, and won an award from the Ministry of Education. Total of 8 teachers are interviewed. The data encoding includes interviews and documents. Expected results/ conclusions: The conclusions of the study are, as follows: (1) The influence for Principal Lin's change leadership is from internal and external environmental development and change pressures. (2) The principal's belief in change leadership is to recognize the sense of crisis, and to create a climate of change and demand for change. (3) The principal's specific actions are intended to identify key members, resolve resistance, use innovative thinking, and promote organizational learning. (4) Principal Lin's change leadership can enhance the professional functions of all employees through appropriate authorization. (5) The effectiveness of change leadership lies in teachers' participation in decision-making; the school's reputation has been enhanced through featured courses.Keywords: change leadership, empowerment, crisis awareness, case study
Procedia PDF Downloads 1411570 Investigation of Produced and Ground Water Contamination of Al Wahat Area South-Eastern Part of Sirt Basin, Libya
Authors: Khalifa Abdunaser, Salem Eljawashi
Abstract:
Study area is threatened by numerous petroleum activities. The most important risk is associated with dramatic dangers of misuse and oil and gas pollutions, such as significant volumes of produced water, which refers to waste water generated during the production of oil and natural gas and disposed on the surface surrounded oil and gas fields. This work concerns the impact of oil exploration and production activities on the physical and environment fate of the area, focusing on the investigation and observation of crude oil migration as toxic fluid. Its penetration in groundwater resulted from the produced water impacted by oilfield operations disposed to the earth surface in Al Wahat area. Describing the areal distribution of the dominant groundwater quality constituents has been conducted to identify the major hydro-geochemical processes that affect the quality of water and to evaluate the relations between rock types and groundwater flow to the quality and geochemistry of water in Post-Eocene aquifer. The chemical and physical characteristics of produced water, where it is produced, and its potential impacts on the environment and on oil and gas operations have been discussed. Field work survey was conducted to identify and locate a large number of monitoring wells previously drilled throughout the study area. Groundwater samples were systematically collected in order to detect the fate of spills resulting from the various activities at the oil fields in the study area. Spatial distribution maps of the water quality parameters were built using Kriging methods of interpolation in ArcMap software. Thematic maps were generated using GIS and remote sensing techniques, which were applied to include all these data layers as an active database for the area for the purpose of identifying hot spots and prioritizing locations based on their environmental conditions as well as for monitoring plans.Keywords: Sirt Basin, produced water, Al Wahat area, Ground water
Procedia PDF Downloads 1431569 An Exploration of German Tourists’ Market Demand Towards Ethiopian Tourist Destinations
Authors: Dagnew Dessie Mengie
Abstract:
The purpose of this study was to investigate German tourists' demand for Ethiopian tourism destinations. The author has made every effort to identify the differences in the preferences of German visitors’ demand in Ethiopia comparing with Egypt, Kenya, Tanzania, and South African tourism sectors if they are invited to visit at the same time. However, the demand for international tourism for Ethiopia currently lags behind these African countries. Therefore, to offer demand-driven tourism products, the Ethiopian government and tour and travel operators need to understand the important factors that affect international tourists’ decision to visit Ethiopian tourist destinations. The aim of this study was to analyze German Tourists’ Demand for Ethiopian destinations. The researcher aimed to identify the demand for German tourists’ preference for Ethiopian tourist destinations compared to the above-mentioned African countries. For collecting and analysing data for this study, both quantitative and qualitative methods of research are being used in this study. The most significant data are collected by using the primary data collection method i.e. survey and interviews which are the most and large number of potential responses and feedback from nine German active tourists,12 Ethiopian tourism officials, four African embassies, and four well functioning private tour companies and secondary data collected from books, journals, previous research and electronic websites. Based on the data analysis of the information gathered from interviews and questionnaires, the study disclosed that the majority of German tourists do have not that high demand for Ethiopian Tourist destinations due to the following reasons: (1) Many Germans are fascinated by adventures and safari and simply want to lie on the beach and relax. These interests have leaded them to look for other African countries which have these accesses. (2) Uncomfortable infrastructure and transport problems are attributed to the decreasing number of German tourists in the country. (3) Inadequate marketing operation of the Ethiopian Tourism Authority and its delegates in advertising and clarifying the above irregularities which are raised by the tourists.Keywords: environmental benefits of tourism, social benefits of tourism, economic benefits of tourism, political factors on tourism
Procedia PDF Downloads 421568 Liquid Nitrogen as Fracturing Method for Hot Dry Rocks in Kazakhstan
Authors: Sotirios Longinos, Anna Loskutova, Assel Tolegenova, Assem Imanzhussip, Lei Wang
Abstract:
Hot, dry rock (HDR) has substantial potential as a thermal energy source. It has been exploited by hydraulic fracturing to extract heat and generate electricity, which is a well-developed technique known for creating the enhanced geothermal systems (EGS). These days, LN2 is being tested as an environmental friendly fracturing fluid to generate densely interconnected crevices to augment heat exchange efficiency and production. This study examines experimentally the efficacy of LN2 cryogenic fracturing for granite samples in Kazakhstan with immersion method. A comparison of two different experimental models is carried out. The first mode is rock heating along with liquid nitrogen treatment (heating with freezing time), and the second mode is multiple times of heating along with liquid nitrogen treatment (heating with LN2 freezing-thawing cycles). The experimental results indicated that with multiple heating and LN2-treatment cycles, the permeability of granite first ameliorates with increasing number of cycles and later reaches a plateau after a certain number of cycles. On the other hand, density, P-wave velocity, uniaxial compressive strength, elastic modulus, and tensile strength indicate a downward trend with increasing heating and treatment cycles. The thermal treatment cycles do not seem to have an obvious effect on the Poisson’s ratio. The changing rate of granite rock properties decreases as the number of cycles increases. The deterioration of granite primarily happens within the early few cycles. The heating temperature during the cycles shows an important influence on the deterioration of granite. More specifically, mechanical deterioration and permeability amelioration become more remarkable as the heating temperature increases.LN2 fracturing generates many positives compared to conventional fracturing methods such as little water consumption, requirement of zero chemical additives, lessening of reservoir damage, and so forth. Based on the experimental observations, LN2 can work as a promising waterless fracturing fluid to stimulate hot, dry rock reservoirs.Keywords: granite, hydraulic fracturing, liquid nitrogen, Kazakhstan
Procedia PDF Downloads 1661567 Improved Clothing Durability as a Lifespan Extension Strategy: A Framework for Measuring Clothing Durability
Authors: Kate E Morris, Mark Sumner, Mark Taylor, Amanda Joynes, Yue Guo
Abstract:
Garment durability, which encompasses physical and emotional factors, has been identified as a critical ingredient in producing clothing with increased lifespans, battling overconsumption, and subsequently tackling the catastrophic effects of climate change. Eco-design for Sustainable Products Regulation (ESPR) and Extended Producer Responsibility (EPR) schemes have been suggested and will be implemented across Europe and the UK which might require brands to declare a garment’s durability credentials to be able to sell in that market. There is currently no consistent method of measuring the overall durability of a garment. Measuring the physical durability of garments is difficult and current assessment methods lack objectivity and reliability or don’t reflect the complex nature of durability for different garment categories. This study presents a novel and reproducible methodology for testing and ranking the absolute durability of 5 commercially available garment types, Formal Trousers, Casual Trousers, Denim Jeans, Casual Leggings and Underwear. A total of 112 garments from 21 UK brands were assessed. Due to variations in end use, different factors were considered across the different garment categories when evaluating durability. A physical testing protocol was created, tailored to each category, to dictate the necessary test results needed to measure the absolute durability of the garments. Multiple durability factors were used to modulate the ranking as opposed to previous studies which only reported on single factors to evaluate durability. The garments in this study were donated by the signatories of the Waste Resource Action Programme’s (WRAP) Textile 2030 initiative as part of their strategy to reduce the environmental impact of UK fashion. This methodology presents a consistent system for brands and policymakers to follow to measure and rank various garment type’s physical durability. Furthermore, with such a methodology, the durability of garments can be measured and new standards for improving durability can be created to enhance utilisation and improve the sustainability of the clothing on the market.Keywords: circularity, durability, garment testing, ranking
Procedia PDF Downloads 391566 Feasibility Study on the Application of Waste Materials for Production of Sustainable Asphalt Mixtures
Authors: Farzaneh Tahmoorian, Bijan Samali, John Yeaman
Abstract:
Road networks are expanding all over the world during the past few decades to meet the increasing freight volumes created by the population growth and industrial development. At the same time, the rate of generation of solid wastes in the society is increasing with the population growth, technological development, and changes in the lifestyle of people. Thus, the management of solid wastes has become an acute problem. Accordingly, there is a need for greater efficiency in the construction and maintenance of road networks, in reducing the overall cost, especially the utilization of natural materials such as aggregates. An efficient means to reduce construction and maintenance costs of road networks is to replace natural (virgin) materials by secondary, recycled materials. Recycling will also help to reduce pressure on landfills and demand for extraction of natural virgin materials thus ensuring sustainability. Application of solid wastes in asphalt layer reduces not only environmental issues associated with waste disposal but also the demand for virgin materials which will subsequently result in sustainability. Therefore, this research aims to investigate the feasibility of the application of some of the waste materials such as glass, construction and demolition wastes, etc. as alternative materials in pavement construction, particularly flexible pavements. To this end, various combination of different waste materials in certain percentages is considered in designing the asphalt mixture. One of the goals of this research is to determine the optimum percentage of all these materials in the mixture. This is done through a series of tests to evaluate the volumetric properties and resilient modulus of the mixture. The information and data collected from these tests are used to select the adequate samples for further assessment through advanced tests such as triaxial dynamic test and fatigue test, in order to investigate the asphalt mixture resistance to permanent deformation and also cracking. This paper presents the results of these investigations on the application of waste materials in asphalt mixture for production of a sustainable asphalt mix.Keywords: asphalt, glass, pavement, recycled aggregate, sustainability
Procedia PDF Downloads 2371565 Relocation of Livestocks in Rural of Canakkale Province Using Remote Sensing and GIS
Authors: Melis Inalpulat, Tugce Civelek, Unal Kizil, Levent Genc
Abstract:
Livestock production is one of the most important components of rural economy. Due to the urban expansion, rural areas close to expanding cities transform into urban districts during the time. However, the legislations have some restrictions related to livestock farming in such administrative units since they tend to create environmental concerns like odor problems resulted from excessive manure production. Therefore, the existing animal operations should be moved from the settlement areas. This paper was focused on determination of suitable lands for livestock production in Canakkale province of Turkey using remote sensing (RS) data and GIS techniques. To achieve the goal, Formosat 2 and Landsat 8 imageries, Aster DEM, and 1:25000 scaled soil maps, village boundaries, and village livestock inventory records were used. The study was conducted using suitability analysis which evaluates the land in terms of limitations and potentials, and suitability range was categorized as Suitable (S) and Non-Suitable (NS). Limitations included the distances from main and crossroads, water resources and settlements, while potentials were appropriate values for slope, land use capability and land use land cover status. Village-based S land distribution results were presented, and compared with livestock inventories. Results showed that approximately 44230 ha area is inappropriate because of the distance limitations for roads and etc. (NS). Moreover, according to LULC map, 71052 ha area consists of forests, olive and other orchards, and thus, may not be suitable for building such structures (NS). In comparison, it was found that there are a total of 1228 ha S lands within study area. The village-based findings indicated that, in some villages livestock production continues on NS areas. Finally, it was suggested that organized livestock zones may be constructed to serve in more than one village after the detailed analysis complemented considering also political decisions, opinion of the local people, etc.Keywords: GIS, livestock, LULC, remote sensing, suitable lands
Procedia PDF Downloads 3001564 Chemical Composition and Characteristics of Organic Solvent Extracts from the Omani Seaweeds Melanothamnus Somalensis and Gelidium Omanense
Authors: Abdullah Al-Nassri, Ahmed Al-Alawi
Abstract:
Seaweeds are classified into three groups: red, green, and brown. Each group of seaweeds consists of several types that have differences in composition. Even at the species level, there are differences in some ingredients, although in general composition, they are the same. Environmental conditions, availability of nutrients, and maturity stage are the main reasons for composition differences. In this study, two red seaweed species, Melanothamnus somalensis & Gelidium omanense, were collected in September 2021 from Sadh (Dhofar governorate, Oman). Five organic solvents were used sequentially to achieve extraction. The solvents were applied in the following order: hexane, dichloromethane, ethyl acetate, acetone, and methanol. Preparative HPLC (PrepLC) was performed to fraction the extracts. The chemical composition was measured; also, total phenols, flavonoids, and tannins were investigated. The structure of the extracts was analyzed by Fourier-transform infrared spectroscopy (FTIR). Seaweeds demonstrated high differences in terms of chemical composition, total phenolic content (TPC), total flavonoid content (TFC), and total tannin content (TTC). Gelidium omanense showed high moisture content, lipid content and carbohydrates (9.8 ± 0.15 %, 2.29 ± 0.09 % and 70.15 ± 0.42 %, respectively) compared to Melanothamnus somalensis (6.85 ± 0.01 %, 2.05 ± 0.12 % and 52.7 ± 0.36 % respectively). However, Melanothamnus somalensis showed high ash content and protein (27.68 ± 0.40 % and 52.7 ± 0.36 % respectively) compared to Gelidium omanense (8.07 ± 0.39 % and 9.70 ± 0.22 % respectively). Melanothamnus somalensis showed higher elements and minerals content, especially sodium and potassium. This is attributed to the jelly-like structure of Melanothamnus somalensis, which allows storage of more solutes compared to the leafy-like structure of Gelidium omanense. Furthermore, Melanothamnus somalensis had higher TPC in all fractions except the hexane fraction than Gelidium omanense. Except with hexane, TFC in the other solvents’ extracts was significantly different between Gelidium omanense and Melanothamnus somalensis. In all fractions, except dichloromethane and ethyl acetate fractions, there were no significant differences in TTC between Gelidium omanense and Melanothamnus somalensis. FTIR spectra showed variation between fractions, which is an indication of different functional groups.Keywords: chemical composition, organic extract, Omani seaweeds, biological activity, FTIR
Procedia PDF Downloads 711563 Investigating the Effect of Ceramic Thermal Barrier Coating on Diesel Engine with Lemon Oil Biofuel
Authors: V. Karthickeyan
Abstract:
The demand for energy is anticipated to increase, due to growing urbanization, industrialization, upgraded living standards and cumulatively increasing human population. The general public is becoming gradually aware of the diminishing fossil fuel resources along with the environmental issues, and it has become clear that biofuel is intended to make significant support to the forthcoming energy needs of the native and industrial sectors. Nowadays, the investigation on biofuels obtained from peels of fruits and vegetables have gained the consideration as an environment-friendly alternative to diesel. In the present work, biofuel was produced from non-edible Lemon Oil (LO) using steam distillation process. LO is characterized by its beneficial aspects like low kinematic viscosity and enhanced calorific value which provides better fuel atomization and evaporation. Furthermore, the heating values of the biofuels are approximately equal to diesel. A single cylinder, four-stroke diesel engine was used for this experimentation. An engine modification technique namely Thermal Barrier Coating (TBC) was attempted. Combustion chamber components were thermally coated with ceramic material namely partially stabilized zirconia (PSZ). The benefit of thermal barrier coating is to diminish the heat loss from engine and transform the collected heat into piston work. Performance characteristics like Brake Thermal Efficiency (BTE) and Brake Specific Fuel Consumption (BSFC) were analyzed. Combustion characteristics like in-cylinder pressure and heat release rate were analyzed. In addition, the following engine emissions namely nitrogen oxide (NO), carbon monoxide (CO), hydrocarbon (HC), and smoke were measured. The acquired performance combustion and emission characteristics of uncoated engine were compared with PSZ coated engine. From the results, it was perceived that the LO biofuel may be considered as the prominent alternative in the near prospect with thermal barrier coating technique to enrich the performance, combustion and emission characteristics of diesel engine.Keywords: ceramic material, thermal barrier coating, biofuel and diesel engine
Procedia PDF Downloads 1561562 Sustainable Mitigation of Urban Stormwater Runoff: The Applicability of Green Infrastructure Approach in Finnish Climate
Authors: Rima Almalla
Abstract:
The purpose of the research project in Geography is to evaluate the applicability of urban green infrastructure approach in Finnish climate. The key focus will be on the operation and efficiency of green infrastructure on urban stormwater management. Green infrastructure approach refers to the employment of sufficient green covers as a modern and smart environmental solution to improve the quality of urban environments. Green infrastructure provides a wide variety of micro-scale ecosystem services, such as stormwater runoff management, regulation of extreme air temperatures, reduction of energy consumption, plus a variety of social benefits and human health and wellbeing. However, the cold climate of Finland with seasonal ground frost, snow cover and relatively short growing season bring about questions of whether green infrastructure works as efficiently as expected. To tackle this question, green infrastructure solutions will be studied and analyzed with manifold methods: stakeholder perspectives regarding existing and planned GI solutions will be collected by web based questionnaires, semi structured interviews and group discussions, and analyzed in both qualitative and quantitative methods. Targeted empirical field campaigns will be conducted on selected sites. A systematic literature review with global perspective will support the analyses. The findings will be collected, compiled and analyzed using geographic information systems (GIS). The findings of the research will improve our understanding of the functioning of green infrastructure in the Finnish environment in urban stormwater management, as a landscape element for citizens’ wellbeing, and in climate change mitigation and adaptation. The acquired information will be shared with stakeholders in interactive co-design workshops. As green covers have great demand and potential globally, the conclusions will have relevance in other cool climate regions and may support Finnish business in green infrastructure sector.Keywords: climate change adaptation, climate change, green infrastructure, stormwater
Procedia PDF Downloads 1691561 Environmental Assessment of Single-Industry Towns in Kazakhstan in the Context of Sustainable Development Goals
Authors: Almira Daulbayeva, Zhauhar Yessenkulova, Rassima Salimbayeva
Abstract:
In this article, the regularities of the modern spatial and temporal distribution of main pollutants in the air space of single-industry towns are considered, and the level of pollutant emissions into the atmospheric air by urban areas of the Karaganda region is determined. We selected such cities as Temirtau, Abay, Saran, and Balkhash. Ecological and hygienic assessment of atmospheric air pollution in these cities for 2020 - 2023 and the beginning of 2024 was carried out on the materials of annual Information Bulletins on the state of the environment of the Republic of Kazakhstan, bulletins ‘On the state of atmospheric air in Karaganda region’. The general assessment of atmospheric air pollution in the territory was high, especially in 2020 and 2021, and corresponded to the level of ‘tense’. According to the results of the analysis of atmospheric air pollution, it was revealed that enterprises of thermal power engineering and mining industry (mines, enrichment plants, metallurgical production of ‘ArcelorMittal’ JSC) carry out emission of significant amounts of pollutants, particulate matter, and heavy metals into the atmosphere. The total number of ingredients present in the atmosphere of the city exceeds dozens, many of which belong to the first and second categories of hazard. The main pollutants were sulphur dioxide, carbon oxides, and nitrogen dioxide, as well as suspended solids. We have also considered and studied some types of major diseases of the population living in the region in different conditions in recent years. According to the results of the study, the cities with the highest rates and levels of morbidity were identified: Temirtau, Shakhtinsk, Abay, located in Karaganda region, where the main industrial facilities are concentrated, emitting harmful pollutants from ‘Corporation Kazakhmys’ LLP, ‘Arcelor Mittal’ JSC, Balkhash Mining and Metallurgical Combine.Keywords: atmospheric air, pollutants, single-industry towns, Karaganda region, morbidity, sustainable development
Procedia PDF Downloads 261560 Spatial Data Science for Data Driven Urban Planning: The Youth Economic Discomfort Index for Rome
Authors: Iacopo Testi, Diego Pajarito, Nicoletta Roberto, Carmen Greco
Abstract:
Today, a consistent segment of the world’s population lives in urban areas, and this proportion will vastly increase in the next decades. Therefore, understanding the key trends in urbanization, likely to unfold over the coming years, is crucial to the implementation of sustainable urban strategies. In parallel, the daily amount of digital data produced will be expanding at an exponential rate during the following years. The analysis of various types of data sets and its derived applications have incredible potential across different crucial sectors such as healthcare, housing, transportation, energy, and education. Nevertheless, in city development, architects and urban planners appear to rely mostly on traditional and analogical techniques of data collection. This paper investigates the prospective of the data science field, appearing to be a formidable resource to assist city managers in identifying strategies to enhance the social, economic, and environmental sustainability of our urban areas. The collection of different new layers of information would definitely enhance planners' capabilities to comprehend more in-depth urban phenomena such as gentrification, land use definition, mobility, or critical infrastructural issues. Specifically, the research results correlate economic, commercial, demographic, and housing data with the purpose of defining the youth economic discomfort index. The statistical composite index provides insights regarding the economic disadvantage of citizens aged between 18 years and 29 years, and results clearly display that central urban zones and more disadvantaged than peripheral ones. The experimental set up selected the city of Rome as the testing ground of the whole investigation. The methodology aims at applying statistical and spatial analysis to construct a composite index supporting informed data-driven decisions for urban planning.Keywords: data science, spatial analysis, composite index, Rome, urban planning, youth economic discomfort index
Procedia PDF Downloads 1361559 A Review of Hypnosis Uses for Anxiety and Phobias Treatment
Authors: Fleura Shkëmbi, Sevim Mustafa, Naim Fanaj
Abstract:
Hypnosis, often known as cognitive therapy, is a sort of mind-body psychotherapy. A professional and certified hypnotist or hypnotherapist guides the patient into this extreme level of focus and relaxation during the session by utilizing verbal cues, repetition, and imagery. In recent years, hypnotherapy has gained popularity in the treatment of a variety of disorders, including anxiety and particular phobias. The term "phobia" is commonly used to define fear of a certain trigger. When faced with potentially hazardous situations, the brain naturally experiences dread. While a little dread here and there may keep us safe, phobias can drastically reduce our quality of life. In summary, persons who suffer from anxiety are considered to see particular environmental situations as dangerous, but those who do not suffer from anxiety do not. Hypnosis is essential in the treatment of anxiety disorders. Hypnosis can help patients minimize their anxiety symptoms. This broad concept has aided in the development of models and therapies for anxiety disorders such as generalized anxiety disorder, panic attacks, hypochondria, and obsessional disorders. Hypnosis techniques are supposed to be attentive and mental pictures, which is conceivable; this is why they're associated with improved working memory and visuospatial abilities. In this sense, the purpose of this study is to determine how effectively specific therapeutic methods perform in treating persons with anxiety and phobias. In addition to cognitive-behavioral therapy and other therapies, the approaches emphasized the use of therapeutic hypnosis. This study looks at the use of hypnosis and related psychotherapy procedures in the treatment of anxiety disorders. Following a discussion of the evolution of hypnosis as a therapeutic tool, neurobiological research is used to demonstrate the influence of hypnosis on the change of perception in the brain. The use of hypnosis in the treatment of phobias, stressful situations, and posttraumatic stress disorder is examined, as well as similarities between the hypnotic state and dissociative reactions to trauma. Through an extensive literature evaluation, this study will introduce hypnotherapy procedures that result in more successful anxiety and phobia treatment.Keywords: anxiety, hypnosis, hypnotherapy, phobia, technique, state
Procedia PDF Downloads 1201558 Juxtaposing South Africa’s Private Sector and Its Public Service Regarding Innovation Diffusion, to Explore the Obstacles to E-Governance
Authors: Petronella Jonck, Freda van der Walt
Abstract:
Despite the benefits of innovation diffusion in the South African public service, implementation thereof seems to be problematic, particularly with regard to e-governance which would enhance the quality of service delivery, especially accessibility, choice, and mode of operation. This paper reports on differences between the public service and the private sector in terms of innovation diffusion. Innovation diffusion will be investigated to explore identified obstacles that are hindering successful implementation of e-governance. The research inquiry is underpinned by the diffusion of innovation theory, which is premised on the assumption that innovation has a distinct channel, time, and mode of adoption within the organisation. A comparative thematic document analysis was conducted to investigate organisational differences with regard to innovation diffusion. A similar approach has been followed in other countries, where the same conceptual framework has been used to guide document analysis in studies in both the private and the public sectors. As per the recommended conceptual framework, three organisational characteristics were emphasised, namely the external characteristics of the organisation, the organisational structure, and the inherent characteristics of the leadership. The results indicated that the main difference in the external characteristics lies in the focus and the clientele of the private sector. With regard to organisational structure, private organisations have veto power, which is not the case in the public service. Regarding leadership, similarities were observed in social and environmental responsibility and employees’ attitudes towards immediate supervision. Differences identified included risk taking, the adequacy of leadership development, organisational approaches to motivation and involvement in decision making, and leadership style. Due to the organisational differences observed, it is recommended that differentiated strategies be employed to ensure effective innovation diffusion, and ultimately e-governance. It is recommended that the results of this research be used to stimulate discussion on ways to improve collaboration between the mentioned sectors, to capitalise on the benefits of each sector.Keywords: E-governance, ICT, innovation diffusion, comparative analysis
Procedia PDF Downloads 3551557 Adsorptive Removal of Cd(II) Ions from Aqueous Systems by Wood Ash-Alginate Composite Beads
Authors: Tichaona Nharingo, Hope Tauya, Mambo Moyo
Abstract:
Wood ash has been demonstrated to have favourable adsorption capacity for heavy metal ions but suffers the application problem of difficult to separate/isolate from the batch adsorption systems. Fabrication of wood ash beads using multifunctional group and non-toxic carbohydrate, alginate, may improve the applicability of wood ash in environmental pollutant remediation. In this work, alginate-wood ash beads (AWAB) were fabricated and applied to the removal of cadmium ions from aqueous systems. The beads were characterized by FTIR, TGA/DSC, SEM-EDX and their pHZPC before and after the adsorption of Cd(II) ions. Important adsorption parameters i.e. pH, AWAB dosage, contact time and ionic strength were optimized and the effect of initial concentration of Cd(II) ions to the adsorption process was established. Adsorption kinetics, adsorption isotherms, adsorption mechanism and application of AWAB to real water samples spiked with Cd(II) ions were ascertained. The composite adsorbent was characterized by a heterogeneous macro pore surface comprising of metal oxides, multiple hydroxyl groups and carbonyl groups that were involved in electrostatic interaction and Lewis acid-base interactions with the Cd(II) ions. The pseudo second order and the Freundlich isotherm models best fitted the adsorption kinetics and isotherm data respectively suggesting chemical sorption process and surface heterogeneity. The presence of Pb(II) ions inhibited the adsorption of Cd(II) ions (reduced by 40 %) attributed to the competition for the adsorption sites. The Cd(II) loaded beads could be regenerated using 0.1 M HCl and could be applied to four sorption-desorption cycles without significant loss in its initial adsorption capacity. The high maximum adsorption capacity, stability, selectivity and reusability of AWAB make the adsorbent ideal for application in the removal of Cd(II) ions from real water samples. Column type adsorption experiments need to be explored to establish the potential of the adsorbent in removing Cd(II) ions using continuous flow systems.Keywords: adsorption, Cd(II) ions, regeneration, wastewater, wood ash-alginate beads
Procedia PDF Downloads 2471556 Aero-Hydrodynamic Model for a Floating Offshore Wind Turbine
Authors: Beatrice Fenu, Francesco Niosi, Giovanni Bracco, Giuliana Mattiazzo
Abstract:
In recent years, Europe has seen a great development of renewable energy, in a perspective of reducing polluting emissions and transitioning to cleaner forms of energy, as established by the European Green New Deal. Wind energy has come to cover almost 15% of European electricity needs andis constantly growing. In particular, far-offshore wind turbines are attractive from the point of view of exploiting high-speed winds and high wind availability. Considering offshore wind turbine siting that combines the resources analysis, the bathymetry, environmental regulations, and maritime traffic and considering the waves influence in the stability of the platform, the hydrodynamic characteristics of the platform become fundamental for the evaluation of the performances of the turbine, especially for the pitch motion. Many platform's geometries have been studied and used in the last few years. Their concept is based upon different considerations as hydrostatic stability, material, cost and mooring system. A new method to reach a high-performances substructure for different kinds of wind turbines is proposed. The system that considers substructure, mooring, and wind turbine is implemented in Orcaflex, and the simulations are performed considering several sea states and wind speeds. An external dynamic library is implemented for the turbine control system. The study shows the comparison among different substructures and the new concepts developed. In order to validate the model, CFD simulations will be performed by mean of STAR CCM+, and a comparison between rigid and elastic body for what concerns blades and tower will be carried out. A global model will be built to predict the productivity of the floating turbine according to siting, resources, substructure, and mooring. The Levelized Cost of Electricity (LCOE) of the system is estimated, giving a complete overview about the advantages of floating offshore wind turbine plants. Different case studies will be presented.Keywords: aero-hydrodynamic model, computational fluid dynamics, floating offshore wind, siting, verification, and validation
Procedia PDF Downloads 2161555 Identification of Toxic Metal Deposition in Food Cycle and Its Associated Public Health Risk
Authors: Masbubul Ishtiaque Ahmed
Abstract:
Food chain contamination by heavy metals has become a critical issue in recent years because of their potential accumulation in bio systems through contaminated water, soil and irrigation water. Industrial discharge, fertilizers, contaminated irrigation water, fossil fuels, sewage sludge and municipality wastes are the major sources of heavy metal contamination in soils and subsequent uptake by crops. The main objectives of this project were to determine the levels of minerals, trace elements and heavy metals in major foods and beverages consumed by the poor and non-poor households of Dhaka city and assess the dietary risk exposure to heavy metal and trace metal contamination and potential health implications as well as recommendations for action. Heavy metals are naturally occurring elements that have a high atomic weight and a density of at least 5 times greater than that of water. Their multiple industrial, domestic, agricultural, medical and technological applications have led to their wide distribution in the environment; raising concerns over their potential effects on human health and the environment. Their toxicity depends on several factors including the dose, route of exposure, and chemical species, as well as the age, gender, genetics, and nutritional status of exposed individuals. Because of their high degree of toxicity, arsenic, cadmium, chromium, lead, and mercury rank among the priority metals that are of public health significance. These metallic elements are considered systemic toxicants that are known to induce multiple organ damage, even at lower levels of exposure. This review provides an analysis of their environmental occurrence, production and use, potential for human exposure, and molecular mechanisms of toxicity, and carcinogenicity.Keywords: food chain, determine the levels of minerals, trace elements, heavy metals, production and use, human exposure, toxicity, carcinogenicity
Procedia PDF Downloads 2871554 Payment Subsidies for Environmentally-Friendly Agriculture on Rice Production in Japan
Authors: Danielle Katrina Santos, Koji Shimada
Abstract:
Environmentally-friendly agriculture has been promoted for over two decades as a response to the environmental challenges brought by climate change and biological loss. Located above the equator, it is possible that Japan may benefit from future climate change, yet Japan is also a rarely developed country located in the Asian Monsoon climate region, making it vulnerable to the impacts of climate change. In this regard, the Japanese government has initiated policies to adapt to the adverse effects of climate change through the promotion and popularization of environmentally-friendly farming practices. This study aims to determine profit efficiency among environmentally-friendly rice farmers in Shiga Prefecture using the Stochastic Frontier Approach. A cross-sectional survey was conducted among 66 farmers from top rice-producing cities through a structured questionnaire. Results showed that the gross farm income of environmentally-friendly rice farmers was higher by JPY 316,223.00/ha. Production costs were also found to be higher among environmentally-friendly rice farmers, especially on labor costs, which accounted for 32% of the total rice production cost. The resulting net farm income of environmentally-friendly rice farmers was only higher by JPY 18,044/ha. Results from the stochastic frontier analysis further showed that the profit efficiency of conventional farmers was only 69% as compared to environmentally-friendly rice farmers who had a profit efficiency of 76%. Furthermore, environmentally-friendly agriculture participation, other types of subsidy, educational level, and farm size were significant factors positively influencing profit efficiency. The study concluded that substitution of environmentally-friendly agriculture for conventional rice farming would result in an increased profit efficiency due to the direct payment subsidy and price premium received. The direct government policies that would strengthen the popularization of environmentally-friendly agriculture to increase the production of environmentally-friendly products and reduce pollution load to the Lake Biwa ecosystem.Keywords: profit efficiency, environmentally-friendly agriculture, rice farmers, direct payment subsidies
Procedia PDF Downloads 1471553 Technical Efficiency in Organic and Conventional Wheat Farms: Evidence from a Primary Survey from Two Districts of Ganga River Basin, India
Authors: S. P. Singh, Priya, Komal Sajwan
Abstract:
With the increasing spread of organic farming in India, costs, returns, efficiency, and social and environmental sustainability of organic vis-a-vis conventional farming systems have become topics of interest among agriculture scientists, economists, and policy analysts. A study on technical efficiency estimation under these farming systems, particularly in the Ganga River Basin, where the promotion of organic farming is incentivized, can help to understand whether the inputs are utilized to their maximum possible level and what measures can be taken to improve the efficiency. This paper, therefore, analyses the technical efficiency of wheat farms operating under organic and conventional farming systems. The study is based on a primary survey of 600 farms (300 organic ad 300 conventional) conducted in 2021 in two districts located in the Middle Ganga River Basin, India. Technical, managerial, and scale efficiencies of individual farms are estimated by applying the data envelopment analysis (DEA) methodology. The per hectare value of wheat production is taken as an output variable, and values of seeds, human labour, machine cost, plant nutrients, farm yard manure (FYM), plant protection, and irrigation charges are considered input variables for estimating the farm-level efficiencies. The post-DEA analysis is conducted using the Tobit regression model to know the efficiency determining factors. The results show that technical efficiency is significantly higher in conventional than organic farming systems due to a higher gap in scale efficiency than managerial efficiency. Further, 9.8% conventional and only 1.0% organic farms are found operating at the most productive scale size (MPSS), and 99% organic and 81% conventional farms at IRS. Organic farms perform well in managerial efficiency, but their technical efficiency is lower than conventional farms, mainly due to their relatively lower scale size. The paper suggests that technical efficiency in organic wheat can be increased by upscaling the farm size by incentivizing group/collective farming in clusters.Keywords: organic, conventional, technical efficiency, determinants, DEA, Tobit regression
Procedia PDF Downloads 1021552 Optimization of Water Desalination System Powered by High Concentrated Photovoltaic Panels in Kuwait Climate Conditions
Authors: Adel A. Ghoneim
Abstract:
Desalination using solar energy is an interesting option specifically at regions with abundant solar radiation since such areas normally have scarcity of clean water resources. Desalination is the procedure of eliminating dissolved minerals from seawater or brackish water to generate fresh water. In this work, a simulation program is developed to determine the performance of reverse osmosis (RO) water desalination plant powered by high concentrated photovoltaic (HCPV) panels in Kuwait climate conditions. The objective of such a photovoltaic thermal system is to accomplish a double output, i.e., co-generation of both electricity and fresh water that is applicable for rural regions with high solar irradiation. The suggested plan enables to design an RO plant that does not depend on costly batteries or additional land and significantly reduce the government costs to subsidize the water generation cost. Typical weather conditions for Kuwait is employed as input to the simulation program. The simulation program is utilized to optimize the system efficiency as well as the distillate water production. The areas and slopes of HCPV modules are varied to attain maximum yearly power production. Maximum yearly distillate production and HCPV energy generation are found to correspond to HCPV facing south with tilt of 27° (Kuwait latitude-3°). The power needed to produce 1 l of clean drinking water ranged from 2 to 8 kW h/m³, based on the salinity of the feed water and the system operating conditions. Moreover, adapting HCPV systems achieve an avoided greenhouse gases emission by about 1128 ton CO₂ annually. Present outcomes certainly illustrate environmental advantages of water desalination system powered by high concentrated photovoltaic systems in Kuwait climate conditions.Keywords: desalination, high concentrated photovoltaic systems, reverse osmosis, solar radiation
Procedia PDF Downloads 1421551 The Effect of Multiple Environmental Conditions on Acacia senegal Seedling’s Carbon, Nitrogen, and Hydrogen Contents: An Experimental Investigation
Authors: Abdelmoniem A. Attaelmanan, Ahmed A. H. Siddig
Abstract:
This study was conducted in light of continual global climate changes that projected increasing aridity, changes in soil fertility, and pollution. Plant growth and development largely depend on the combination of availing water and nutrients in the soil. Changes in the climate and atmospheric chemistry can cause serious effects on these growth factors. Plant carbon (C), nitrogen (N), and hydrogen (H) play a fundamental role in the maintenance of ecosystem structure and function. Hashab (Acacia senegal), which produces gum Arabic, supports dryland ecosystems in tropical zones by its potentiality to restore degraded soils; hence it is ecologically and economically important for the dry areas of sub-Saharan Africa. The study aims at investigating the effects of water stress (simulated drought) and poor soil type on Acacia senegal C, N, and H contents. Seven days old seedlings were assigned to the treatments in Split- plot design for four weeks. The main plot is irrigation interval (well-watered and water-stressed), and the subplot is soil types (silt and sand soils). Seedling's C%, N%, and H% were measured using CHNS-O Analyzer and applying Standard Test Method. Irrigation intervals and soil types had no effects on seedlings and leaves C%, N%, and H%, irrigation interval had affected stem C and H%, both irrigation intervals and soil types had affected root N% and interaction effect of water and soil was found on leaves and root's N%. Synthesis application of well-watered irrigation with soil that is rich in N and other nutrients would result in the greatest seedling C, N, and H content which will enhance growth and biomass accumulation and can play a crucial role in ecosystem productivity and services in the dryland regions.Keywords: Acacia senegal, Africa, climate change, drylands, nutrients biomass, Sub-Saharan, Sudan
Procedia PDF Downloads 1181550 Management of Autoimmune Diseases with Ayurveda
Authors: Simmi Chopra
Abstract:
In the last few years, there has been a surge of Autoimmune diseases that have become more like an epidemic all over the world. The reasons vary from stress, insufficient sleep, smoking, genetics, environmental pollution, adulterated foods, and a diet full of “the deadly white,” which is white sugar and white flour. Most of the people diagnosed with these diseases are given steroids, opioids, supplements, or elimination diets to manage their lives, but most of them continue suffering to varying degrees. On the other hand, Ayurveda can help manage autoimmune problems effectively. Ayurveda is a 5000 years old holistic medical system from India that has an individualistic approach where health problems are looked at from the lens of balancing body and mind and by targeting the root cause of the problem. A combination of diet and lifestyle according to Ayurvedic principles, Ayurvedic herbal formulations and Ayurvedic therapies can help in the management of autoimmune and other chronic diseases. Panchkarma, which is an intense six weeks detox method, helps balance our body and mind, and has been very effective in managing autoimmune problems. The paper will introduce the basic concepts of Ayurveda and describe the terminologies- doshas, agni and ama. The paper will discuss the importance of diet and lifestyle according to the individual’s imbalance in the three functional parameters - doshas, which govern every aspect of our body and mind, our cells and tissues. The significance of agni, which can be correlated to digestive strength and ama, which can be correlated to toxins that are formed in our body leading to health problems, will be outlined. The Ayurvedic pathophysiology of autoimmune diseases will be discussed with emphasis on Rheumatoid arthritis, Multiple sclerosis and Psoriasis. Ayurvedic management will be discussed for these autoimmune conditions. As Ayurveda is an individualistic system, one protocol will not work for everyone. Therefore, case studies with Ayurvedic protocols for the above autoimmune disease will be presented. Conclusion: Ayurveda can help in managing as well as arresting the progression of autoimmune problems. Ayurveda is an ancient medical system, is much more needed today than ever. It is a tried and tested holistic system which has been practiced for the past many generations in India.Keywords: ayurveda, autoimmune, diseases, nutrition
Procedia PDF Downloads 681549 Unveiling the Detailed Turn Off-On Mechanism of Carbon Dots to Different Sized MnO₂ Nanosensor for Selective Detection of Glutathione
Authors: Neeraj Neeraj, Soumen Basu, Banibrata Maity
Abstract:
Glutathione (GSH) is one of the most important biomolecules having small molecular weight, which helps in various cellular functions like regulation of gene, xenobiotic metabolism, preservation of intracellular redox activities, signal transduction, etc. Therefore, the detection of GSH requires huge attention by using extremely selective and sensitive techniques. Herein, a rapid fluorometric nanosensor is designed by combining carbon dots (Cdots) and MnO₂ nanoparticles of different sizes for the detection of GSH. The bottom-up approach, i.e., microwave method, was used for the preparation of the water soluble and greatly fluorescent Cdots by using ascorbic acid as a precursor. MnO₂ nanospheres of different sizes (large, medium, and small) were prepared by varying the ratio of concentration of methionine and KMnO₄ at room temperature, which was confirmed by HRTEM analysis. The successive addition of MnO₂ nanospheres in Cdots results fluorescence quenching. From the fluorescence intensity data, Stern-Volmer quenching constant values (KS-V) were evaluated. From the fluorescence intensity and lifetime analysis, it was found that the degree of fluorescence quenching of Cdots followed the order: large > medium > small. Moreover, fluorescence recovery studies were also performed in the presence of GSH. Fluorescence restoration studies also show the order of turn on follows the same order, i.e., large > medium > small, which was also confirmed by quantum yield and lifetime studies. The limits of detection (LOD) of GSH in presence of Cdots@different sized MnO₂ nanospheres were also evaluated. It was observed thatLOD values were in μM region and lowest in case of large MnO₂ nanospheres. The separation distance (d) between Cdots and the surface of different MnO₂ nanospheres was determined. The d values increase with increase in the size of the MnO₂ nanospheres. In summary, the synthesized Cdots@MnO₂ nanocomposites acted as a rapid, simple, economical as well as environmental-friendly nanosensor for the detection of GSH.Keywords: carbon dots, fluorescence, glutathione, MnO₂ nanospheres, turn off-on
Procedia PDF Downloads 1541548 Factors Affecting Visual Environment in Mine Lighting
Authors: N. Lakshmipathy, Ch. S. N. Murthy, M. Aruna
Abstract:
The design of lighting systems for surface mines is not an easy task because of the unique environment and work procedures encountered in the mines. The primary objective of this paper is to identify the major problems encountered in mine lighting application and to provide guidance in the solution of these problems. In the surface mining reflectance of surrounding surfaces is one of the important factors, which improve the vision, in the night hours. But due to typical working nature in the mines it is very difficult to fulfill these requirements, and also the orientation of the light at work site is a challenging task. Due to this reason machine operator and other workers in a mine need to be able to orient themselves in a difficult visual environment. The haul roads always keep on changing to tune with the mining activity. Other critical area such as dumpyards, stackyards etc. also change their phase with time, and it is difficult to illuminate such areas. Mining is a hazardous occupation, with workers exposed to adverse conditions; apart from the need for hard physical labor, there is exposure to stress and environmental pollutants like dust, noise, heat, vibration, poor illumination, radiation, etc. Visibility is restricted when operating load haul dumper and Heavy Earth Moving Machinery (HEMM) vehicles resulting in a number of serious accidents. one of the leading causes of these accidents is the inability of the equipment operator to see clearly people, objects or hazards around the machine. Results indicate blind spots are caused primarily by posts, the back of the operator's cab, and by lights and light brackets. The careful designed and implemented, lighting systems provide mine workers improved visibility and contribute to improved safety, productivity and morale. Properly designed lighting systems can improve visibility and safety during working in the opencast mines.Keywords: contrast, efficacy, illuminance, illumination, light, luminaire, luminance, reflectance, visibility
Procedia PDF Downloads 3601547 Highly Active, Non-Platinum Metal Catalyst Material as Bi-Functional Air Cathode in Zinc Air Battery
Authors: Thirupathi Thippani, Kothandaraman Ramanujam
Abstract:
Current research on energy storage has been paid to metal-air batteries, because of attractive alternate energy source for the future. Metal – air batteries have the probability to significantly increase the power density, decrease the cost of energy storage and also used for a long time due to its high energy density, low-level pollution, light weight. The performance of these batteries mostly restricted by the slow kinetics of the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) on cathode during battery discharge and charge. The ORR and OER are conventionally carried out with precious metals (such as Pt) and metal oxides (such as RuO₂ and IrO₂) as catalysts separately. However, these metal-based catalysts are regularly undergoing some difficulties, including high cost, low selectivity, poor stability and unfavorable to environmental effects. So, in order to develop the active, stable, corrosion resistance and inexpensive bi-functional catalyst material is mandatory for the commercialization of zinc-air rechargeable battery technology. We have attempted and synthesized non-precious metal (NPM) catalysts comprising cobalt and N-doped multiwalled carbon nanotubes (N-MWCNTs-Co) were synthesized by the solid-state pyrolysis (SSP) of melamine with Co₃O₄. N-MWCNTs-Co acts as an excellent electrocatalyst for both the oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER), and hence can be used in secondary metal-air batteries and in unitized regenerative fuel cells. It is important to study the OER and ORR at high concentrations of KOH as most of the metal-air batteries employ KOH concentrations > 4M. In the first 16 cycles of the zinc-air battery while using N-MWCNTs-Co, 20 wt.% Pt/C or 20 wt.% IrO₂/C as air electrodes. In the ORR regime (the discharge profile of the zinc-air battery), the cell voltage exhibited by N-MWCNTs-Co was 44 and 83 mV higher (based on 5th cycle) in comparison to of 20 wt.% Pt/C and 20 wt.% IrO₂/C respectively. To demonstrate this promise, a zinc-air battery was assembled and tested at a current density of 0.5 Ag⁻¹ for charge-discharge 100 cycles.Keywords: oxygen reduction reaction (ORR), oxygen evolution reaction(OER), non-platinum, zinc air battery
Procedia PDF Downloads 2351546 Sustainable Design Solutions for Tall Residential Buildings to Improve Quality of Life: A Case of Developing Community: Karachi, Pakistan
Authors: Mahnoor Shoaib
Abstract:
Sustainable development involves meeting present needs without compromising future generations’ capacity to meet their own while enhancing the quality of life through a healthy and safe environment. In the context of rapid urbanization and globalization, architects and planners bear the responsibility of designing residential buildings that are sustainable and conducive to quality living. Residential buildings serve as multifunctional spaces for personal and family life, making them essential for fostering healthy communities. Therefore, sustainable housing must address not only economic and environmental factors but also social, historical, and cultural dimensions to enhance residents' social lives. This research investigates the socio-cultural aspects of tall residential buildings in Karachi, Pakistan, a developing community characterized by rapid population growth and urbanization. A mixed-methods approach, including qualitative interviews and surveys, was employed to assess residents' perceptions of sustainability in tall buildings, focusing on socio-cultural design constraints and their impact on residential satisfaction. The study finds that socio-cultural elements, such as liveability, social cohesion, and spatial agency, significantly influence residents’ satisfaction with high-rise developments. Moreover, it highlights the need for contextual design solutions that integrate local cultural values into the architecture of tall buildings rather than imposing Western design principles. In conclusion, this research provides valuable insights for architects, designers, and urban planners, emphasizing the importance of understanding community needs and preferences in developing sustainable residential environments. By prioritizing socio-cultural sustainability, we can enhance the overall quality of life for residents in tall buildings, contributing to healthier and more vibrant communities.Keywords: high-rise residential buildings, quality of life, social cohesion, socio-cultural sustainability
Procedia PDF Downloads 291545 Analysis of Trends in the Promotion of Sustainable Tourism in the Destinations of Barranquilla (Colombia) And Nayarit (Mexico)
Authors: Merly Patiño Villanueva, Dubys Villarreal Torres, Eduardo Salazar Araujo, Lezly Ramos Macedo
Abstract:
The concept of sustainability has been influencing business thinking from the perspective of various economic sectors and their environment, looking for concerns related to the risks associated with the indiscriminate consumption of the planet's resources, which have been widely studied and exposed by different public and private organizations. Tourism is not outsider to this reality; therefore, the concept of sustainable tourism evolves towards the integral management of resources, attending the needs of tourists, host communities and service providers, protecting ecosystems and assuring the conservation of the environment and its biodiversity. Considering the above, the purpose of this paper is to identify trends aimed at promoting sustainable tourism in the destinations of Barranquilla (Colombia) and Nayarit (Mexico). This study is part of the realistic epistemological paradigm, based on the existence of a specific environment for the development of tourism activity and the best sustainability practices associated with this industry, which can be observed and studied, therefore, this research contemplates qualitative research techniques such as the focus group and the interview, applied to 8 experts who are part of the value chain of the sector under study, added to a documentary review taken from the scientific databases Wos and Scopus, as well as statistical information published by official bodies. The data obtained were processed with the qualitative analysis software N-VIVO version 13. As a result, trends and actions to promote tourism are identified for the positioning of the cities of Barranquilla (Colombia) and Nayarit (Mexico) as sustainable destinations: first, the recovery of green areas and environmental spaces, as well as the realization of cultural events; promotion and encouragement of the creative industry and finally the realization of international events. It is concluded that both cities develop activities, projects and investments of public initiative, aimed at positioning them as sustainable tourist destinations.Keywords: marketing, sustainability, tourism management, policies
Procedia PDF Downloads 991544 Disaster Response Training Simulator Based on Augmented Reality, Virtual Reality, and MPEG-DASH
Authors: Sunho Seo, Younghwan Shin, Jong-Hong Park, Sooeun Song, Junsung Kim, Jusik Yun, Yongkyun Kim, Jong-Moon Chung
Abstract:
In order to effectively cope with large and complex disasters, disaster response training is needed. Recently, disaster response training led by the ROK (Republic of Korea) government is being implemented through a 4 year R&D project, which has several similar functions as the HSEEP (Homeland Security Exercise and Evaluation Program) of the United States, but also has several different features as well. Due to the unpredictiveness and diversity of disasters, existing training methods have many limitations in providing experience in the efficient use of disaster incident response and recovery resources. Always, the challenge is to be as efficient and effective as possible using the limited human and material/physical resources available based on the given time and environmental circumstances. To enable repeated training under diverse scenarios, an AR (Augmented Reality) and VR (Virtual Reality) combined simulator is under development. Unlike existing disaster response training, simulator based training (that allows remote login simultaneous multi-user training) enables freedom from limitations in time and space constraints, and can be repeatedly trained with different combinations of functions and disaster situations. There are related systems such as ADMS (Advanced Disaster Management Simulator) developed by ETC simulation and HLS2 (Homeland Security Simulation System) developed by ELBIT system. However, the ROK government needs a simulator custom made to the country's environment and disaster types, and also combines the latest information and communication technologies, which include AR, VR, and MPEG-DASH (Moving Picture Experts Group - Dynamic Adaptive Streaming over HTTP) technology. In this paper, a new disaster response training simulator is proposed to overcome the limitation of existing training systems, and adapted to actual disaster situations in the ROK, where several technical features are described.Keywords: augmented reality, emergency response training simulator, MPEG-DASH, virtual reality
Procedia PDF Downloads 3031543 Cost Effective Microfabrication Technique for Lab on Chip (LOC) Devices Using Epoxy Polymers
Authors: Charmi Chande, Ravindra Phadke
Abstract:
Microfluidics devices are fabricated by using multiple fabrication methods. Photolithography is one of the common methods wherein SU8 is widely used for making master which in turn is used for making working chip by the process of soft lithography. The high-aspect ratio features of SU-8 makes it suitable to be used as micro moulds for injection moulding, hot embossing, and moulds to form polydimethylsiloxane (PDMS) structures for bioMEMS (Microelectromechanical systems) applications. But due to high cost, difficulty in procuring and need for clean room, restricts the use of this polymer especially in developing countries and small research labs. ‘Bisphenol –A’ based polymers in mixture with curing agent are used in various industries like Paints and coatings, Adhesives, Electrical systems and electronics, Industrial tooling and composites. We present the novel use of ‘Bisphenol – A’ based polymer in fabricating micro channels for Lab On Chip(LOC) devices. The present paper describes the prototype for production of microfluidics chips using range of ‘Bisphenol-A’ based polymers viz. GY 250, ATUL B11, DER 331, DER 330 in mixture with cationic photo initiators. All the steps of chip production were carried out using an inexpensive approach that uses low cost chemicals and equipment. This even excludes the need of clean room. The produced chips using all above mentioned polymers were validated with respect to height and the chip giving least height was selected for further experimentation. The lowest height achieved was 7 micrometers by GY250. The cost of the master fabricated was $ 0.20 and working chip was $. 0.22. The best working chip was used for morphological identification and profiling of microorganisms from environmental samples like soil, marine water and salt water pan sites. The current chip can be adapted for various microbiological screening experiments like biochemical based microbial identification, studying uncultivable microorganisms at single cell/community level.Keywords: bisphenol–A based epoxy, cationic photoinitiators, microfabrication, photolithography
Procedia PDF Downloads 288