Search results for: tissue phantoms
1122 A Cephalometric Superimposition of a Skeletal Class III Orthognathic Patient on Nasion-Sella Line
Authors: Albert Suryaprawira
Abstract:
The Nasion-Sella Line (NSL) has been used for several years as a reference line in longitudinal growth study. Therefore this line is considered to be stable not only to evaluate treatment outcome and to predict relapse possibility but also to manage prognosis. This is a radiographic superimposition of an adult male aged 19 years who complained of difficulty in aesthetic, talking and chewing. Patient has a midface hypoplasia profile (concave). He was diagnosed to have a severe Skeletal Class III with Class III malocclusion, increased lower vertical height, and an anterior open bite. A pre-treatment cephalometric radiograph was taken to analyse the skeletal problem and to measure the amount of bone movement and the prediction soft tissue response. A panoramic radiograph was also taken to analyse bone quality, bone abnormality, third molar impaction, etc. Before the surgery, a pre-surgical cephalometric radiograph was taken to re-evaluate the plan and to settle the final amount of bone cut. After the surgery, a post-surgical cephalometric radiograph was taken to confirm the result with the plan. The superimposition using NSL as a reference line between those radiographs was performed to analyse the outcome. It is important to describe the amount of hard and soft tissue movement and to predict the possibility of relapse after the surgery. The patient also needs to understand all the surgical plan, outcome and relapse prevention. The surgical management included maxillary impaction and advancement of Le Fort I osteotomy. The evaluation using NSL as a reference was a very useful method in determining the outcome and prognosis.Keywords: Nasion-Sella Line, midface hypoplasia, Le Fort 1, maxillary advancement
Procedia PDF Downloads 1421121 The Effect of 6 Weeks Endurance Swimming Training on Blood Glucose and Cardiac Tissue Antioxidants in Diabetic Rats
Authors: Kh. Dehkordi, R. Sharifi Gholam, S. Arshadi
Abstract:
Objective: Oxidative stress is produced under diabetic conditions and possibly causes various forms of tissue damage inpatients with diabetes. Antioxidants defend against the harmful effect of free radicals, which are associated with heart disease, cancer, arthritis, aging and many other diseases1). Antioxidants are very stable molecules capable of neutralizing free radicals by donating an electron to them.The aim of this study was to examine the effect of swimming training, fenugreek seed extract and glibenclamide on plasma glucose and cardiac antioxidants activity in diabetic rats. Design: For this purpose, fifty male wistar rats were divided into five groups, two groups of control rats (diabetic control [DC] and healthy control [HC]), one group of endurance swimming training (EST), one group of fenugreek seed extract highdose (F1, 1.74 g/kg b.w), one group of fenugreek seed extract middle dose (F2, 0.87 g/kg b.w), one group of glibenclamide (G, 0.5 mg/kg b.w). Materials and Methods: Diabetes induced by streptozotocine (STZ), data was analyzed using the one-way ANOVA followed by a Tukey test. Significance level was 0.05. Results: All of the groups' exception of HC showed significant decrease in body weight (P < 0.05), but the diabetic control and swimming training group exhibited a more decrease. All of the groups have shown a significant decrease in plasma glucose than DC group (P < 0.05) but this reduction was more in G group than DC no HC group. S, G and HC groups have shown significant increase in cardiac antioxidant than DC group (P < 0.05) but there wasn't significant difference in other groups (P > 0.05). Conclusion: The present results indicate that regular swimming training lead to decrease in plasma glucose and enhanced cardiac antioxidants in diabetic rats.Keywords: swimming, glucose, cardiac, antioxidants
Procedia PDF Downloads 3041120 Histopathological Examination of BALB/C Mice Receiving Strains of Acinetobacter baumannii Resistant to Colistin Antibiotic
Authors: Shahriar Sepahvand, Mohammad Ali Davarpanah
Abstract:
Infections caused by Acinetobacter baumannii are among the common hospital-acquired infections that have seen an increase in antibiotic resistance in recent years. Colistin is the last treatment option against this pathogen. The aim of this study is to investigate the histopathology of BALB/C mice receiving sensitive and resistant strains of Acinetobacter baumannii to colistin. A total of 68 female laboratory mice weighing 30 to 40 grams of the BALB/C breed were studied in this research for three weeks under appropriate laboratory conditions in terms of food and environment. The experimental groups included: control group, second group, third group, fourth group. Lung, liver, spleen, and kidney tissues were removed from anesthetized mice and, after washing in physiological serum, were fixed in 10% formalin for 14 days. For dehydration, alcohol with ascending degrees of 70, 80, 90, and 100 was used. After clearing and soaking in paraffin, the samples were embedded in paraffin. Then, sections with a thickness of 5 microns were prepared and, after staining by hematoxylin-eosin, the samples were ready for study with a light microscope. In liver, spleen, lung, and kidney tissues of mice receiving the colistin-sensitive strain of Acinetobacter baumannii, infiltration of inflammatory cells and hyperemia were observed compared to control group mice. Liver and lung tissues of mice receiving strains of Acinetobacter baumannii resistant to colistin showed tissue destruction in addition to infiltration of inflammatory cells and hyperemia, with more destruction observed in lung tissue.Keywords: acinetobacter baumannii, colistin antibiotic, histopathological examination, resistant
Procedia PDF Downloads 691119 Aspects and Studies of Fractal Geometry in Automatic Breast Cancer Detection
Authors: Mrinal Kanti Bhowmik, Kakali Das Jr., Barin Kumar De, Debotosh Bhattacharjee
Abstract:
Breast cancer is the most common cancer and a leading cause of death for women in the 35 to 55 age group. Early detection of breast cancer can decrease the mortality rate of breast cancer. Mammography is considered as a ‘Gold Standard’ for breast cancer detection and a very popular modality, presently used for breast cancer screening and detection. The screening of digital mammograms often leads to over diagnosis and a consequence to unnecessary traumatic & painful biopsies. For that reason recent studies involving the use of thermal imaging as a screening technique have generated a growing interest especially in cases where the mammography is limited, as in young patients who have dense breast tissue. Tumor is a significant sign of breast cancer in both mammography and thermography. The tumors are complex in structure and they also exhibit a different statistical and textural features compared to the breast background tissue. Fractal geometry is a geometry which is used to describe this type of complex structure as per their main characteristic, where traditional Euclidean geometry fails. Over the last few years, fractal geometrics have been applied mostly in many medical image (1D, 2D, or 3D) analysis applications. In breast cancer detection using digital mammogram images, also it plays a significant role. Fractal is also used in thermography for early detection of the masses using the thermal texture. This paper presents an overview of the recent aspects and initiatives of fractals in breast cancer detection in both mammography and thermography. The scope of fractal geometry in automatic breast cancer detection using digital mammogram and thermogram images are analysed, which forms a foundation for further study on application of fractal geometry in medical imaging for improving the efficiency of automatic detection.Keywords: fractal, tumor, thermography, mammography
Procedia PDF Downloads 3891118 Influence of BaTiO₃ on the Biological Behaviour of Hydroxyapatite: Collagen Composites
Authors: Cristina Busuioc, Georgeta Voicu, Sorin-Ion Jinga
Abstract:
The human bone presents in its dry form piezoelectric properties, which means that a mechanical stress results in electric polarization and an applied electric field causes strain. The immediate consequence was the revealing of piezoelectricity role in bone remodelling, as well as the integration of ceramic materials with piezoelectric behaviour in the composition of unitary or composite biomaterials. Thus, we prepared hydroxyapatite - collagen hybrid materials with barium titanate addition in order to achieve a better osseointegration. Barium titanate powder synthesized by a combined sol-gel-hydrothermal method, commercial hydroxyapatite and laboratory extracted collagen gel were employed as starting materials. Before the composites, fabrication, the powder with piezoelectric features was characterized in detail from the compositional, structural, morphological and electrical point of view. The next step was to elucidate the influence of barium titanate presence especially on the biological properties of the final materials. The biocompatibility of the hybrid supports without or with piezoelectric addition was investigated on mouse osteoblast cells through LDH cytotoxicity assay, LIVE/DEAD cell viability assay, and MTT cell proliferation assay. All results indicated that the analysed materials do not exert cytotoxic effects and present the ability to sustain cell survival and to promote their proliferation. In conclusion, barium titanate nanoparticles exhibit a good biocompatibility and osteoinductive properties, while the derived composite materials based on hydroxyapatite as oxide phase and collagen as polymeric phase can be successfully used for tissue engineering applications.Keywords: barium titanate, hybrid composites, piezoelectricity, tissue engineering
Procedia PDF Downloads 3241117 Expression of Tissue Plasminogen Activator in Transgenic Tobacco Plants by Signal Peptides Targeting for Delivery to Apoplast, Endoplasmic Reticulum and Cytosol Spaces
Authors: Sadegh Lotfieblisofla, Arash Khodabakhshi
Abstract:
Tissue plasminogen activator (tPA) as a serine protease plays an important role in the fibrinolytic system and the dissolution of fibrin clots in human body. The production of this drug in plants such as tobacco could reduce its production costs. In this study, expression of tPA gene and protein targeting to different plant cell compartments, using various signal peptides has been investigated. For high level of expression, Kozak sequence was used after CaMV35S in the beginning of the gene. In order to design the final construction, Extensin, KDEL (amino acid sequence including Lys-Asp-Glu-Leu) and SP (γ-zein signal peptide coding sequence) were used as leader signals to conduct this protein into apoplast, endoplasmic reticulum and cytosol spaces, respectively. Cloned human tPA gene under the CaMV (Cauliflower mosaic virus) 35S promoter and NOS (Nopaline Synthase) terminator into pBI121 plasmid was transferred into tobacco explants by Agrobacterium tumefaciens strain LBA4404. The presence and copy number of genes in transgenic tobacco was proved by Southern blotting. Enzymatic activity of the rt-PA protein in transgenic plants compared to non-transgenic plants was confirmed by Zymography assay. The presence and amount of rt-PA recombinant protein in plants was estimated by ELISA analysis on crude protein extract of transgenic tobacco using a specific antibody. The yield of recombinant tPA in transgenic tobacco for SP, KDEL, Extensin signals were counted 0.50, 0.68, 0.69 microgram per milligram of total soluble proteins.Keywords: tPA, recombinant, transgenic, tobacco
Procedia PDF Downloads 1461116 Serum Neurotrophins in Different Metabolic Types of Obesity
Authors: Irina M. Kolesnikova, Andrey M. Gaponov, Sergey A. Roumiantsev, Tatiana V. Grigoryeva, Alexander V. Laikov, Alexander V. Shestopalov
Abstract:
Background. Neuropathy is a common complication of obesity. In this regard, the content of neurotrophins in such patients is of particular interest. Neurotrophins are the proteins that regulate neuron survival and neuroplasticity and include brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF). However, the risk of complications depends on the metabolic type of obesity. Metabolically unhealthy obesity (MUHO) is associated with a high risk of complications, while this is not the case with metabolically healthy obesity (MHO). Therefore, the aim of our work was to study the effect of the obesity metabolic type on serum neurotrophins levels. Patients, materials, methods. The study included 134 healthy donors and 104 obese patients. Depending on the metabolic type of obesity, the obese patients were divided into subgroups with MHO (n=40) and MUHO (n=55). In the blood serum, the concentration of BDNF and NGF was determined. In addition, the content of adipokines (leptin, asprosin, resistin, adiponectin), myokines (irisin, myostatin, osteocrin), indicators of carbohydrate, and lipid metabolism were measured. Correlation analysis revealed the relationship between the studied parameters. Results. We found that serum BDNF concentration was not different between obese patients and healthy donors, regardless of obesity metabolic type. At the same time, in obese patients, there was a decrease in serum NGF level versus control. A similar trend was characteristic of both MHO and MUHO. However, MUHO patients had a higher NGF level than MHO patients. The literature indicates that obesity is associated with an increase in the plasma concentration of NGF. It can be assumed that in obesity, there is a violation of NGF storage in platelets, which accelerates neurotrophin degradation. We found that BDNF concentration correlated with irisin levels in MUHO patients. Healthy donors had a weak association between NGF and VEGF levels. No such association was found in obese patients, but there was an association between NGF and leptin concentrations. In MHO, the concentration of NHF correlated with the content of leptin, irisin, osteocrin, insulin, and the HOMA-IR index. But in MUHO patients, we found only the relationship between NGF and adipokines (leptin, asprosin). It can be assumed that in patients with MHO, the replenishment of serum NGF occurs under the influence of muscle and adipose tissue. In the MUHO patients only the effect of adipose tissue on NGF was observed. Conclusion. Obesity, regardless of metabolic type, is associated with a decrease in serum NGF concentration. We showed that muscle and adipose tissues make a significant contribution to the serum NGF pool in the MHO patients. In MUHO there is no effect of muscle on the NGF level, but the effect of adipose tissue remains.Keywords: neurotrophins, nerve growth factor, NGF, brain-derived neurotrophic factor, BDNF, obesity, metabolically healthy obesity, metabolically unhealthy obesity
Procedia PDF Downloads 1001115 Efficacy of Ethanolic Extract of Aerva javanica Aerial Parts in the Amelioration of CCl4-Induced Hepatotoxicity and Oxidative Damage in Rats
Authors: Mohammad K. Parvez, Ahmed H. Arbab, Mohammed S. Al-Dosari, Adnan J. Al-Rehaily
Abstract:
We investigated ex vivo and in vivo antioxidative and hepatoprotective effect of Aerva javanica. Total ethanol extract of A. javanica aerial parts was prepared, and tested on DCFH-toxicated HepG2 cell in CCl4-injured Wistar rats. MTT-assay was used to determine cell viability, and serum biochemical markers of liver injury as well as histopathology were performed. In vitro DPPH and β-carotene free-radical scavenging assay and phytochemical screening of the extract was done. Furthermore, A. javanica total extract was standardized and validated by HPTLC method. While DCFH-injured cells were recovered to about 56.7% by 100 microg/ml of the extract, a 200 microg/ml dose resulted in hepatocytes recovery by about 90.2%. Oral administration of the extract (100 and 200 mg/kg.bw/day) significantly normalized the serum SGOT, SGPT, GGT, ALP, bilirubin, cholesterol, HDL, LDL, VLDL, TG and MDA levels, including tissue NP-SH and TP in CCl4-injured rats. In addition, the histopathology of dissected liver also revealed that A. javanica cured the tissue lesion compared to reference drug, Silymarin. In vitro assays revealed strong free-radical scavenging ability of the extract and presence of alkaloids, flavonoids, tannins, sterols and saponins where Rutin, a well-known antioxidant flavonoid was identified. Our finding therefore, suggests the therapeutic potential of A. javanica in various liver diseases. However, isolation of the active principles, their mechanism of action and other therapeutic contribution remain to be addressed.Keywords: Aerva javanica, antioxidant, hepatoprotection, rutin
Procedia PDF Downloads 2961114 STAT6 Mediates Local and Systemic Fibrosis and Type Ii Immune Response via Macrophage Polarization during Acute and Chronic Pancreatitis in Murine Model
Authors: Hager Elsheikh, Matthias Sendler, Juliana Glaubnitz
Abstract:
In pancreatitis, an inflammatory reaction occurs in the pancreatic secretory cells due to premature activation of proteases, leading to pancreatic self-digestion and necrotic cell death of acinar cells. Acute pancreatitis in patients is characterized by a severe immune reaction that could lead to serious complications, such as organ failure or septic shock, if left untreated. Chronic pancreatitis is a recurrence of episodes of acute pancreatitis resulting in a fibro-inflammatory immune response, in which the type 2 immune response is primarily driven by AAMs in the pancreas. One of the most important signaling pathways for M2 macrophage activation is the IL-4/STAT6 pathway. Pancreatic fibrosis is induced by the hyperactivation of pancreatic stellate cells by dysregulation in the inflammatory response, leading to further damage, autodigestion and possibly necrosis of pancreatic acinar cells. The aim of this research is to investigate the effect of STAT6 knockout in disease severity and development of fibrosis wound healing in the presence of different macrophage populations, regulated by the type 2 immune response, after inducing chronic and/or acute pancreatitis in mice models via cerulean injection. We further investigate the influence of the JAK/STAT6 signaling pathway on the balance of fibrosis and regeneration in STAT6 deficient and wild-type mice. The characterization of resident and recruited macrophages will provide insight into the influence of the JAK/STAT6 signaling pathway on infiltrating cells and, ultimately, tissue fibrosis and disease severity.Keywords: acute and chronic pancreatitis, tissue regeneration, macrophage polarization, Gastroenterology
Procedia PDF Downloads 691113 Characterization and Degradation of 3D Printed Polycaprolactone-Freeze Dried Bone Matrix Constructs for Use in Critical Sized Bone Defects
Authors: Samantha Meyr, Eman Mirdamadi, Martha Wang, Tao Lowe, Ryan Smith, Quinn Burke
Abstract:
Critical-sized bone defects (CSD) treatment options remain a major clinical orthopedic challenge. They are uniquely contoured diseased or damaged bones and can be defined as those that will not heal spontaneously and require surgical intervention. Autografts are the current gold standard CSD treatment, which are histocompatible and provoke a minimal immunogenic response; however, they can cause donor site morbidity and will not suffice for the size required for replacement. As an alternative to traditional surgical methods, bone tissue engineering will be implemented via 3D printing methods. A freeze-dried bone matrix (FDBM) is a type of graft material available but will only function as desired when in the presence of bone growth factors. Polycaprolactone (PCL) is a known biodegradable material with good biocompatibility that has been proven manageable in 3D printing as a medical device. A 3D-extrusion printing strategy is introduced to print these materials into scaffolds for bone grafting purposes, which could be more accessible and rapid than the current standard. Mechanical, thermal, cytotoxic, and physical properties were investigated throughout a degradation period of 6 months using fibroblasts and dental pulp stem cells. PCL-FDBM scaffolds were successfully printed with high print fidelity in their respective pore sizes and allograft content. Additionally, we have created a method for evaluating PCL using differential scanning calorimetry (DSC) and have evaluated PCL degradation over roughly 6 months.Keywords: 3D printing, bone tissue engineering, cytotoxicity, degradation, scaffolds
Procedia PDF Downloads 1061112 Overexpression of CAS8 Enhances Necroptosis and Metastasis in Iranian Sporadic Colorectal Cancer
Authors: Sayed Ali Garossi, Azar Heidarizadi, Shahla Mohammad Ganji
Abstract:
Context: Colorectal cancer is the second type of cancer-related mortality globally. Expression of cas8 (caspase 8) is closely connected to growth and metastasis of colorectal cancer.Cas8/Rip1 plays a vital role in the apoptosis pathway and resistance to chemotherapy. The aim of the present study is to investigate the pattern of gene expression in colorectal cancer and compare the differences using Real-Time PCR to find a potential biomarker candidate for colorectal cancer. Methodology: This study conducted real-time PCR to evaluate gene expression of Cas8 in colorectal cancer patients. The gene-specific primer sequences exon–exon junction was designed by OLIGO7 software for the expression of the gene under investigation. Forty-six patient samples without any chemotherapy were selected, including tumoral tissue and adjacent normal tissue samples. The age of the patients was 50 and the size of the tumors was 5.5 cm. The categories were before and after age 50. Findings: Here, we found that Caspase 8 was overexpressed in CRC tissues compared to corresponding adjacent colon tissues (Cas8: 5.2 vs. 1 ratio); high expression of Cas8 was associated with poor overall survival and independent risk factors for the prognosis of CRC patients. Conclusion: In conclusion, our study pioneered the reporting of high Casp8 expression as a predictor of poor prognosis and chemical resistance in CRC patients.Cas8 overexpression suppressed Cas 8 / Rip1-dependent apoptosis and activated the proliferation of tumor cells by activating necroptosis. The necroptosis pathway has also emerged as a new approach to anti-tumor in cancer treatment.Keywords: Cas8, necroptosis, apoptosis, Real-Time PCR
Procedia PDF Downloads 551111 Force Sensor for Robotic Graspers in Minimally Invasive Surgery
Authors: Naghmeh M. Bandari, Javad Dargahi, Muthukumaran Packirisamy
Abstract:
Robot-assisted minimally invasive surgery (RMIS) has been widely performed around the world during the last two decades. RMIS demonstrates significant advantages over conventional surgery, e.g., improving the accuracy and dexterity of a surgeon, providing 3D vision, motion scaling, hand-eye coordination, decreasing tremor, and reducing x-ray exposure for surgeons. Despite benefits, surgeons cannot touch the surgical site and perceive tactile information. This happens due to the remote control of robots. The literature survey identified the lack of force feedback as the riskiest limitation in the existing technology. Without the perception of tool-tissue contact force, the surgeon might apply an excessive force causing tissue laceration or insufficient force causing tissue slippage. The primary use of force sensors has been to measure the tool-tissue interaction force in real-time in-situ. Design of a tactile sensor is subjected to a set of design requirements, e.g., biocompatibility, electrical-passivity, MRI-compatibility, miniaturization, ability to measure static and dynamic force. In this study, a planar optical fiber-based sensor was proposed to mount at the surgical grasper. It was developed based on the light intensity modulation principle. The deflectable part of the sensor was a beam modeled as a cantilever Euler-Bernoulli beam on rigid substrates. A semi-cylindrical indenter was attached to the bottom surface the beam at the mid-span. An optical fiber was secured at both ends on the same rigid substrates. The indenter was in contact with the fiber. External force on the sensor caused deflection in the beam and optical fiber simultaneously. The micro-bending of the optical fiber would consequently result in light power loss. The sensor was simulated and studied using finite element methods. A laser light beam with 800nm wavelength and 5mW power was used as the input to the optical fiber. The output power was measured using a photodetector. The voltage from photodetector was calibrated to the external force for a chirp input (0.1-5Hz). The range, resolution, and hysteresis of the sensor were studied under monotonic and harmonic external forces of 0-2.0N with 0 and 5Hz, respectively. The results confirmed the validity of proposed sensing principle. Also, the sensor demonstrated an acceptable linearity (R2 > 0.9). A minimum external force was observed below which no power loss was detectable. It is postulated that this phenomenon is attributed to the critical angle of the optical fiber to observe total internal reflection. The experimental results were of negligible hysteresis (R2 > 0.9) and in fair agreement with the simulations. In conclusion, the suggested planar sensor is assessed to be a cost-effective solution, feasible, and easy to use the sensor for being miniaturized and integrated at the tip of robotic graspers. Geometrical and optical factors affecting the minimum sensible force and the working range of the sensor should be studied and optimized. This design is intrinsically scalable and meets all the design requirements. Therefore, it has a significant potential of industrialization and mass production.Keywords: force sensor, minimally invasive surgery, optical sensor, robotic surgery, tactile sensor
Procedia PDF Downloads 2311110 Primary Melanocytic Tumors of the Central Nervous System: A Clinico-Pathological Study of Seven Cases
Authors: Sushila Jaiswal, Awadhesh Kumar Jaiswal
Abstract:
Background: Primary melanocytic tumors of the central nervous system (CNS) are uncommon lesions and arise from the melanocytes located within the leptomeninges. Aim and objective: The aim of the study was to evaluate the clinical details, histomorphology of the primary melanocytic tumor of CNS. Method: The study was performed by the retrospective review of the case records of the primary melanocytic tumors of CNS diagnosed in our department. The formalin-fixed, paraffin embedded tissue blocks and tissue sections were retrieved and reviewed. Results: Seven cases (6 males, 1 female; age range- 16-40 years; mean age- 27 years) of primary melanocytic tumors of CNS were retrieved over last seven years. The tumor was intracranial (n=5; frontal – 1 case, parietal – 1 case, cerebello-pontine angle- 1 case, occipital -1 case, foramen magnum-1 case) and intra spinal (n=2; cervical – 2 cases). All patients presented with the neurological deficits related to the location of the tumor. Four cases were malignant melanoma; two were melanocytoma of intermediate grade and remaining one was melanocytoma. On histopathology, melanocytoma and melanoma both displayed sheets of well-differentiated melanocytes having round to oval nuclei with finely dispersed chromatin, occasional single eosinophilic nucleoli and a moderate amount of cytoplasm with abundant granular melanin pigment. The absence of mitosis and macronucleoli was noticed in melanocytoma while melanoma showed frequent mitosis and macronucleoli. On immunohistochemistry, both showed diffuse strong HMB45 and S-100 immunopositivity. Conclusion: Primary melanocytic tumors of CNS are rare and predominantly seen in males. It is important to differentiate melanoma from melanocytoma as prognosis of later is good.Keywords: melanocytoma, melanoma, brain tumor, melanin
Procedia PDF Downloads 2351109 Hepatoprotective Assessment of L-Ascorbate 1-(2-Hydroxyethyl)-4,6-Dimethyl-1, 2-Dihydropyrimidine-2-On Exposure to Carbon Tetrachloride
Authors: Nail Nazarov, Alexandra Vyshtakalyuk, Vyacheslav Semenov, Irina Galyametdinova, Vladimir Zobov, Vladimir Reznik
Abstract:
Among hepatic pyrimidine used as a means of stimulating protein synthesis and recovery of liver cells in her damaged toxic and infectious etiology. When an experimental toxic hepatitis hepatoprotective activity detected some pyrimidine derivatives. There are literature data on oksimetiluratcila hepatoprotective effect. For analogs of pyrimidine nucleobases - drugs Methyluracilum pentoxy and hepatoprotective effect of weakly expressed. According to the American scientists broad spectrum of biological activity, including hepatoprotective properties, have a 2,4-dioxo-5-arilidenimino uracils. Influenced Xymedon medicinal preparation (1- (beta-hydroxyethyl) -4,6-dimethyl-1,2-dihydro-2-oksopirimidin) developed as a means of stimulating the regeneration of tissue revealed increased activity of microsomal oxidases human liver. In studies on the model of toxic liver damage in rats have shown hepatoprotective effect xymedon and stimulating its impact on the recovery of the liver tissue. Hepatoprotective properties of the new compound in the series of pyrimidine derivatives L-ascorbate 1-(2-hydroxyethyl)-4,6-dimethyl-1,2-dihydropirimidine-2-one synthesized on the basis Xymedon preparation were firstly investigated on rats under the carbon tetrachloride action. It was shown the differences of biochemical parameters from the reference value and severity of structural-morphological liver violations decreased in comparison with control group under the influence of the compound injected before exposure carbon tetrachloride. Hepatoprotective properties of the investigated compound were more pronounced in comparison with Xymedon.Keywords: hepatoprotectors, pyrimidine derivatives, toxic liver damage, xymedon
Procedia PDF Downloads 4271108 Evaluation of the Relationship between Fluorosis and Stylohyoid Ligament Calcification Detected on Panoramic Radiograph
Authors: Recep Duzsoz, Ozlem Gormez, Umit Memis, Selma Demer, Hikmet Orhan
Abstract:
Stylohyoid ligament is a connective tissue extending from apex of the styloid process to small horn of the hyoid bone. The normal length of styloid process ranges from 20 to 30 mm and measurements more than 30 mm is named stylohyoid ligament calcification (SLC). Fluorosis is a health problem that arises in individuals who intake large amounts of fluor long periods of time. The aim of this study was to investigate the effects of fluorosis on SLC. This study has been conducted on 100 patients who had SLC detected on panoramic radiograph. The study group was consisted of 50 patients with dental fluorosis and control group was consisted of 50 patients without dental fluorosis. Length and thickness of SLC were measured and the type of SLC was determined on panoramic radiographs. There was no statistically significant differences between the study and control group for SLC length, thickness and type. The thickness of left and right SLC of severe dental fluorosis group was statistically significant higher than moderate dental fluorosis group (p < 0,05). Cervicopharyngeal trauma, tonsillectomy, endocrine disease in menopause, persistent mesenchymal tissue, mechanical stress have reported as etiology of SLC in the literature and studies are still ongoing. It was reported that fluorosis as a factor on calcification of some ligaments in body (posterior longitudunal ligament, ligamentum flavum and transverse atlantal ligament) previously but relationship between fluorosis with SLC was not investigated. Our study is unique because it is the first study on SLC thickness measurements on panoramic radiographs and the relationship between fluorosis and SLC to our knowledge. According to the obtained results, it is thought that fluorosis may have an effect on SLC in thickness due to the relationship between dental fluorosis severity with SLC thickness and this study will contribute to the progress of the future studies.Keywords: calcification, fluorosis, ligament, stylohyoid
Procedia PDF Downloads 2261107 Synthesis of Chitosan/Silver Nanocomposites: Antibacterial Properties and Tissue Regeneration for Thermal Burn Injury
Authors: B.L. España-Sánchez, E. Luna-Hernández, R.A. Mauricio-Sánchez, M.E. Cruz-Soto, F. Padilla-Vaca, R. Muñoz, L. Granados-López, L.R. Ovalle-Flores, J.L. Menchaca-Arredondo, G. Luna-Bárcenas
Abstract:
Treatment of burn injured has been considered an important clinical problem due to the fluid control and the presence of microorganisms during the healing process. Conventional treatment includes antiseptic techniques, topical medication and surgical removal of damaged skin, to avoid bacterial growth. In order to accelerate this process, different alternatives for tissue regeneration have been explored, including artificial skin, polymers, hydrogels and hybrid materials. Some requirements consider a nonreactive organic polymer with high biocompatibility and skin adherence, avoiding bacterial infections. Chitin-derivative biopolymer such as chitosan (CS) has been used in skin regeneration following third-degree burns. The biological interest of CS is associated with the improvement of tissue cell stimulation, biocompatibility and antibacterial properties. In particular, antimicrobial properties of CS can be significantly increased when is blended with nanostructured materials. Silver-based nanocomposites have gained attention in medicine due to their high antibacterial properties against pathogens, related to their high surface area/volume ratio at nanomolar concentrations. Silver nanocomposites can be blended or synthesized with chitin-derivative biopolymers in order to obtain a biodegradable/antimicrobial hybrid with improved physic-mechanical properties. In this study, nanocomposites based on chitosan/silver nanoparticles (CS/nAg) were synthesized by the in situ chemical reduction method, improving their antibacterial properties against pathogenic bacteria and enhancing the healing process in thermal burn injuries produced in an animal model. CS/nAg was prepared in solution by the chemical reduction method, using AgNO₃ as precursor. CS was dissolved in acetic acid and mixed with different molar concentrations of AgNO₃: 0.01, 0.025, 0.05 and 0.1 M. Solutions were stirred at 95°C during 20 hours, in order to promote the nAg formation. CS/nAg solutions were placed in Petri dishes and dried, to obtain films. Structural analyses confirm the synthesis of silver nanoparticles (nAg) by means of UV-Vis and TEM, with an average size of 7.5 nm and spherical morphology. FTIR analyses showed the complex formation by the interaction of hydroxyl and amine groups with metallic nanoparticles, and surface chemical analysis (XPS) shows low concentration of Ag⁰/Ag⁺ species. Topography surface analyses by means of AFM shown that hydrated CS form a mesh with an average diameter of 10 µm. Antibacterial activity against S. aureus and P. aeruginosa was improved in all evaluated conditions, such as nAg loading and interaction time. CS/nAg nanocomposites films did not show Ag⁰/Ag⁺ release in saline buffer and rat serum after exposition during 7 days. Healing process was significantly enhanced by the presence of CS/nAg nanocomposites, inducing the production of myofibloblasts, collagen remodelation, blood vessels neoformation and epidermis regeneration after 7 days of injury treatment, by means of histological and immunohistochemistry assays. The present work suggests that hydrated CS/nAg nanocomposites can be formed a mesh, improving the bacterial penetration and the contact with embedded nAg, producing complete growth inhibition after 1.5 hours. Furthermore, CS/nAg nanocomposites improve the cell tissue regeneration in thermal burn injuries induced in rats. Synthesis of antibacterial, non-toxic, and biocompatible nanocomposites can be an important issue in tissue engineering and health care applications.Keywords: antibacterial, chitosan, healing process, nanocomposites, silver
Procedia PDF Downloads 2881106 Reaching a Mobile and Dynamic Nose after Rhinoplasty: A Pilot Study
Authors: Guncel Ozturk
Abstract:
Background: Rhinoplasty is the most commonly performed cosmetic operations in plastic surgery. Maneuvers used in rhinoplasty lead to a firm and stiff nasal tip in the early postoperative months. This unnatural stability of the nose may easily cause distortion in the reshaped nose after severe trauma. Moreover, a firm nasal tip may cause difficulties in performing activities such as touching, hugging, or kissing. Decreasing the stability and increasing the mobility of the nasal tip would help rhinoplasty patients to avoid these small but relatively important problems. Methods: We use delivery approach with closed rhinoplasty and changed positions of intranasal incisions to reach a dynamic and mobile nose. A total of 203 patients who had undergone primary closed rhinoplasty in private practice were inspected retrospectively. Posterior strut flap that was connected with connective tissues in the caudal of septum and the medial crurals were formed. Cartilage of the posterior strut graft was left 2 mm thick in the distal part of septum, it was cut vertically, and the connective tissue in the distal part was preserved. Results: The median patient age was 24 (range 17-42) years. The median follow-up period was15.2 (range12-26) months. Patient satisfaction was assessed with the 'Rhinoplasty Outcome Evaluation' (ROE) questionnaire. Twelve months after surgeries, 87.5% of patients reported excellent outcomes, according to ROE. Conclusion: The soft tissue connections between that segment and surrounding structures should be preserved to save the support of the tip while having a mobile tip at the same time with this method. These modifications would access to a mobile, non-stiff, and dynamic nasal tip in the early postoperative months. Further and prospective studies should be performed for supporting this method.Keywords: closed rhinoplasty, dynamic, mobile, tip
Procedia PDF Downloads 1341105 CSPG4 Molecular Target in Canine Melanoma, Osteosarcoma and Mammary Tumors for Novel Therapeutic Strategies
Authors: Paola Modesto, Floriana Fruscione, Isabella Martini, Simona Perga, Federica Riccardo, Mariateresa Camerino, Davide Giacobino, Cecilia Gola, Luca Licenziato, Elisabetta Razzuoli, Katia Varello, Lorella Maniscalco, Elena Bozzetta, Angelo Ferrari
Abstract:
Canine and human melanoma, osteosarcoma (OSA), and mammary carcinomas are aggressive tumors with common characteristics making dogs a good model for comparative oncology. Novel therapeutic strategies against these tumors could be useful to both species. In humans, chondroitin sulphate proteoglycan 4 (CSPG4) is a marker involved in tumor progression and could be a candidate target for immunotherapy. The anti-CSPG4 DNA electrovaccination has shown to be an effective approach for canine malignant melanoma (CMM) [1]. An immunohistochemistry evaluation of CSPG4 expression in tumour tissue is generally performed prior to electrovaccination. To assess the possibility to perform a rapid molecular evaluation and in order to validate these spontaneous canine tumors as the model for human studies, we investigate the CSPG4 gene expression by RT qPCR in CMM, OSA, and canine mammary tumors (CMT). The total RNA was extracted from RNAlater stored tissue samples (CMM n=16; OSA n=13; CMT n=6; five paired normal tissues for CMM, five paired normal tissues for OSA and one paired normal tissue for CMT), retro-transcribed and then analyzed by duplex RT-qPCR using two different TaqMan assays for the target gene CSPG4 and the internal reference gene (RG) Ribosomal Protein S19 (RPS19). RPS19 was selected from a panel of 9 candidate RGs, according to NormFinder analysis following the protocol already described [2]. Relative expression was analyzed by CFX Maestro™ Software. Student t-test and ANOVA were performed (significance set at P<0.05). Results showed that gene expression of CSPG4 in OSA tissues is significantly increased by 3-4 folds when compared to controls. In CMT, gene expression of the target was increased from 1.5 to 19.9 folds. In melanoma, although an increasing trend was observed, no significant differences between the two groups were highlighted. Immunohistochemistry analysis of the two cancer types showed that the expression of CSPG4 within CMM is concentrated in isles of cells compared to OSA, where the distribution of positive cells is homogeneous. This evidence could explain the differences in gene expression results.CSPG4 immunohistochemistry evaluation in mammary carcinoma is in progress. The evidence of CSPG4 expression in a different type of canine tumors opens the way to the possibility of extending the CSPG4 immunotherapy marker in CMM, OSA, and CMT and may have an impact to translate this strategy modality to human oncology.Keywords: canine melanoma, canine mammary carcinomas, canine osteosarcoma, CSPG4, gene expression, immunotherapy
Procedia PDF Downloads 1761104 Biodegradable Polymeric Vesicles Containing Magnetic Nanoparticles, Quantum Dots and Anticancer Drugs for Drug Delivery and Imaging
Authors: Fei Ye, Åsa Barrefelt, Manuchehr Abedi-Valugerdi, Khalid M. Abu-Salah, Salman A. Alrokayan, Mamoun Muhammed, Moustapha Hassan
Abstract:
With appropriate encapsulation in functional nanoparticles drugs are more stable in physiological environment and the kinetics of the drug can be more carefully controlled and monitored. Furthermore, targeted drug delivery can be developed to improve chemotherapy in cancer treatment, not only by enhancing intracellular uptake by target cells but also by reducing the adverse effects in non-target organs. Inorganic imaging agents, delivered together with anti-cancer drugs, enhance the local imaging contrast and provide precise diagnosis as well as evaluation of therapy efficacy. We have developed biodegradable polymeric vesicles as a nanocarrier system for multimodal bio-imaging and anticancer drug delivery. The poly (lactic-co-glycolic acid) PLGA) vesicles were fabricated by encapsulating inorganic imaging agents of superparamagnetic iron oxide nanoparticles (SPION), manganese-doped zinc sulfide (MN:ZnS) quantum dots (QDs) and the anticancer drug busulfan into PLGA nanoparticles via an emulsion-evaporation method. T2-weighted magnetic resonance imaging (MRI) of PLGA-SPION-Mn:ZnS phantoms exhibited enhanced negative contrast with r2 relaxivity of approximately 523 s-1 mM-1 Fe. Murine macrophage (J774A) cellular uptake of PLGA vesicles started fluorescence imaging at 2 h and reached maximum intensity at 24 h incubation. The drug delivery ability PLGA vesicles was demonstrated in vitro by release of busulfan. PLGA vesicles degradation was studied in vitro, showing that approximately 32% was degraded into lactic and glycolic acid over a period of 5 weeks. The biodistribution of PLGA vesicles was investigated in vivo by MRI in a rat model. Change of contrast in the liver could be visualized by MRI after 7 min and maximal signal loss detected after 4 h post-injection of PLGA vesicles. Histological studies showed that the presence of PLGA vesicles in organs was shifted from the lungs to the liver and spleen over time.Keywords: biodegradable polymers, multifunctional nanoparticles, quantum dots, anticancer drugs
Procedia PDF Downloads 4721103 Neuroprotective Effects of Gly-Pro-Glu-Thr-Ala-Phe-Leu-Arg, a Peptide Isolated from Lupinus angustifolius L. Protein Hydrolysate
Authors: Maria Del Carmen Millan-Linares, Ana Lemus Conejo, Rocio Toscano, Alvaro Villanueva, Francisco Millan, Justo Pedroche, Sergio Montserrat-De La Paz
Abstract:
GPETAFLR (Glycine-Proline-Glutamine-Threonine-Alanine-Phenylalanine-Leucine-Arginine) is a peptide isolated from Lupinus angustifolius L. protein hydrolysate (LPH). Herein, the effect of this peptide was investigated in two different models of neuroinflammation: in the immortalized murine microglia cell line BV-2 and in a high-fat-diet-induced obesity mouse model. Methods and Results: Effects of GPETAFLR on neuroinflammation were evaluated by RT-qPCR, flow cytometry, and ELISA techniques. In BV-2 microglial cells, Lipopolysaccharides (LPS) enhanced the release of pro-inflammatory cytokines (TNF-α, IL-1β, and IL-6) whereas GPETAFLR decreased pro-inflammatory cytokine levels and increased the release of the anti-inflammatory cytokine IL-10 in BV2 microglial cells. M1 (CCR7 and iNOS) and M2 (Arg-1 and Ym-1) polarization markers results showed how the GPETAFLR octapeptide was able to decrease M1 polarization marker expression and increase the M2 polarization marker expression compared to LPS. Animal model results indicate that GPETAFLR has an immunomodulatory capacity, both decreasing pro-inflammatory cytokine IL-6 and increasing the anti-inflammatory cytokine IL-10 in brain tissue. Polarization markers in the brain tissue were also modulated by GPETAFLR that decreased the pro-inflammatory expression (M1) and increased the anti-inflammatory expression (M2). Conclusion: Our results suggest that GPETAFLR isolated from LPH has significant potential for management of neuroinflammatory conditions and offer benefits derived from the consumption of Lupinus angustifolius L. in the prevention of neuroinflammatory-related diseases.Keywords: GPETAFLR peptide, BV-2 cell line, neuroinflammation, cytokines, high-fat-diet
Procedia PDF Downloads 1511102 Synthesis of Highly Porous Cyclowollastonite Bioactive Ceramic
Authors: Mehieddine Bouatrous
Abstract:
Recently bioactive ceramic materials have been applied in the biomedical field as bulk, granular, or coating materials for more than half a century. More recently, bone tissue engineering scaffolds made of highly porous bioactive ceramic, glass-ceramic, and composite materials have also been created. As a result, recent bioactive ceramic structures have a high bioactivity rate, an open pores network, and good mechanical characteristics simulating cortical bone. Cyclowollastonite frameworks are also suggested for use as a graft material. As a porogenous agent, various amounts of the polymethyl methacrylate (PMMA) powders were used in this study successfully to synthesize a highly interrelated, nanostructured porous cyclowollastonite with a large specific surface area where the morphology and porosity were investigated. Porous cyclowollastonite bioactive ceramics were synthesized with a cost-effective and eco-friendly wet chemical method. The synthesized biomaterial is bioactive according to in vitro tests and can be used for bone tissue engineering scaffolds where cyclowollastonite sintered dense discs were submerged in simulated body fluid (S.B.F.) for various periods of time (1-4 weeks), resulting in the formation of a dense and consistent layer of hydroxyapatite on the surface of the ceramics, indicating its good in vitro bioactivity. Therefore, the cyclowollastonite framework exhibits good in vitro bioactivity due to its highly interconnecting porous structure and open macropores. The results demonstrate that even after soaking for several days, the surface of cyclowollastonite ceramic can generate a dense and consistent layer of hydroxyapatite. The results showed that cyclowollastonite framework exhibits good in vitro bioactivity due to highly interconnecting porous structure and open macropores.Keywords: porous, bioactive, biomaterials, S.B.F, cyclowollastonite, biodegradability
Procedia PDF Downloads 781101 The Study of Platelet-Rich Plasma(PRP) on Wounds of OLEFT Rats Using Expression of MMP-2, MMP-9 mRNA
Authors: Ho Seong Shin
Abstract:
Introduction: A research in relation to wound healing also showed that platelet-rich plasma (PRP) was effective on normal tissue regeneration. Nonetheless, there is no evidence that when platelet-rich plasma was applied on diabetic wound, it normalize diabetic wound healing process. In this study, we have analyzed matrix metalloproteinase-2 (MMP-2), matrix metalloproteinase-9 (MMP-9) expression to know the effect of PRP on diabetic wounds using Reverse transcription-polymerase chain reaction (RT-PCR) of MMP-2, MMP-9 mRNA. Materials and Methods: Platelet-rich plasma (PRP) was prepared from blood of 6 rats. The whole 120-mL was added immediately to an anticoagulant. Citrate phosphonate dextrose(CPD) buffer (0.15 mg CPDmL) in a ratio of 1 mL of CPD buffer to 5 mL of blood. The blood was then centrifuged at 220g for 20minutes. The supernatant was saved to produce fibrin glue. The participate containing PRP was used for second centrifugation at 480g for 20 minutes. The pellet from the second centrifugation was saved and diluted with supernatant until the platelet concentration became 900,000/μL. Twenty male, 4week-old OLETF rats were underwent operation; each rat had two wounds created on left and right sides. The each wound of left side was treated with PRP gel, the wound of right side was treated with physiologic saline gauze. Results: RT-PCR analysis; The levels of MMP-2 mRNA in PRP applied tissues were positively related to postwounding days, whereas MMP-2 mRNA expression in saline-applied tissues remained in 5day after treatment. MMP-9 mRNA was undetectable in saline-applied tissues for either tissue, except 3day after treatment. Following PRP-applied tissues, MMP-9 mRNA expression was detected, with maximal expression being seen at third day. The levels of MMP-9 mRNA in PRP applied tissues were reported high intensity of optical density related to saline applied tissues.Keywords: diabetes, MMP-2, MMP-9, OLETF, PRP, wound healing MMP-9
Procedia PDF Downloads 2731100 Anatomical, Light and Scanning Electron Microscopical Study of Ostrich (Struthio camelus) Integument
Authors: Samir El-Gendy, Doaa Zaghloul
Abstract:
The current study dealt with the gross and microscopic anatomy of the integument of male ostrich in addition to the histological features of different areas of skin by light and SEM. The ostrich skin is characterized by prominent feather follicles and bristles. The number of feather follicles was determined per cm2 in different regions. The integument of ostrich had many modifications which appeared as callosities and scales, nail and toe pads. They were sternal, pubic and Achilles tendon callosities. The vacuolated epidermal cells were seen mainly in the skin of legs and to a lesser extent in the skin of back and Achilles areas. Higher lipogenic potential was expressed by epidermis from glabrous areas of ostrich skin. The dermal papillae were found in the skin of feathered area of neck and back and this was not a common finding in bird's skin which may give resistance against shearing forces in these regions of ostrich skin. The thickness of the keratin layer of ostrich varied, being thick and characteristically loose in the skin at legs, very thin and wavy at neck, while at Achilles skin area, scale and toe pad were thick and more compact, with the thickest very dense and wavy keratin layer at the nail. The dermis consisted of superficial layer of dense irregular connective tissue characterized by presence of many vacuoles of different sizes just under the basal lamina of the epithelium of epidermis and deep layer of dense regular connective tissue. This result suggested presence of fat droplets in this layer which may be to overcome the lack of good barrier of cutaneous water loss in epidermis.Keywords: ostrich, light microscopy, scanning electron microscopy, integument, skin modifications
Procedia PDF Downloads 2451099 Coagulase Negative Staphylococci: Phenotypic Characterization and Antimicrobial Susceptibility Pattern
Authors: Lok Bahadur Shrestha, Narayan Raj Bhattarai, Basudha Khanal
Abstract:
Introduction: Coagulase-negative staphylococci (CoNS) are the normal commensal of human skin and mucous membranes. The study was carried out to study the prevalence of CoNS among clinical isolates, to characterize them up to species level and to compare the three conventional methods for detection of biofilm formation. Objectives: to characterize the clinically significant coagulase-negative staphylococci up to species level, to compare the three phenotypic methods for the detection of biofilm formation and to study the antimicrobial susceptibility pattern of the isolates. Methods: CoNS isolates were obtained from various clinical samples during the period of 1 year. Characterization up to species level was done using biochemical test and study of biofilm formation was done by tube adherence, congo red agar, and tissue culture plate method. Results: Among 71 CoNS isolates, seven species were identified. S. epidermidis was the most common species followed by S. saprophyticus, S. haemolyticus. Antimicrobial susceptibility pattern of CoNS documented resistance of 90% to ampicillin. Resistance to cefoxitin and ceftriaxone was observed in 55% of the isolates. We detected biofilm formation in 71.8% of isolates. The sensitivity of tube adherence method was 82% while that of congo red agar method was 78%. Conclusion: Among 71 CoNS isolated, S. epidermidis was the most common isolates followed by S. saprophyticus and S. haemolyticus. Biofilm formation was detected in 71.8% of the isolates. All of the methods were effective at detecting biofilm-producing CoNS strains. Biofilm former strains are more resistant to antibiotics as compared to biofilm non-formers.Keywords: CoNS, congo red agar, bloodstream infections, foreign body-related infections, tissue culture plate
Procedia PDF Downloads 1991098 Biomechanical Performance of the Synovial Capsule of the Glenohumeral Joint with a BANKART Lesion through Finite Element Analysis
Authors: Duvert A. Puentes T., Javier A. Maldonado E., Ivan Quintero., Diego F. Villegas
Abstract:
Mechanical Computation is a great tool to study the performance of complex models. An example of it is the study of the human body structure. This paper took advantage of different types of software to make a 3D model of the glenohumeral joint and apply a finite element analysis. The main objective was to study the change in the biomechanical properties of the joint when it presents an injury. Specifically, a BANKART lesion, which consists in the detachment of the anteroinferior labrum from the glenoid. Stress and strain distribution of the soft tissues were the focus of this study. First, a 3D model was made of a joint without any pathology, as a control sample, using segmentation software for the bones with the support of medical imagery and a cadaveric model to represent the soft tissue. The joint was built to simulate a compression and external rotation test using CAD to prepare the model in the adequate position. When the healthy model was finished, it was submitted to a finite element analysis and the results were validated with experimental model data. With the validated model, it was sensitized to obtain the best mesh measurement. Finally, the geometry of the 3D model was changed to imitate a BANKART lesion. Then, the contact zone of the glenoid with the labrum was slightly separated simulating a tissue detachment. With this new geometry, the finite element analysis was applied again, and the results were compared with the control sample created initially. With the data gathered, this study can be used to improve understanding of the labrum tears. Nevertheless, it is important to remember that the computational analysis are approximations and the initial data was taken from an in vitro assay.Keywords: biomechanics, computational model, finite elements, glenohumeral joint, bankart lesion, labrum
Procedia PDF Downloads 1621097 The Endocrinology of Obesity and Dejenerative Joint Disease
Authors: Kebret Kebede, Anthony Scinta
Abstract:
Obesity is the most prevalent global problem that continues to rise at alarming rates both in the industrialized and developing countries. Adipose tissue is an endocrine tissue that secretes numerous chemical signals, hormones, lipids, cytokines and coagulation factors as well as prompting insulin resistance which is a primary contributor to Type II Diabetes- one of its most common adverse effects on health. Other hormones whose levels are linked to obesity and nutritional state are leptin, IGF-1, and adiponectin. Several studies indicate that obesity is the leading cause of high levels of cholesterol that leads to fatty liver disease, gallstones, hypertension, increased risk for cancer and degenerative joint disease that primarily affects the weight bearing joints of the lower extremities. The activation of inflammatory pathways promotes synovial pathology that results in accelerated degeneration of the joints. The study examines the prevalence of obesity in the US female population in comparison to that of the developing world and its emergence as a significant and potentially modifiable risk factor in degenerative disease of the hip and knee joints that has resulted in staggering healthcare cost. Studies have shown that as the prevalence of obesity rises, we continue to see a rise in degenerative joint disease. The percentage of arthritis cases linked directly to obesity has risen from 3 percent in 1971 to 18 percent in 2002. A person with obesity is around 60 percent more likely to develop arthritis than someone of normal body weight. In women, obesity is associated with increased mortality from breast, cervical, endometrial and ovarian cancer that may accompany debilitating joint diseases and restricted mobility.Keywords: obesity, endocrine, degenerative, mortality, joint diseases, cancer, debilitating, mobility
Procedia PDF Downloads 4501096 Silica Nanofibres – Promising Material for Regenerative Medicine
Authors: Miroslava Rysová, Zdena Syrová, Tomáš Zajíc, Petr Exnar
Abstract:
Currently, attention of tissue engineers has been attracted to novel nanofibrous materials having advanced properties and ability to mimic extracellular matrix (ECM) by structure which makes them interesting candidates for application in regenerative medicine as scaffolding and/or drug delivering material. Throughout the last decade, more than 200 synthetic and natural polymers have been successfully electrospun leading to the formation of nanofibres with a wide range of chemical, mechanical and degradation properties. In this family, inorganic nanofibres represent very specific group offering an opportunity to manufacture inert to body, well degradable and in properties tunable material. Aim of this work, was to reveal unique properties of silica (SiO2, CAS 7631-86-9) nanofibres and their potential in field of regenerative medicine. Silica nanofibres were prepared by sol-gel method from tetraethyl orthosilicate (TEOS, CAS 78-10-4) as a precursor and subsequently manufactured by needleless electrospinning on NanospiderTM device. Silica nanofibres thermally stabilized under 200°C were confirmed to be fully biodegradable and soluble in several simulated body fluids. In vitro cytotoxicity tests of eluate (ES ISO 10993-5:1999) and in direct contact (ES ISO 10993-5:2009) showed no toxicity - e.g. cell viabilities reached values exceeding 80%. Those results were obtained equally from two different cell lines (Vero, 3T3). Non-toxicity of silaca nanofibres´ eluate was additionally confirmed in real time by testing on xCelligence (ACEA Biosciences, Inc.) device. Both cell types also showed good adhesion to material. To conclude, all mentioned results lead to resumption that silica nanofibres have a potential as material for regenerative medicine which opens door to further research.Keywords: cytotoxicity, electrospinning, nanofibres, silica, tissue engineering
Procedia PDF Downloads 4291095 Development of Chitosan/Dextran Gelatin Methacrylate Core/Shell 3D Scaffolds and Protein/Polycaprolactone Melt Electrowriting Meshes for Tissue Regeneration Applications
Authors: J. D. Cabral, E. Murray, P. Turner, E. Hewitt, A. Ali, M. McConnell
Abstract:
Worldwide demand for organ replacement and tissue regeneration is progressively increasing. Three-dimensional (3D) bioprinting, where a physical construct is produced using computer-aided design, is a promising tool to advance the tissue engineering and regenerative medicine fields. In this paper we describe two different approaches to developing 3D bioprinted constructs for use in tissue regeneration. Bioink development is critical in achieving the 3D biofabrication of functional, regenerative tissues. Hydrogels, cross-linked macromolecules that absorb large amounts of water, have received widespread interest as bioinks due to their relevant soft tissue mechanics, biocompatibility, and tunability. In turn, not only is bioink optimisation crucial, but the creation of vascularized tissues remains a key challenge for the successful fabrication of thicker, more clinically relevant bioengineered tissues. Among the various methodologies, cell-laden hydrogels are regarded as a favorable approach; and when combined with novel core/shell 3D bioprinting technology, an innovative strategy towards creating new vessel-like structures. In this work, we investigate this cell-based approach by using human umbilical endothelial cells (HUVECs) entrapped in a viscoelastic chitosan/dextran (CD)-based core hydrogel, printed simulataneously along with a gelatin methacrylate (GelMA) shell. We have expanded beyond our previously reported FDA approved, commercialised, post-surgical CD hydrogel, Chitogel®, by functionalizing it with cell adhesion and proteolytic peptides in order to promote bone marrow-derived mesenchymal stem cell (immortalized BMSC cell line, hTERT) and HUVECs growth. The biocompatibility and biodegradability of these cell lines in a 3D bioprinted construct is demonstrated. Our studies show that particular peptide combinations crosslinked within the CD hydrogel was found to increase in vitro growth of BMSCs and HUVECs by more than two-fold. These gels were then used as a core bioink combined with the more mechanically robust, UV irradiated GelMA shell bioink, to create 3D regenerative, vessel-like scaffolds with high print fidelity. As well, microporous MEW scaffolds made from milk proteins blended with PCL were found to show promising bioactivity, exhibiting a significant increase in keratinocyte (HaCaTs) and fibroblast (normal human dermal fibroblasts, NhDFs) cell migration and proliferation when compared to PCL only scaffolds. In conclusion, our studies indicate that a peptide functionalized CD hydrogel bioink reinforced with a GelMA shell is biocompatible, biodegradable, and an appropriate cell delivery vehicle in the creation of regenerative 3D constructs. In addition, a novel 3D printing technique, melt electrowriting (MEW), which allows fabrication of micrometer fibre meshes, was used to 3D print polycaprolactone (PCL) and bioactive milk protein, lactorferrin (LF) and whey protein (WP), blended scaffolds for potential skin regeneration applications. MEW milk protein/PCL scaffolds exhibited high porosity characteristics, low overall biodegradation, and rapid protein release. Human fibroblasts and keratinocyte cells were seeded on to the scaffolds. Scaffolds containing high concentrations of LF and combined proteins (LF+WP) showed improved cell viability over time as compared to PCL only scaffolds. This research highlights two scaffolds made using two different 3D printing techniques using a combination of both natural and synthetic biomaterial components in order to create regenerative constructs as potential chronic wound treatments.Keywords: biomaterials, hydrogels, regenerative medicine, 3D bioprinting
Procedia PDF Downloads 2701094 Treatment of Porphyromonas gingivalis Induced Gingivitis in Albino Rats with Tetracycline-Loaded Nanochitosan, an Immunohistochemical Analysis
Authors: Rania Hanafi Said, Rasha Mohamed Taha
Abstract:
Background: By using nanoparticles as drug delivery, it may be possible to avoid the drawbacks of systemic antibiotic dosing, including bacterial antibiotic resistance. The goal of this study was to see how well tetracycline loaded on nanochitosan worked to treat gingival inflammation in albino rats caused by Porphyromonas gingivalis. The study analyzed immunohistochemically the localization of the pro-inflammatory cytokine Interleukin-1beta (IL-1β). Material and methods: In this study, fifty mature male albino rats weighing 150 to 180 grams each were used. They were randomly divided into five groups. We checked for weight changes in rats. Ten male albino rats were included in Group I, which served as a negative control group. Ten rats were included in Group II, where they were exposed once to Porphyromonas. Group III contained ten rats, which were treated the same as Group II plus daily injections of diluted tetracycline powder at the infection sites. Ten rats in Group IV received the same procedure as those in Group II before receiving daily injections of nanochitosan at the injection sites. Finally, Group V, which had ten rats. Following the same protocol as Group II, they received localized injections of tetracycline loaded on nanochitosan once daily. Rats' gingivae were extracted and prepared after they were anesthetized. The biopsies were examined histologically and immunohistochemically by light microscopy. Results: Groups I and V had a nearly normal histological appearance of gingival tissue. In Groups II, III, and IV, degeneration was seen because the epithelial cells were bigger, collagen fibers were pulling away from the lamina propria connective tissue, and the basement membranes had come to an end. There was no discernible difference between groups V and I when they were examined immunohistochemically. Conclusion: The use of nano chitosan as a tetracycline carrier is a novel technique to overcome the drug's rising level of resistance.Keywords: Immunohistochemistry, Nanochitosan, porphyromonas gingivitis, Tetracycline
Procedia PDF Downloads 831093 A Histopathological Study on Leech (Hirudo medicinalis) Application in the Management of Vicarcikā (Eczema)
Authors: K. M. Pratap Shankar, Dattatreya Rao, Sai Prasad
Abstract:
Background: Skin diseases are among the most common health problems worldwide and are associated with a considerable burden. Eczema is such a skin ailment which cause psychological, social and financial burden on the patient and their families. Management of eczema with antibiotics, antihistamines, steroids etc., are available but even after their use relapses, recurrences and other complications are very common. Aim: The aim of this study was to assess the efficacy of leech application in the management of vicarcikā (Eczema) with Histopathological study. Methods: For the present study 10 patients having the classical symptoms of Vicarcikā, were randomly selected as per the inclusion and exclusion criteria from O.P.D. & I.P.D. sections of Śalya department, S.V. Āyurvedic Hospital, Tirupati. Minimum 4 sittings of Leech application was carried out with seven days interval. Total duration of treatment was 6 weeks. Biopsy samples were collected from the lesion site before and after treatment. Histopathological examination was done by the pathologist. Results: In eczema (dermatitis) the leech application therapy gives excellent response by reducing the inflammatory component, hyperkeratosis, spongiosis, irregular acanthosis and by evoking a granulation tissue response in the dermis and in most of the cases with complete recovery from the lesion. Most of the cases in the study were chronic dermatitis and sebhoric keratosis, almost all local/focal pigmented lesions is totally relieved by leech therapy especially in cases of sebhoric keratosis. Conclusion: In the present study it was found that, leech application evokes significant changes at histological level specifically in reduction of inflammatory component, hyperkeratosis, spongiosis and irregular acanthosis. It was also found that there was a considerable formation of granulation tissue, which helps in formation of healthy new tissues.Keywords: acanthosis, eczema, hyperkeratosis, leech application, spongiosis
Procedia PDF Downloads 298