Search results for: modeling platform
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5850

Search results for: modeling platform

930 Monitoring and Management of Aquatic Macroinvertebrates for Determining the Level of Water Pollution Catchment Basin of Debed River, Armenia

Authors: Inga Badasyan

Abstract:

Every year we do monitoring of water pollution of catchment basin of Debed River. Next, the Ministry of Nature Protection does modeling programme. Finely, we are managing the impact of water pollution in Debed river. Ecosystem technologies efficiency performance were estimated based on the physical, chemical, and macrobiological analyses of water on regular base between 2012 to 2015. Algae community composition was determined to assess the ecological status of Debed river, while vegetation was determined to assess biodiversity. Last time, experts werespeaking about global warming, which is having bad impact on the surface water, freshwater, etc. As, we know that global warming is caused by the current high levels of carbon dioxide in the water. Geochemical modelling is increasingly playing an important role in various areas of hydro sciences and earth sciences. Geochemical modelling of highly concentrated aqueous solutions represents an important topic in the study of many environments such as evaporation ponds, groundwater and soils in arid and semi-arid zones, costal aquifers, etc. The sampling time is important for benthic macroinvertebrates, for that reason we have chosen in the spring (abundant flow of the river, the beginning of the vegetation season) and autumn (the flow of river is scarce). The macroinvertebrates are good indicator for a chromic pollution and aquatic ecosystems. Results of our earlier investigations in the Debed river reservoirs clearly show that management problem of ecosystem reservoirs is topical. Research results can be applied to studies of monitoring water quality in the rivers and allow for rate changes and to predict possible future changes in the nature of the lake.

Keywords: ecohydrological monitoring, flood risk management, global warming, aquatic macroinvertebrates

Procedia PDF Downloads 292
929 Factors That Influence Choice of Walking Mode in Work Trips: Case Study of Rasht, Iran

Authors: Nima Safaei, Arezoo Masoud, Babak Safaei

Abstract:

In recent years, there has been a growing emphasis on the role of urban planning in walking capability and the effects of individual and socioeconomic factors on the physical activity levels of city dwellers. Although considerable number of studies are conducted about walkability and for identifying the effective factors in walking mode choice in developed countries, to our best knowledge, literature lacks in the study of factors affecting choice of walking mode in developing countries. Due to the high importance of health aspects of human societies and in order to make insights and incentives for reducing traffic during rush hours, many researchers and policy makers in the field of transportation planning have devoted much attention to walkability studies; they have tried to improve the effective factors in the choice of walking mode in city neighborhoods. In this study, effective factors in walkability that have proven to have significant impact on the choice of walking mode, are studied at the same time in work trips. The data for the study is collected from the employees in their workplaces by well-instructed people using questionnaires; the statistical population of the study consists of 117 employed people who commute daily from work to home in Rasht city of Iran during the beginning of spring 2015. Results of the study which are found through the linear regression modeling, show that people who do not have freedom of choice for choosing their living locations and need to be present at their workplaces in certain hours have lower levels of walking. Additionally, unlike some of the previous studies which were conducted in developed countries, coincidental effects of Body Mass Index (BMI) and the income level of employees, do not have a significant effect on the walking level in work travels.

Keywords: BMI, linear regression, transportation, walking, work trips

Procedia PDF Downloads 199
928 Optimized Cropping Calendar and Land Suitability for Maize through GIS and Crop Modelling

Authors: Marilyn S. Painagan, Willie Jones B. Saliling

Abstract:

This paper reports an optimized cropping calendar and land suitability for maize in North Cotabato derived from modeling crop productivity over time and space. Using Quantum GIS, eight representative soil types and 0.3o x 0.3o climate grids shapefiles were intersected to form thirty two pedoclimatic zones within the boundaries of the province. Surveys were done to ascertain crop performance and phenological properties on field. Based on these surveys, crop parameters were calibrated specific for a variety of maize. Soil properties and climatic data (daily precipitation, maximum and minimum temperatures) from pedoclimatic zones were loaded to the FAO Aquacrop Water Productivity Model along with the crop properties from field surveys to simulate yield from 1980 to 2010. The average yield per month was computed to come up with the month of planting having the highest and lowest probable yield in a year assuming that all lands were planted with maize. The yield attributes were visualized in the Quantum GIS environment. The study revealed that optimal cropping patterns varied across North Cotabato. Highest probable yield (8000 kg/ha) can be obtained when maize is planted on May and September (sandy clay-loam soils) in the northern part of the province while the lowest probable yield (1000 kg/ha) can be obtained when maize is planted on January, February and March (clay loam soils) at the northern part of the province. Yields are simulated on the basis of varieties currently planted by farmers of North Cotabato. The resulting maps suggest where and when maize is most suitable to achieve high yields. There is a need to ground truth and validate the cropping calendar on field.

Keywords: aquacrop, quantum GIS, maize, cropping calendar, water productivity

Procedia PDF Downloads 259
927 Survey on Resilience of Chinese Nursing Interns: A Cross-Sectional Study

Authors: Yutong Xu, Wanting Zhang, Jia Wang, Zihan Guo, Weiguang Ma

Abstract:

Background: The resilience education of intern nursing students has significant implications for the development and improvement of the nursing workforce. The clinical internship period is a critical time for enhancing resilience. Aims: To evaluate the resilience level of Chinese nursing interns and identify the factors affecting resilience early in their careers. Methods: The cross-sectional study design was adopted. From March 2022 to May 2023, 512 nursing interns in tertiary care hospitals were surveyed online with the Connor-Davidson Resilience Scale, the Clinical Learning Environment scale for Nurse, and the Career Adapt-Abilities Scale. Structural equation modeling was used to clarify the relationships among these factors. Indirect effects were tested using bootstrapped Confidence Intervals. Results: The nursing interns showed a moderately high level of resilience[M(SD)=70.15(19.90)]. Gender, scholastic attainment, had a scholarship, career adaptability and clinical learning environment were influencing factors of nursing interns’ resilience. Career adaptability and clinical learning environment positively and directly affected their resilience level (β = 0.58, 0.12, respectively, p<0.01). career adaptability also positively affected career adaptability (β = 0.26, p < 0.01), and played a fully mediating role in the relationship between clinical learning environment and resilience. Conclusion: Career adaptability can enhance the influence of clinical learning environment on resilience. The promotion of career adaptability and the clinical teaching environment should be the potential strategies for nursing interns to improve their resilience, especially for those female nursing interns with low academic performance. Implications for Nursing Educators Nursing educators should pay attention to the cultivation of nursing students' resilience; for example, by helping them integrate to the clinical learning environment and improving their career adaptability. Reporting Method: The STROBE criteria were used to report the results of the observations critically. Patient or Public Contribution No patient or public contribution.

Keywords: resilience, clinical learning environment, career adaptability, nursing interns

Procedia PDF Downloads 94
926 A Crystallization Kinetic Model for Long Fiber-Based Composite with Thermoplastic Semicrystalline Polymer Matrix

Authors: Nicolas Bigot, M'hamed Boutaous, Nahiene Hamila, Shihe Xin

Abstract:

Composite materials with polymer matrices are widely used in most industrial areas, particularly in aeronautical and automotive ones. Thanks to the development of a high-performance thermoplastic semicrystalline polymer matrix, those materials exhibit more and more efficient properties. The polymer matrix in composite materials can manifest a specific crystalline structure characteristic of crystallization in a fibrous medium. In order to guarantee a good mechanical behavior of structures and to optimize their performances, it is necessary to define realistic mechanical constitutive laws of such materials considering their physical structure. The interaction between fibers and matrix is a key factor in the mechanical behavior of composite materials. Transcrystallization phenomena which develops in the matrix around the fibers constitute the interphase which greatly affects and governs the nature of the fiber-matrix interaction. Hence, it becomes fundamental to quantify its impact on the thermo-mechanical behavior of composites material in relationship with processing conditions. In this work, we propose a numerical model coupling the thermal and crystallization kinetics in long fiber-based composite materials, considering both the spherulitic and transcrystalline types of the induced structures. After validation of the model with comparison to results from the literature and noticing a good correlation, a parametric study has been led on the effects of the thermal kinetics, the fibers volume fractions, the deformation, and the pressure on the crystallization rate in the material, under processing conditions. The ratio of the transcrystallinity is highlighted and analyzed with regard to the thermal kinetics and gradients in the material. Experimental results on the process are foreseen and pave the way to establish a mechanical constitutive law describing, with the introduction of the role on the crystallization rates and types on the thermo-mechanical behavior of composites materials.

Keywords: composite materials, crystallization, heat transfer, modeling, transcrystallization

Procedia PDF Downloads 199
925 The Effect of Social Media Influencer on Boycott Participation through Attitude toward the Offending Country in a Situational Animosity Context

Authors: Hsing-Hua Stella Chang, Mong-Ching Lin, Cher-Min Fong

Abstract:

Using surrogate boycotts as a coercive tactic to force the offending party into changing its approaches has been increasingly significant over the last several decades, and is expected to increase in the future. Research shows that surrogate boycotts are often triggered by controversial international events, and particular foreign countries serve as the offending party in the international marketplace. In other words, multinational corporations are likely to become surrogate boycott targets in overseas markets because of the animosity between their home and host countries. Focusing on the surrogate boycott triggered by a severe situation animosity, this research aims to examine how social media influencers (SMIs) serving as electronic key opinion leaders (EKOLs) in an international crisis facilitate and organize a boycott, and persuade consumers to participate in the boycott. This research suggests that SMIs could be a particularly important information source in a surrogate boycott sparked by a situation of animosity. This research suggests that under such a context, SMIs become a critical information source for individuals to enhance and update their understanding of the event because, unlike traditional media, social media serve as a platform for instant and 24-hour non-stop information access and dissemination. The Xinjiang cotton event was adopted as the research context, which was viewed as an ongoing inter-country conflict, reflecting a crisis, which provokes animosity against the West. Through online panel services, both studies recruited Mainland Chinese nationals to be respondents to the surveys. The findings show that: 1. Social media influencer message is positively related to a negative attitude toward the offending country. 2. Attitude toward the offending country is positively related to boycotting participation. To address the unexplored question – of the effect of social media influencer influence on consumer participation in boycotts, this research presents a finer-grained examination of boycott motivation, with a special focus on a situational animosity context. This research is split into two interrelated parts. In the first part, this research shows that attitudes toward the offending country can be socially constructed by the influence of social media influencers in a situational animosity context. The study results show that consumers perceive different strengths of social pressure related to various levels of influencer messages and thus exhibit different levels of attitude toward the offending country. In the second part, this research further investigates the effect of attitude toward the offending country on boycott participation. The study findings show that such attitude exacerbated the effect of social media influencer messages on boycott participation in a situation of animosity.

Keywords: animosity, social media marketing, boycott, attitude toward the offending country

Procedia PDF Downloads 116
924 Synthesis of Highly Active Octahedral NaInS₂ for Enhanced H₂ Evolution

Authors: C. K. Ngaw

Abstract:

Crystal facet engineering, which involves tuning and controlling a crystal surface and morphology, is a commonly employed strategy to optimize the performance of crystalline nanocrystals. The principle behind this strategy is that surface atomic rearrangement and coordination, which inherently determines their catalytic activity, can be easily tuned by morphological control. Because of this, the catalytic properties of a nanocrystal are closely related to the surface of an exposed facet, and it has provided great motivation for researchers to synthesize photocatalysts with high catalytic activity by maximizing reactive facets exposed through morphological control. In this contribution, octahedral NaInS₂ crystals have been successfully developed via solvothermal method. The formation of the octahedral NaInS₂ crystals was investigated using field emission scanning electron microscope (FESEM) and X-Ray diffraction (XRD), and results have shown that the concentration of sulphur precursor plays an important role in the growth process, leading to the formation of other NaInS₂ crystal structures in the form of hexagonal nanosheets and microspheres. Structural modeling analysis suggests that the octahedral NaInS₂ crystals were enclosed with {012} and {001} facets, while the nanosheets and microspheres are bounded with {001} facets only and without any specific facets, respectively. Visible-light photocatalytic H₂ evolution results revealed that the octahedral NaInS₂ crystals (~67 μmol/g/hr) exhibit ~6.1 and ~2.3 times enhancement as compared to the conventional NaInS₂ microspheres (~11 μmol/g/hr) and nanosheets (~29 μmol/g/hr), respectively. The H₂ enhancement of the NaInS₂ octahedral crystal is attributed to the presence of {012} facets on the surface. Detailed analysis of the octahedron model revealed obvious differences in the atomic arrangement between the {001} and {012} facets and this can affect the interaction between the water molecules and the surface facets before reducing into H₂ gas. These results highlight the importance of tailoring crystal morphology with highly reactive facets in improving photocatalytic properties.

Keywords: H₂ evolution, photocatalysis, octahedral, reactive facets

Procedia PDF Downloads 71
923 The Musician as the Athlete: Psychological Response to Injury

Authors: Shulamit Sternin

Abstract:

Athletes experience injuries that can have both a physical and psychological impact on the individual. In such instances, athletes are able to rely on the established field of sports psychology to facilitate holistic rehabilitation. Musicians, like athletes rely on their bodies to perform in much the same way athletes do and are also susceptible to injury. Due to the similar performative nature of succeeding as an athletes or a musician, these careers share many of the same primary psychological concerns and therefore it is reasonable that athletes and musicians may require similar rehabilitation post-injury. However, musicians face their own unique psychological challenges and understanding the needs of an injured athlete can serve as a foundation for understanding the injured musician but is not enough to fully rehabilitate an injured musician. The current research surrounding musicians and their injuries is primarily focused on physiological aspects of injury and rehabilitation; the psychological aspects have not yet received adequate attention resulting in poor musician rehabilitation post- injury. This review paper uses current models of psychological response to injury in athletes to draw parallels with the psychological response to injury in musicians. Search engines such as Medline and PsycInfo were systematically searched using specific key words, such as psychological response, injury, athlete, and musician. Studies that focused on post-injury psychology of either the musician or the athlete were included. Within the literature there is evidence to support psychological responses, unique to the musician, that are not accounted for by current models of response in athletes. The models of psychological response to injury in athletes are inadequate tools for application to the musician. Future directions for performance arts research that can fill the gaps in our understanding and modeling of musicians’ response to injury are discussed. A better understanding of the psychological impact of injuries on musicians holds significant implications for health care practitioners working with injured musicians. Understanding the unique barriers musicians face post-injury, and how support for this population must be tailored to properly suit musicians’ needs will aid in more holistic rehabilitation and a higher likelihood of musician’s returning to pre-injury performance levels.

Keywords: athlete, injury, musician, psychological response

Procedia PDF Downloads 209
922 Unseen, Unreported, Undisclosed: Insights from a Qualitative Study on Online Sexual Abuse of Children with Disabilities

Authors: Gal Friedman-Hauser, Carmit Katz

Abstract:

Children and youth with disabilities (CWD) are at increased risk of experiencing sexual abuse compared to their peer group. This phenomenon is prevalent in both physical and online spaces, with the latter becoming an increasingly common platform for such abuse due to recent technological advances. Despite their heightened risk, the processes of disclosure and reporting of online child sexual abuse (OCSA) for CWD remain largely unexamined, leaving significant gaps in understanding how to effectively address their needs. The current study seeks to bridge this gap by examining aspects of disclosure and reporting of OCSA among CWD. The study aimed to identify patterns of reporting and disclosure, explore reactions of children's immediate social circle, and critically analyze the content of the reports, emphasizing both addressed and absent aspects. Using a qualitative-critical methodology, the study involved thematic content analysis of 25 case reports from a hotline in Israel dedicated to uncovering online crimes against children. The reports detailed cases of online sexual abuse involving children aged 11–17. Each report was accompanied by a statistical file classifying the child as having a disability. The findings of the study reveal a silenced phenomenon requiring urgent attention. Most cases of abuse were discovered by chance, often by parents, as children hesitated to disclose the abuse due to fears of negative reactions from family and society—fears that were often realized. Reporting was frequently delayed due to three main factors: lack of trust in the validity of the abuse claims attempts to resolve the situation without involving authorities, and a lack of understanding of the severity of the abuse. In addition, the findings have highlighted the reports primarily reflected parents' perspectives, with a limited representation of the children's voices. Moreover, the aspect of disability was mentioned only in general terms, without in-depth consideration. These findings underscore the marginalization of children with disabilities and the pressing need for tailored recognition of their needs in intervention and treatment processes following OCSA. The analysis of these findings provides a comprehensive understanding of the barriers faced by CWD who experience OCSA. To address these challenges, it is crucial to adopt an approach that simultaneously acknowledges the uniqueness of CWD and affirms their right to equal treatment. Such an approach must account for their increased risk of sexual abuse, the prevalence of underreporting, and the negative societal attitudes they often encounter. By recognizing CWD as both equal and different, interventions can more effectively support their specific needs and promote justice and protection in cases of OCSA

Keywords: children with disabilities, disclosure and reporting, online child sexual abuse, qualitative analysis

Procedia PDF Downloads 14
921 A Laser Instrument Rapid-E+ for Real-Time Measurements of Airborne Bioaerosols Such as Bacteria, Fungi, and Pollen

Authors: Minghui Zhang, Sirine Fkaier, Sabri Fernana, Svetlana Kiseleva, Denis Kiselev

Abstract:

The real-time identification of bacteria and fungi is difficult because they emit much weaker signals than pollen. In 2020, Plair developed Rapid-E+, which extends abilities of Rapid-E to detect smaller bioaerosols such as bacteria and fungal spores with diameters down to 0.3 µm, while keeping the similar or even better capability for measurements of large bioaerosols like pollen. Rapid-E+ enables simultaneous measurements of (1) time-resolved, polarization and angle dependent Mie scattering patterns, (2) fluorescence spectra resolved in 16 channels, and (3) fluorescence lifetime of individual particles. Moreover, (4) it provides 2D Mie scattering images which give the full information on particle morphology. The parameters of every single bioaerosol aspired into the instrument are subsequently analysed by machine learning. Firstly, pure species of microbes, e.g., Bacillus subtilis (a species of bacteria), and Penicillium chrysogenum (a species of fungal spores), were aerosolized in a bioaerosol chamber for Rapid-E+ training. Afterwards, we tested microbes under different concentrations. We used several steps of data analysis to classify and identify microbes. All single particles were analysed by the parameters of light scattering and fluorescence in the following steps. (1) They were treated with a smart filter block to get rid of non-microbes. (2) By classification algorithm, we verified the filtered particles were microbes based on the calibration data. (3) The probability threshold (defined by the user) step provides the probability of being microbes ranging from 0 to 100%. We demonstrate how Rapid-E+ identified simultaneously microbes based on the results of Bacillus subtilis (bacteria) and Penicillium chrysogenum (fungal spores). By using machine learning, Rapid-E+ achieved identification precision of 99% against the background. The further classification suggests the precision of 87% and 89% for Bacillus subtilis and Penicillium chrysogenum, respectively. The developed algorithm was subsequently used to evaluate the performance of microbe classification and quantification in real-time. The bacteria and fungi were aerosolized again in the chamber with different concentrations. Rapid-E+ can classify different types of microbes and then quantify them in real-time. Rapid-E+ enables classifying different types of microbes and quantifying them in real-time. Rapid-E+ can identify pollen down to species with similar or even better performance than the previous version (Rapid-E). Therefore, Rapid-E+ is an all-in-one instrument which classifies and quantifies not only pollen, but also bacteria and fungi. Based on the machine learning platform, the user can further develop proprietary algorithms for specific microbes (e.g., virus aerosols) and other aerosols (e.g., combustion-related particles that contain polycyclic aromatic hydrocarbons).

Keywords: bioaerosols, laser-induced fluorescence, Mie-scattering, microorganisms

Procedia PDF Downloads 96
920 Uplift Segmentation Approach for Targeting Customers in a Churn Prediction Model

Authors: Shivahari Revathi Venkateswaran

Abstract:

Segmenting customers plays a significant role in churn prediction. It helps the marketing team with proactive and reactive customer retention. For the reactive retention, the retention team reaches out to customers who already showed intent to disconnect by giving some special offers. When coming to proactive retention, the marketing team uses churn prediction model, which ranks each customer from rank 1 to 100, where 1 being more risk to churn/disconnect (high ranks have high propensity to churn). The churn prediction model is built by using XGBoost model. However, with the churn rank, the marketing team can only reach out to the customers based on their individual ranks. To profile different groups of customers and to frame different marketing strategies for targeted groups of customers are not possible with the churn ranks. For this, the customers must be grouped in different segments based on their profiles, like demographics and other non-controllable attributes. This helps the marketing team to frame different offer groups for the targeted audience and prevent them from disconnecting (proactive retention). For segmentation, machine learning approaches like k-mean clustering will not form unique customer segments that have customers with same attributes. This paper finds an alternate approach to find all the combination of unique segments that can be formed from the user attributes and then finds the segments who have uplift (churn rate higher than the baseline churn rate). For this, search algorithms like fast search and recursive search are used. Further, for each segment, all customers can be targeted using individual churn ranks from the churn prediction model. Finally, a UI (User Interface) is developed for the marketing team to interactively search for the meaningful segments that are formed and target the right set of audience for future marketing campaigns and prevent them from disconnecting.

Keywords: churn prediction modeling, XGBoost model, uplift segments, proactive marketing, search algorithms, retention, k-mean clustering

Procedia PDF Downloads 74
919 Analytical Model of Multiphase Machines Under Electrical Faults: Application on Dual Stator Asynchronous Machine

Authors: Nacera Yassa, Abdelmalek Saidoune, Ghania Ouadfel, Hamza Houassine

Abstract:

The rapid advancement in electrical technologies has underscored the increasing importance of multiphase machines across various industrial sectors. These machines offer significant advantages in terms of efficiency, compactness, and reliability compared to their single-phase counterparts. However, early detection and diagnosis of electrical faults remain critical challenges to ensure the durability and safety of these complex systems. This paper presents an advanced analytical model for multiphase machines, with a particular focus on dual stator asynchronous machines. The primary objective is to develop a robust diagnostic tool capable of effectively detecting and locating electrical faults in these machines, including short circuits, winding faults, and voltage imbalances. The proposed methodology relies on an analytical approach combining electrical machine theory, modeling of magnetic and electrical circuits, and advanced signal analysis techniques. By employing detailed analytical equations, the developed model accurately simulates the behavior of multiphase machines in the presence of electrical faults. The effectiveness of the proposed model is demonstrated through a series of case studies and numerical simulations. In particular, special attention is given to analyzing the dynamic behavior of machines under different types of faults, as well as optimizing diagnostic and recovery strategies. The obtained results pave the way for new advancements in the field of multiphase machine diagnostics, with potential applications in various sectors such as automotive, aerospace, and renewable energies. By providing precise and reliable tools for early fault detection, this research contributes to improving the reliability and durability of complex electrical systems while reducing maintenance and operation costs.

Keywords: faults, diagnosis, modelling, multiphase machine

Procedia PDF Downloads 70
918 Count Data Regression Modeling: An Application to Spontaneous Abortion in India

Authors: Prashant Verma, Prafulla K. Swain, K. K. Singh, Mukti Khetan

Abstract:

Objective: In India, around 20,000 women die every year due to abortion-related complications. In the modelling of count variables, there is sometimes a preponderance of zero counts. This article concerns the estimation of various count regression models to predict the average number of spontaneous abortion among women in the Punjab state of India. It also assesses the factors associated with the number of spontaneous abortions. Materials and methods: The study included 27,173 married women of Punjab obtained from the DLHS-4 survey (2012-13). Poisson regression (PR), Negative binomial (NB) regression, zero hurdle negative binomial (ZHNB), and zero-inflated negative binomial (ZINB) models were employed to predict the average number of spontaneous abortions and to identify the determinants affecting the number of spontaneous abortions. Results: Statistical comparisons among four estimation methods revealed that the ZINB model provides the best prediction for the number of spontaneous abortions. Antenatal care (ANC) place, place of residence, total children born to a woman, woman's education and economic status were found to be the most significant factors affecting the occurrence of spontaneous abortion. Conclusions: The study offers a practical demonstration of techniques designed to handle count variables. Statistical comparisons among four estimation models revealed that the ZINB model provided the best prediction for the number of spontaneous abortions and is recommended to be used to predict the number of spontaneous abortions. The study suggests that women receive institutional Antenatal care to attain limited parity. It also advocates promoting higher education among women in Punjab, India.

Keywords: count data, spontaneous abortion, Poisson model, negative binomial model, zero hurdle negative binomial, zero-inflated negative binomial, regression

Procedia PDF Downloads 157
917 The Antecedents of Green Purchase Intention in Nigeria: Mediating Effect of Perceived Behavioral Control

Authors: Victoria Masi Haruna Karatu, Nik Kamariah Nikmat

Abstract:

In recent times awareness about the environment and green purchase has been on the increase across nations due to global warming. Previous researchers have attempted to determine what actually influences the purchase intention of consumers in this environmentally conscious epoch. The consumers too have become conscious of what to buy and who to buy from in their purchasing decisions as this action will reflect their concern about the environment and their personal well-being. This trend is a widespread phenomenon in most developed countries of the world. On the contrary evidence revealed that only 5% of the populations of Nigeria involve in green purchase activities thus making the country lag behind its counterparts in green practices. This is not a surprise as Nigeria is facing problems of inadequate green knowledge, non-enforcement of environmental regulations, sensitivity to the price of green products when compared with the conventional ones and distrust towards green products which has been deduced from prior studies of other regions. The main objectives of this study is to examine the direct antecedents of green purchase intention (green availability, government regulations, perceived green knowledge, perceived value and green price sensitivity) in Nigeria and secondly to establish the mediating role of perceived behavioral control on the relationship between these antecedents and green purchase intention. The study adopts quantitative method whereby 700 questionnaires were administered to lecturers in three Nigerian universities. 502 datasets were collected which represents 72 percent response rate. After screening the data only 440 were usable and analyzed using structural equation modeling (SEM) and bootstrapping. From the findings, three antecedents have significant direct relationships with green purchase intention (perceived green knowledge, perceived behavioral control, and green availability) while two antecedents have positive and significant direct relationship with perceived behavioral control (perceived value and green price sensitivity). On the other hand, PBC does not mediate any of the paths from the predictors to criterion variable. This result is discussed in the Nigerian context.

Keywords: Green Availability, Green Price Sensitivity, Green Purchase Intention, Perceived Green Knowledge, Perceived Value

Procedia PDF Downloads 430
916 The Elimination of Fossil Fuel Subsidies from the Road Transportation Sector and the Promotion of Electro Mobility: The Ecuadorian Case

Authors: Henry Acurio, Alvaro Corral, Juan Fonseca

Abstract:

In Ecuador, subventions on fossil fuels for the road transportation sector have always been part of its economy throughout time, mainly because of demagogy and populism from political leaders. It is clearly seen that the government cannot maintain the subsidies anymore due to its commercial balance and its general state budget; subsidies are a key barrier to implementing the use of cleaner technologies. However, during the last few months, the elimination of subsidies has been done gradually with the purpose of reaching international prices. It is expected that with this measure, the population will opt for other means of transportation, and in a certain way, it will promote the use of private electric vehicles and public, e.g., taxis and buses (urban transport). Considering the three main elements of sustainable development, an analysis of the social, economic, and environmental impacts of eliminating subsidies will be generated at the country level. To achieve this, four scenarios will be developed in order to determine how the subsidies will contribute to the promotion of electro-mobility: 1) A Business as Usual (BAU) scenario; 2) the introduction of 10 000 electric vehicles by 2025; 3) the introduction of 100 000 electric vehicles by 2030; 4) the introduction of 750 000 electric vehicles by 2040 (for all the scenarios, buses, taxis, lightweight duty vehicles, and private vehicles will be introduced, as it is established in the National Electro Mobility Strategy for Ecuador). The Low Emissions Analysis Platform (LEAP) will be used, and it will be suitable to determine the cost for the government in terms of importing derivatives for fossil fuels and the cost of electricity to power the electric fleet that can be changed. The elimination of subventions generates fiscal resources for the state that can be used to develop other kinds of projects that will benefit Ecuadorian society. It will definitely change the energy matrix, and it will provide energy security for the country; it will be an opportunity for the government to incentivize a greater introduction of renewable energies, e.g., solar, wind, and geothermal. At the same time, it will also reduce greenhouse gas emissions (GHG) from the transportation sector, considering its mitigation potential, which as a result, will ameliorate the inhabitant quality of life by improving the quality of air, therefore reducing respiratory diseases associated with exhaust emissions, consequently, achieving sustainability, the Sustainable Development Goals (SDGs), and complying with the agreements established in the Paris Agreement COP 21 in 2015. Electro-mobility in Latin America and the Caribbean can only be achieved by the implementation of the right policies by the central government, which need to be accompanied by a National Urban Mobility Policy (NUMP), and can encompass a greater vision to develop holistic, sustainable transport systems at local governments.

Keywords: electro mobility, energy, policy, sustainable transportation

Procedia PDF Downloads 85
915 A Monolithic Arbitrary Lagrangian-Eulerian Finite Element Strategy for Partly Submerged Solid in Incompressible Fluid with Mortar Method for Modeling the Contact Surface

Authors: Suman Dutta, Manish Agrawal, C. S. Jog

Abstract:

Accurate computation of hydrodynamic forces on floating structures and their deformation finds application in the ocean and naval engineering and wave energy harvesting. This manuscript presents a monolithic, finite element strategy for fluid-structure interaction involving hyper-elastic solids partly submerged in an incompressible fluid. A velocity-based Arbitrary Lagrangian-Eulerian (ALE) formulation has been used for the fluid and a displacement-based Lagrangian approach has been used for the solid. The flexibility of the ALE technique permits us to treat the free surface of the fluid as a Lagrangian entity. At the interface, the continuity of displacement, velocity and traction are enforced using the mortar method. In the mortar method, the constraints are enforced in a weak sense using the Lagrange multiplier method. In the literature, the mortar method has been shown to be robust in solving various contact mechanics problems. The time-stepping strategy used in this work reduces to the generalized trapezoidal rule in the Eulerian setting. In the Lagrangian limit, in the absence of external load, the algorithm conserves the linear and angular momentum and the total energy of the system. The use of monolithic coupling with an energy-conserving time-stepping strategy gives an unconditionally stable algorithm and allows the user to take large time steps. All the governing equations and boundary conditions have been mapped to the reference configuration. The use of the exact tangent stiffness matrix ensures that the algorithm converges quadratically within each time step. The robustness and good performance of the proposed method are demonstrated by solving benchmark problems from the literature.

Keywords: ALE, floating body, fluid-structure interaction, monolithic, mortar method

Procedia PDF Downloads 278
914 Aerodynamic Optimum Nose Shape Change of High-Speed Train by Design Variable Variation

Authors: Minho Kwak, Suhwan Yun, Choonsoo Park

Abstract:

Nose shape optimizations of high-speed train are performed for the improvement of aerodynamic characteristics. Based on the commercial train, KTX-Sancheon, multi-objective optimizations are conducted for the improvement of the side wind stability and the micro-pressure wave following the optimization for the reduction of aerodynamic drag. 3D nose shapes are modelled by the Vehicle Modeling Function. Aerodynamic drag and side wind stability are calculated by three-dimensional compressible Navier-Stokes solver, and micro pressure wave is done by axi-symmetric compressible Navier-Stokes solver. The Maxi-min Latin Hypercube Sampling method is used to extract sampling points to construct the approximation model. The kriging model is constructed for the approximation model and the NSGA-II algorithm was used as the multi-objective optimization algorithm. Nose length, nose tip height, and lower surface curvature are design variables. Because nose length is a dominant variable for aerodynamic characteristics of train nose, two optimization processes are progressed respectively with and without the design variable, nose length. Each pareto set was obtained and each optimized nose shape is selected respectively considering Honam high-speed rail line infrastructure in South Korea. Through the optimization process with the nose length, when compared to KTX Sancheon, aerodynamic drag was reduced by 9.0%, side wind stability was improved by 4.5%, micro-pressure wave was reduced by 5.4% whereas aerodynamic drag by 7.3%, side wind stability by 3.9%, micro-pressure wave by 3.9%, without the nose length. As a result of comparison between two optimized shapes, similar shapes are extracted other than the effect of nose length.

Keywords: aerodynamic characteristics, design variable, multi-objective optimization, train nose shape

Procedia PDF Downloads 353
913 Measuring Emotion Dynamics on Facebook: Associations between Variability in Expressed Emotion and Psychological Functioning

Authors: Elizabeth M. Seabrook, Nikki S. Rickard

Abstract:

Examining time-dependent measures of emotion such as variability, instability, and inertia, provide critical and complementary insights into mental health status. Observing changes in the pattern of emotional expression over time could act as a tool to identify meaningful shifts between psychological well- and ill-being. From a practical standpoint, however, examining emotion dynamics day-to-day is likely to be burdensome and invasive. Utilizing social media data as a facet of lived experience can provide real-world, temporally specific access to emotional expression. Emotional language on social media may provide accurate and sensitive insights into individual and community mental health and well-being, particularly with focus placed on the within-person dynamics of online emotion expression. The objective of the current study was to examine the dynamics of emotional expression on the social network platform Facebook for active users and their relationship with psychological well- and ill-being. It was expected that greater positive and negative emotion variability, instability, and inertia would be associated with poorer psychological well-being and greater depression symptoms. Data were collected using a smartphone app, MoodPrism, which delivered demographic questionnaires, psychological inventories assessing depression symptoms and psychological well-being, and collected the Status Updates of consenting participants. MoodPrism also delivered an experience sampling methodology where participants completed items assessing positive affect, negative affect, and arousal, daily for a 30-day period. The number of positive and negative words in posts was extracted and automatically collated by MoodPrism. The relative proportion of positive and negative words from the total words written in posts was then calculated. Preliminary analyses have been conducted with the data of 9 participants. While these analyses are underpowered due to sample size, they have revealed trends that greater variability in the emotion valence expressed in posts is positively associated with greater depression symptoms (r(9) = .56, p = .12), as is greater instability in emotion valence (r(9) = .58, p = .099). Full data analysis utilizing time-series techniques to explore the Facebook data set will be presented at the conference. Identifying the features of emotion dynamics (variability, instability, inertia) that are relevant to mental health in social media emotional expression is a fundamental step in creating automated screening tools for mental health that are temporally sensitive, unobtrusive, and accurate. The current findings show how monitoring basic social network characteristics over time can provide greater depth in predicting risk and changes in depression and positive well-being.

Keywords: emotion, experience sampling methods, mental health, social media

Procedia PDF Downloads 253
912 Dislocation Density-Based Modeling of the Grain Refinement in Surface Mechanical Attrition Treatment

Authors: Reza Miresmaeili, Asghar Heydari Astaraee, Fereshteh Dolati

Abstract:

In the present study, an analytical model based on dislocation density model was developed to simulate grain refinement in surface mechanical attrition treatment (SMAT). The correlation between SMAT time and development in plastic strain on one hand, and dislocation density evolution, on the other hand, was established to simulate the grain refinement in SMAT. A dislocation density-based constitutive material law was implemented using VUHARD subroutine. A random sequence of shots is taken into consideration for multiple impacts model using Python programming language by utilizing a random function. The simulation technique was to model each impact in a separate run and then transferring the results of each run as initial conditions for the next run (impact). The developed Finite Element (FE) model of multiple impacts describes the coverage evolution in SMAT. Simulations were run to coverage levels as high as 4500%. It is shown that the coverage implemented in the FE model is equal to the experimental coverage. It is depicted that numerical SMAT coverage parameter is adequately conforming to the well-known Avrami model. Comparison between numerical results and experimental measurements for residual stresses and depth of deformation layers confirms the performance of the established FE model for surface engineering evaluations in SMA treatment. X-ray diffraction (XRD) studies of grain refinement, including resultant grain size and dislocation density, were conducted to validate the established model. The full width at half-maximum in XRD profiles can be used to measure the grain size. Numerical results and experimental measurements of grain refinement illustrate good agreement and show the capability of established FE model to predict the gradient microstructure in SMA treatment.

Keywords: dislocation density, grain refinement, severe plastic deformation, simulation, surface mechanical attrition treatment

Procedia PDF Downloads 142
911 Option Pricing Theory Applied to the Service Sector

Authors: Luke Miller

Abstract:

This paper develops an options pricing methodology to value strategic pricing strategies in the services sector. More specifically, this study provides a unifying taxonomy of current service sector pricing practices, frames these pricing decisions as strategic real options, demonstrates accepted option valuation techniques to assess service sector pricing decisions, and suggests future research areas where pricing decisions and real options overlap. Enhancing revenue in the service sector requires proactive decision making in a world of uncertainty. In an effort to strategically price service products, revenue enhancement necessitates a careful study of the service costs, customer base, competition, legalities, and shared economies with the market. Pricing decisions involve the quality of inputs, manpower, and best practices to maintain superior service. These decisions further hinge on identifying relevant pricing strategies and understanding how these strategies impact a firm’s value. A relatively new area of research applies option pricing theory to investments in real assets and is commonly known as real options. The real options approach is based on the premise that many corporate decisions to invest or divest in assets are simply an option wherein the firm has the right to make an investment without any obligation to act. The decision maker, therefore, has more flexibility and the value of this operating flexibility should be taken into consideration. The real options framework has already been applied to numerous areas including manufacturing, inventory, natural resources, research and development, strategic decisions, technology, and stock valuation. Additionally, numerous surveys have identified a growing need for the real options decision framework within all areas of corporate decision-making. Despite the wide applicability of real options, no study has been carried out linking service sector pricing decisions and real options. This is surprising given the service sector comprises 80% of the US employment and Gross Domestic Product (GDP). Identifying real options as a practical tool to value different service sector pricing strategies is believed to have a significant impact on firm decisions. This paper identifies and discusses four distinct pricing strategies available to the service sector from an options’ perspective: (1) Cost-based profit margin, (2) Increased customer base, (3) Platform pricing, and (4) Buffet pricing. Within each strategy lie several pricing tactics available to the service firm. These tactics can be viewed as options the decision maker has to best manage a strategic position in the market. To demonstrate the effectiveness of including flexibility in the pricing decision, a series of pricing strategies were developed and valued using a real options binomial lattice structure. The options pricing approach discussed in this study allows service firms to directly incorporate market-driven perspectives into the decision process and thus synchronizing service operations with organizational economic goals.

Keywords: option pricing theory, real options, service sector, valuation

Procedia PDF Downloads 359
910 The Use of Stroke Journey Map in Improving Patients' Perceived Knowledge in Acute Stroke Unit

Authors: C. S. Chen, F. Y. Hui, B. S. Farhana, J. De Leon

Abstract:

Introduction: Stroke can lead to long-term disability, affecting one’s quality of life. Providing stroke education to patient and family members is essential to optimize stroke recovery and prevent recurrent stroke. Currently, nurses conduct stroke education by handing out pamphlets and explaining their contents to patients. However, this is not always effective as nurses have varying levels of knowledge and depth of content discussed with the patient may not be consistent. With the advancement of information technology, health education is increasingly being disseminated via electronic software and studies have shown this to have benefitted patients. Hence, a multi-disciplinary team consisting of doctors, nurses and allied health professionals was formed to create the stroke journey map software to deliver consistent and concise stroke education. Research Objectives: To evaluate the effectiveness of using a stroke journey map software in improving patients’ perceived knowledge in the acute stroke unit during hospitalization. Methods: Patients admitted to the acute stroke unit were given stroke journey map software during patient education. The software consists of 31 interactive slides that are brightly coloured and 4 videos, based on input provided by the multi-disciplinary team. Participants were then assessed with pre-and-post survey questionnaires before and after viewing the software. The questionnaire consists of 10 questions with a 5-point Likert scale which sums up to a total score of 50. The inclusion criteria are patients diagnosed with ischemic stroke and are cognitively alert and oriented. This study was conducted between May 2017 to October 2017. Participation was voluntary. Results: A total of 33 participants participated in the study. The results demonstrated that the use of a stroke journey map as a stroke education medium was effective in improving patients’ perceived knowledge. A comparison of pre- and post-implementation data of stroke journey map revealed an overall mean increase in patients’ perceived knowledge from 24.06 to 40.06. The data is further broken down to evaluate patients’ perceived knowledge in 3 domains: (1) Understanding of disease process; (2) Management and treatment plans; (3) Post-discharge care. Each domain saw an increase in mean score from 10.7 to 16.2, 6.9 to 11.9 and 6.6 to 11.7 respectively. Project Impact: The implementation of stroke journey map has a positive impact in terms of (1) Increasing patient’s perceived knowledge which could contribute to greater empowerment of health; (2) Reducing need for stroke education material printouts making it environmentally friendly; (3) Decreasing time nurses spent on giving education resulting in more time to attend to patients’ needs. Conclusion: This study has demonstrated the benefit of using stroke journey map as a platform for stroke education. Overall, it has increased patients’ perceived knowledge in understanding their disease process, the management and treatment plans as well as the discharge process.

Keywords: acute stroke, education, ischemic stroke, knowledge, stroke

Procedia PDF Downloads 164
909 Geostatistical Models to Correct Salinity of Soils from Landsat Satellite Sensor: Application to the Oran Region, Algeria

Authors: Dehni Abdellatif, Lounis Mourad

Abstract:

The new approach of applied spatial geostatistics in materials sciences, agriculture accuracy, agricultural statistics, permitted an apprehension of managing and monitoring the water and groundwater qualities in a relationship with salt-affected soil. The anterior experiences concerning data acquisition, spatial-preparation studies on optical and multispectral data has facilitated the integration of correction models of electrical conductivity related with soils temperature (horizons of soils). For tomography apprehension, this physical parameter has been extracted from calibration of the thermal band (LANDSAT ETM+6) with a radiometric correction. Our study area is Oran region (Northern West of Algeria). Different spectral indices are determined such as salinity and sodicity index, the Combined Spectral Reflectance Index (CSRI), Normalized Difference Vegetation Index (NDVI), emissivity, Albedo, and Sodium Adsorption Ratio (SAR). The approach of geostatistical modeling of electrical conductivity (salinity), appears to be a useful decision support system for estimating corrected electrical resistivity related to the temperature of surface soils, according to the conversion models by substitution, the reference temperature at 25°C (where hydrochemical data are collected with this constraint). The Brightness temperatures extracted from satellite reflectance (LANDSAT ETM+) are used in consistency models to estimate electrical resistivity. The confusions that arise from the effects of salt stress and water stress removed followed by seasonal application of the geostatistical analysis in Geographic Information System (GIS) techniques investigation and monitoring the variation of the electrical conductivity in the alluvial aquifer of Es-Sénia for the salt-affected soil.

Keywords: geostatistical modelling, landsat, brightness temperature, conductivity

Procedia PDF Downloads 443
908 GIS Based Spatial Modeling for Selecting New Hospital Sites Using APH, Entropy-MAUT and CRITIC-MAUT: A Study in Rural West Bengal, India

Authors: Alokananda Ghosh, Shraban Sarkar

Abstract:

The study aims to identify suitable sites for new hospitals with critical obstetric care facilities in Birbhum, one of the vulnerable and underserved districts of Eastern India, considering six main and 14 sub-criteria, using GIS-based Analytic Hierarchy Process (AHP) and Multi-Attribute Utility Theory (MAUT) approach. The criteria were identified through field surveys and previous literature. After collecting expert decisions, a pairwise comparison matrix was prepared using the Saaty scale to calculate the weights through AHP. On the contrary, objective weighting methods, i.e., Entropy and Criteria Importance through Interaction Correlation (CRITIC), were used to perform the MAUT. Finally, suitability maps were prepared by weighted sum analysis. Sensitivity analyses of AHP were performed to explore the effect of dominant criteria. Results from AHP reveal that ‘maternal death in transit’ followed by ‘accessibility and connectivity’, ‘maternal health care service (MHCS) coverage gap’ were three important criteria with comparatively higher weighted values. Whereas ‘accessibility and connectivity’ and ‘maternal death in transit’ were observed to have more imprint in entropy and CRITIC, respectively. While comparing the predictive suitable classes of these three models with the layer of existing hospitals, except Entropy-MAUT, the other two are pointing towards the left-over underserved areas of existing facilities. Only 43%-67% of existing hospitals were in the moderate to lower suitable class. Therefore, the results of the predictive models might bring valuable input in future planning.

Keywords: hospital site suitability, analytic hierarchy process, multi-attribute utility theory, entropy, criteria importance through interaction correlation, multi-criteria decision analysis

Procedia PDF Downloads 73
907 Analysis and Modeling of the Building’s Facades in Terms of Different Convection Coefficients

Authors: Enes Yasa, Guven Fidan

Abstract:

Building Simulation tools need to better evaluate convective heat exchanges between external air and wall surfaces. Previous analysis demonstrated the significant effects of convective heat transfer coefficient values on the room energy balance. Some authors have pointed out that large discrepancies observed between widely used building thermal models can be attributed to the different correlations used to calculate or impose the value of the convective heat transfer coefficients. Moreover, numerous researchers have made sensitivity calculations and proved that the choice of Convective Heat Transfer Coefficient values can lead to differences from 20% to 40% of energy demands. The thermal losses to the ambient from a building surface or a roof mounted solar collector represent an important portion of the overall energy balance and depend heavily on the wind induced convection. In an effort to help designers make better use of the available correlations in the literature for the external convection coefficients due to the wind, a critical discussion and a suitable tabulation is presented, on the basis of algebraic form of the coefficients and their dependence upon characteristic length and wind direction, in addition to wind speed. Many research works have been conducted since early eighties focused on the convection heat transfer problems inside buildings. In this context, a Computational Fluid Dynamics (CFD) program has been used to predict external convective heat transfer coefficients at external building surfaces. For the building facades model, effects of wind speed and temperature differences between the surfaces and the external air have been analyzed, showing different heat transfer conditions and coefficients. In order to provide further information on external convective heat transfer coefficients, a numerical work is presented in this paper, using a Computational Fluid Dynamics (CFD) commercial package (CFX) to predict convective heat transfer coefficients at external building surface.

Keywords: CFD in buildings, external convective heat transfer coefficients, building facades, thermal modelling

Procedia PDF Downloads 425
906 An Approach towards Elementary Investigation on HCCI Technology

Authors: Jitendra Sharma

Abstract:

Here a Homogeneous Charge is used as in a spark-ignited engine, but the charge is compressed to auto ignition as in a diesel. The main difference compared with the Spark Ignition (SI) engine is the lack of flame propagation and hence the independence from turbulence. Compared with the diesel engine. HCCI has a homogeneous charge and have no problems associated with soot and Nox but HC and CO were higher than in SI mode. It was not possible to achieve high IMEP (Indicated Mean Effective Pressure) values with HCCI. The Homogeneous charge compression ignition (HCCI) is an attractive technology because of its high efficiency and low emissions. However, HCCI lakes a direct combustion trigger making control of combustion timing challenging, especially during transients. To aid in HCCI engine control we present a simple model of the HCCI combustion process valid over a range of intake pressures, intake temperatures, equivalence ratios and engine speeds. HCCI a new combustion technology that may develop as an alternative to diesel engines with high efficiency and low Knox and particulate matter emissions. The homogenous charge compression ignition (HCCI) is a promising new engine technology that combines elements of the diesel and gasoline engine operating cycles. HCCI as a way to increase the efficiency of the gasoline engine. The attractive properties are increased fuel efficiency due to reduced throttling losses, increased expansion ratio and higher thermodynamic efficiency. With the advantages there are some mechanical limitations to the operation of the HCCI engine. The implementation of homogenous charge compression ignition (HCCI) to gasoline engines is constrained by many factors. The main drawback of HCCI is the absence of direct combustion timing control. Therefore all the right conditions for auto ignition have to be set before combustion starts. This paper describes the past and current research done on HCCI engine. Many research got considerable success in doing detailed modeling of HCCI combustion. This paper aims at studying the fundamentals of HCCI combustion, the strategy to control the limitation of HCCI engine.

Keywords: HCCI, diesel engine, combustion, elementary investigation

Procedia PDF Downloads 450
905 The Impact of City Mobility on Propagation of Infectious Diseases: Mathematical Modelling Approach

Authors: Asrat M.Belachew, Tiago Pereira, Institute of Mathematics, Computer Sciences, Avenida Trabalhador São Carlense, 400, São Carlos, 13566-590, Brazil

Abstract:

Infectious diseases are among the most prominent threats to human beings. They cause morbidity and mortality to an individual and collapse the social, economic, and political systems of the whole world collectively. Mathematical models are fundamental tools and provide a comprehensive understanding of how infectious diseases spread and designing the control strategy to mitigate infectious diseases from the host population. Modeling the spread of infectious diseases using a compartmental model of inhomogeneous populations is good in terms of complexity. However, in the real world, there is a situation that accounts for heterogeneity, such as ages, locations, and contact patterns of the population which are ignored in a homogeneous setting. In this work, we study how classical an SEIR infectious disease spreading of the compartmental model can be extended by incorporating the mobility of population between heterogeneous cities during an outbreak of infectious disease. We have formulated an SEIR multi-cities epidemic spreading model using a system of 4k ordinary differential equations to describe the disease transmission dynamics in k-cities during the day and night. We have shownthat the model is epidemiologically (i.e., variables have biological interpretation) and mathematically (i.e., a unique bounded solution exists all the time) well-posed. We constructed the next-generation matrix (NGM) for the model and calculated the basic reproduction number R0for SEIR-epidemic spreading model with cities mobility. R0of the disease depends on the spectral radius mobility operator, and it is a threshold between asymptotic stability of the disease-free equilibrium and disease persistence. Using the eigenvalue perturbation theorem, we showed that sending a fraction of the population between cities decreases the reproduction number of diseases in interconnected cities. As a result, disease transmissiondecreases in the population.

Keywords: SEIR-model, mathematical model, city mobility, epidemic spreading

Procedia PDF Downloads 113
904 Numerical Simulation of Aeroelastic Influence Exerted by Kinematic and Geometrical Parameters on Oscillations' Frequencies and Phase Shift Angles in a Simulated Compressor of Gas Transmittal Unit

Authors: Liliia N. Butymova, Vladimir Y. Modorsky, Nikolai A. Shevelev

Abstract:

Prediction of vibration processes in gas transmittal units (GTU) is an urgent problem. Despite numerous scientific publications on the problem of vibrations in general, there are not enough works concerning FSI-modeling interaction processes between several deformable blades in gas-dynamic flow. Since it is very difficult to solve the problem in full scope, with all factors considered, a unidirectional dynamic coupled 1FSI model is suggested for use at the first stage, which would include, from symmetry considerations, two blades, which might be considered as the first stage of solving more general bidirectional problem. ANSYS CFX programmed multi-processor was chosen as a numerical computation tool. The problem was solved on PNRPU high-capacity computer complex. At the first stage of the study, blades were believed oscillating with the same frequency, although oscillation phases could be equal and could be different. At that non-stationary gas-dynamic forces distribution over the blades surfaces is calculated in run of simulation experiment. Oscillations in the “gas — structure” dynamic system are assumed to increase if the resultant of these gas-dynamic forces is in-phase with blade oscillation, and phase shift (φ=0). Provided these oscillation occur with phase shift, then oscillations might increase or decrease, depending on the phase shift value. The most important results are as follows: the angle of phase shift in inter-blade oscillation and the gas-dynamic force depends on the flow velocity, the specific inter-blade gap, and the shaft rotation speed; a phase shift in oscillation of adjacent blades does not always correspond to phase shift of gas-dynamic forces affecting the blades. Thus, it was discovered, that asynchronous oscillation of blades might cause either attenuation or intensification of oscillation. It was revealed that clocking effect might depend not only on the mutual circumferential displacement of blade rows and the gap between the blades, but also on the blade dynamic deformation nature.

Keywords: aeroelasticity, ANSYS CFX, oscillation, phase shift, clocking effect, vibrations

Procedia PDF Downloads 271
903 The Impact of Intelligent Control Systems on Biomedical Engineering and Research

Authors: Melkamu Tadesse Getachew

Abstract:

Intelligent control systems have revolutionized biomedical engineering, advancing research and enhancing medical practice. This review paper examines the impact of intelligent control on various aspects of biomedical engineering. It analyzes how these systems enhance precision and accuracy in biomedical instrumentation, improving diagnostics, monitoring, and treatment. Integration challenges are addressed, and potential solutions are proposed. The paper also investigates the optimization of drug delivery systems through intelligent control. It explores how intelligent systems contribute to precise dosing, targeted drug release, and personalized medicine. Challenges related to controlled drug release and patient variability are discussed, along with potential avenues for overcoming them. The comparison of algorithms used in intelligent control systems in biomedical control is also reviewed. The implications of intelligent control in computational and systems biology are explored, showcasing how these systems enable enhanced analysis and prediction of complex biological processes. Challenges such as interpretability, human-machine interaction, and machine reliability are examined, along with potential solutions. Intelligent control in biomedical engineering also plays a crucial role in risk management during surgical operations. This section demonstrates how intelligent systems improve patient safety and surgical outcomes when integrated into surgical robots, augmented reality, and preoperative planning. The challenges associated with these implementations and potential solutions are discussed in detail. In summary, this review paper comprehensively explores the widespread impact of intelligent control on biomedical engineering, showing the future of human health issues promising. It discusses application areas, challenges, and potential solutions, highlighting the transformative potential of these systems in advancing research and improving medical practice.

Keywords: Intelligent control systems, biomedical instrumentation, drug delivery systems, robotic surgical instruments, Computational monitoring and modeling

Procedia PDF Downloads 50
902 The Role of Social Media in the Rise of Islamic State in India: An Analytical Overview

Authors: Yasmeen Cheema, Parvinder Singh

Abstract:

The evolution of Islamic State (acronym IS) has an ultimate goal of restoring the caliphate. IS threat to the global security is main concern of international community but has also raised a factual concern for India about the regular radicalization of IS ideology among Indian youth. The incident of joining Arif Ejaz Majeed, an Indian as ‘jihadist’ in IS has set strident alarm in law & enforcement agencies. On 07.03.2017, many people were injured in an Improvised Explosive Device (IED) blast on-board of Bhopal Ujjain Express. One perpetrator of this incident was killed in encounter with police. But, the biggest shock is that the conspiracy was pre-planned and the assailants who carried out the blast were influenced by the ideology perpetrated by the Islamic State. This is the first time name of IS has cropped up in a terror attack in India. It is a red indicator of violent presence of IS in India, which is spreading through social media. The IS have the capacity to influence the younger Muslim generation in India through its brutal and aggressive propaganda videos, social media apps and hatred speeches. It is a well known fact that India is on the radar of IS, as well on its ‘Caliphate Map’. IS uses Twitter, Facebook and other social media platforms constantly. Islamic State has used enticing videos, graphics, and articles on social media and try to influence persons from India & globally that their jihad is worthy. According to arrested perpetrator of IS in different cases in India, the most of Indian youths are victims to the daydreams which are fondly shown by IS. The dreams that the Muslim empire as it was before 1920 can come back with all its power and also that the Caliph and its caliphate can be re-established are shown by the IS. Indian Muslim Youth gets attracted towards these euphemistic ideologies. Islamic State has used social media for disseminating its poisonous ideology, recruitment, operational activities and for future direction of attacks. IS through social media inspired its recruits & lone wolfs to continue to rely on local networks to identify targets and access weaponry and explosives. Recently, a pro-IS media group on its Telegram platform shows Taj Mahal as the target and suggested mode of attack as a Vehicle Born Improvised Explosive Attack (VBIED). Islamic State definitely has the potential to destroy the Indian national security & peace, if timely steps are not taken. No doubt, IS has used social media as a critical mechanism for recruitment, planning and executing of terror attacks. This paper will therefore examine the specific characteristics of social media that have made it such a successful weapon for Islamic State. The rise of IS in India should be viewed as a national crisis and handled at the central level with efficient use of modern technology.

Keywords: ideology, India, Islamic State, national security, recruitment, social media, terror attack

Procedia PDF Downloads 233
901 Techno-Economic Analysis of 1,3-Butadiene and ε-Caprolactam Production from C6 Sugars

Authors: Iris Vural Gursel, Jonathan Moncada, Ernst Worrell, Andrea Ramirez

Abstract:

In order to achieve the transition from a fossil to bio-based economy, biomass needs to replace fossil resources in meeting the world’s energy and chemical needs. This calls for development of biorefinery systems allowing cost-efficient conversion of biomass to chemicals. In biorefinery systems, feedstock is converted to key intermediates called platforms which are converted to wide range of marketable products. The C6 sugars platform stands out due to its unique versatility as precursor for multiple valuable products. Among the different potential routes from C6 sugars to bio-based chemicals, 1,3-butadiene and ε-caprolactam appear to be of great interest. Butadiene is an important chemical for the production of synthetic rubbers, while caprolactam is used in production of nylon-6. In this study, ex-ante techno-economic performance of 1,3-butadiene and ε-caprolactam routes from C6 sugars were assessed. The aim is to provide insight from an early stage of development into the potential of these new technologies, and the bottlenecks and key cost-drivers. Two cases for each product line were analyzed to take into consideration the effect of possible changes on the overall performance of both butadiene and caprolactam production. Conceptual process design for the processes was developed using Aspen Plus based on currently available data from laboratory experiments. Then, operating and capital costs were estimated and an economic assessment was carried out using Net Present Value (NPV) as indicator. Finally, sensitivity analyses on processing capacity and prices was done to take into account possible variations. Results indicate that both processes perform similarly from an energy intensity point of view ranging between 34-50 MJ per kg of main product. However, in terms of processing yield (kg of product per kg of C6 sugar), caprolactam shows higher yield by a factor 1.6-3.6 compared to butadiene. For butadiene production, with the economic parameters used in this study, for both cases studied, a negative NPV (-642 and -647 M€) was attained indicating economic infeasibility. For the caprolactam production, one of the cases also showed economic infeasibility (-229 M€), but the case with the higher caprolactam yield resulted in a positive NPV (67 M€). Sensitivity analysis indicated that the economic performance of caprolactam production can be improved with the increase in capacity (higher C6 sugars intake) reflecting benefits of the economies of scale. Furthermore, humins valorization for heat and power production was considered and found to have a positive effect. Butadiene production was found sensitive to the price of feedstock C6 sugars and product butadiene. However, even at 100% variation of the two parameters, butadiene production remained economically infeasible. Overall, the caprolactam production line shows higher economic potential in comparison to that of butadiene. The results are useful in guiding experimental research and providing direction for further development of bio-based chemicals.

Keywords: bio-based chemicals, biorefinery, C6 sugars, economic analysis, process modelling

Procedia PDF Downloads 155