Search results for: low temperature ultra-high vacuum four scanning tunneling microscope
4223 Trehalose Application Increased Membrane Stability and Cell Viability to Affect Growth of Wheat Genotypes under Heat Stress
Authors: S. K. Thind, Aparjot Kaur
Abstract:
Heat stress is one of the major environmental factors drastically reducing wheat production. Crop heat tolerance can be enhanced by preconditioning of plants by exogenous application of osmoprotectants. Presently, the effect of trehalose pretreatment (at 1 mM, and 1.5 nM) under heat stress of 35±2˚C (moderate) and 40±2˚ (severe) for four and eight hour was conducted in wheat (Tricticum aestivum L.) genotypes viz. HD2967, PBW 175, PBW 343, PBW 621, and PBW 590. Heat stress affects wide spectrum of physiological processes within plants that are irreversibly damaged by stress. Membrane thermal stability (MTS) and cell viability was significantly decreased under heat stress for eight hours. Pretreatment with trehalose improved MTS and cell viability under stress and this effect was more promotory with higher concentration. Thermal stability of photosynthetic apparatus differed markedly between genotypes and Hill reaction activity was recorded more in PBW621 followed by C306 as compared with others. In all genotypes photolysis of water showed decline with increase in temperature stress. Trehalose pretreatment helped in sustaining Hill reaction activity probably by stabilizing the photosynthetic apparatus against heat-induced photo inhibition. Both plant growth and development were affected by temperature in both shoot and root under heat stress. The reduction was compensated partially by trehalose (1.5 mM) application. Adaption to heat stress is associated with the metabolic adjustment which led to accumulation of soluble sugars including non-reducing and reducing for their role in adaptive mechanism. Higher acid invertase activity in shoot of tolerant genotypes appeared to be a characteristic for stress tolerance. As sucrose synthase play central role in sink strength and in studied wheat genotype was positively related to dry matter accumulation. The duration of heat stress for eight hours had more severe effect on these parameters and trehalose application at 1.5 mM ameliorated it to certain extent.Keywords: heat stress, Triticum aestivum, trehalose, membrane thermal stability, triphenyl tetrazolium chloride, reduction test, growth, sugar metabolism
Procedia PDF Downloads 3314222 Analysing the Permanent Deformation of Cohesive Subsoil Subject to Long Term Cyclic Train Loading
Authors: Natalie M. Wride, Xueyu Geng
Abstract:
Subgrade soils of railway infrastructure are subjected to a significant number of load applications over their design life. The use of slab track on existing and future proposed rail links requires a reduced maintenance and repair regime for the embankment subgrade, due to restricted access to the subgrade soils for remediation caused by cyclic deformation. It is, therefore, important to study the deformation behaviour of soft cohesive subsoils induced as a result of long term cyclic loading. In this study, a series of oedometer tests and cyclic triaxial tests (10,000 cycles) have been undertaken to investigate the undrained deformation behaviour of soft kaolin. X-ray Computer Tomography (CT) scanning of the samples has been performed to determine the change in porosity and soil structure density from the sample microstructure as a result of the laboratory testing regime undertaken. Combined with the examination of excess pore pressures and strains obtained from the cyclic triaxial tests, the results are compared with an existing analytical solution for long term settlement considering repeated low amplitude loading. Modifications to the analytical solution are presented based on the laboratory analysis that shows good agreement with further test data.Keywords: creep, cyclic loading, deformation, long term settlement, train loading
Procedia PDF Downloads 3014221 Tailoring Piezoelectricity of PVDF Fibers with Voltage Polarity and Humidity in Electrospinning
Authors: Piotr K. Szewczyk, Arkadiusz Gradys, Sungkyun Kim, Luana Persano, Mateusz M. Marzec, Oleksander Kryshtal, Andrzej Bernasik, Sohini Kar-Narayan, Pawel Sajkiewicz, Urszula Stachewicz
Abstract:
Piezoelectric polymers have received great attention in smart textiles, wearables, and flexible electronics. Their potential applications range from devices that could operate without traditional power sources, through self-powering sensors, up to implantable biosensors. Semi-crystalline PVDF is often proposed as the main candidate for industrial-scale applications as it exhibits exceptional energy harvesting efficiency compared to other polymers combined with high mechanical strength and thermal stability. Plenty of approaches have been proposed for obtaining PVDF rich in the desired β-phase with electric polling, thermal annealing, and mechanical stretching being the most prevalent. Electrospinning is a highly tunable technique that provides a one-step process of obtaining highly piezoelectric PVDF fibers without the need for post-treatment. In this study, voltage polarity and relative humidity influence on electrospun PVDF, fibers were investigated with the main focus on piezoelectric β-phase contents and piezoelectric performance. Morphology and internal structure of fibers were investigated using scanning (SEM) and transmission electron microscopy techniques (TEM). Fourier Transform Infrared Spectroscopy (FITR), wide-angle X-ray scattering (WAXS) and differential scanning calorimetry (DSC) were used to characterize the phase composition of electrospun PVDF. Additionally, surface chemistry was verified with X-ray photoelectron spectroscopy (XPS). Piezoelectric performance of individual electrospun PVDF fibers was measured using piezoresponse force microscopy (PFM), and the power output from meshes was analyzed via custom-built equipment. To prepare the solution for electrospinning, PVDF pellets were dissolved in dimethylacetamide and acetone solution in a 1:1 ratio to achieve a 24% solution. Fibers were electrospun with a constant voltage of +/-15kV applied to the stainless steel nozzle with the inner diameter of 0.8mm. The flow rate was kept constant at 6mlh⁻¹. The electrospinning of PVDF was performed at T = 25°C and relative humidity of 30 and 60% for PVDF30+/- and PVDF60+/- samples respectively in the environmental chamber. The SEM and TEM analysis of fibers produced at a lower relative humidity of 30% (PVDF30+/-) showed a smooth surface in opposition to fibers obtained at 60% relative humidity (PVDF60+/-), which had wrinkled surface and additionally internal voids. XPS results confirmed lower fluorine content at the surface of PVDF- fibers obtained by electrospinning with negative voltage polarity comparing to the PVDF+ obtained with positive voltage polarity. Changes in surface composition measured with XPS were found to influence the piezoelectric performance of obtained fibers what was further confirmed by PFM as well as by custom-built fiber-based piezoelectric generator. For PVDF60+/- samples humidity led to an increase of β-phase contents in PVDF fibers as confirmed by FTIR, WAXS, and DSC measurements, which showed almost two times higher concentrations of β-phase. A combination of negative voltage polarity with high relative humidity led to fibers with the highest β-phase contents and the best piezoelectric performance of all investigated samples. This study outlines the possibility to produce electrospun PVDF fibers with tunable piezoelectric performance in a one-step electrospinning process by controlling relative humidity and voltage polarity conditions. Acknowledgment: This research was conducted within the funding from m the Sonata Bis 5 project granted by National Science Centre, No 2015/18/E/ST5/00230, and supported by the infrastructure at International Centre of Electron Microscopy for Materials Science (IC-EM) at AGH University of Science and Technology. The PFM measurements were supported by an STSM Grant from COST Action CA17107.Keywords: crystallinity, electrospinning, PVDF, voltage polarity
Procedia PDF Downloads 1404220 Static Relaxation of Glass Fiber Reinforced Pipes
Authors: Mohammed Y. Abdellah, Mohamed K. Hassan, A. F. Mohamed, Shadi M. Munshi, A. M. Hashem
Abstract:
Pips made from glass fiber reinforced polymer has competitive role in petroleum industry. The need of evaluating the mechanical behavior of (GRP) pipes is essential objects. Stress relaxation illustrates how polymers relieve stress under constant strain. Static relaxation test is carried out at room temperature. The material gives poor static relaxation strength, two loading cycles have been observed for the tested specimen.Keywords: GRP, sandwich composite material, static relaxation, stress relief
Procedia PDF Downloads 6304219 Effects of Effort and Water Quality on Productivity (CPUE) of Hampal (Hampala macrolepidota) Resources in Jatiluhur Dam, West Java
Authors: Ririn Marinasari, S. Pi
Abstract:
Hampal (Hampala macrolepidota) is one of Citarum river indigenous fishes that still find in Jatiluhur dam. IUCN at 2013 said that hampal listed on redlist species category, this species was rare in Jatiluhur dam. This species more and more decreasing because change of habitats characteristic such as water quality and fishing effort. This study aims to determine and identify the influence of fishing effort and the quality of water on the productivity of fish resources hampal (Hampala macrolepidota) in Jatiluhur. The study was conducted from October to November 2013. Zones of research include lacustrine zone, transition and Riverin. Hampal fish productivity value computed by Hampal’s CPUE values. The results showed that fish MSY hampal obtained from surplus production model of Schaefer is equal to 0.2045 tons / quarterly. In the years 2011-2012 have occurred over fishing in 2013 while still under fishing. Total catches have exceeded the MSY during the year 2011 and the third quarterly of 2012 tons of fish that exceed 0.2045 hampal. The rate of utilization of fish resources hampal is equal to 80% of MSY or equal to the allowable catch (Total Allowable Catch) for fish in Jatiluhur hampal based Schaefer surplus production theory. Fishing effort, water quality parameters such as DO, turbidity and negatively correlated sulfide as H2S, while the temperature and pH positively correlated to productivity or unit catches fish hampal efforts in quarterly time series in the period 2011-2013. Shows that the higher fishing effort, DO, turbidity and sulfide in H2S and diminishing the temperature and pH of the productivity decreases. Variables that affect the productivity of fishing hampal only H2S only factor beta coefficient -0.834 which indicates a negative effect. It can be caused by H2S levels are toxic and have already exceeded the quality standard, while for other water quality parameters are still below the maximum standards allowed in the waters. Result of the study can be a reference of fishing regulation for hampal conservation in Jatiluhur dam.Keywords: effort, hampal, productivity, water quality
Procedia PDF Downloads 3034218 Effects of Turmeric on Uterine Tissue in Rats with Metabolic Syndrome Induced by High Fructose Diet
Authors: Mesih Kocamuftuoglu, Gonca Ozan, Enver Ozan, Nalan Kaya, Sema Temizer Ozan
Abstract:
Metabolic Syndrome, one of the common metabolic disorder, occurs with co-development of insulin resistance, obesity, dislipidemia and hypertension problems. Insulin resistance appears to play a pathogenic role in the metabolic syndrome. Also, there is a relationship between insulin resistance and infertility as known. Turmeric (Curcuma longa L.) a polyphenolic chemical is widely used for its coloring, flavoring, and medicinal properties, and exhibits a strong antioxidant activity. In this study, we assess the effects of turmeric on rat uterine tissue in metabolic syndrome model induced by high fructose diet. Thirty-two adult female Wistar rats weighing 220±20 g were randomly divided into four groups (n=8) as follows; control, fructose, turmeric, and fructose plus turmeric. Metabolic syndrome was induced by fructose solution 20% (w/v) in tap water, and turmeric (C.Longa) administered at the dose of 80 mg/kg body weight every other day by oral gavage. After the experimental period of 8 weeks, rats were decapitated, serum and uterine tissues were removed. Serum lipid profile, glucose, insülin levels were measured. Uterine tissues were fixed for histological analyzes. The uterine tissue sections were stained with hematoxylin-eosin (H & E) stain, then examined and photographed on a light microscope (Novel N-800Mx20). As a result, fructose consumption effected serum lipids, insulin levels, and insulin resistance significantly. Endometrium and myometrium layers were observed in normal structure in control group of uterine tissues. Perivascular edema, peri glandular fibrosis, and inflammatory cell increase were detected in fructose group. Sections of the fructose plus turmeric group showed a significant improvement in findings when compared to the fructose group. Turmeric group cell structures were observed similar with the control group. These results demonstrated that high-fructose consumption could change the structure of the uterine tissue. On the other hand, turmeric administration has beneficial effects on uterine tissue at that dose and duration when administered with fructose.Keywords: metabolic syndrome, rat, turmeric, uterus
Procedia PDF Downloads 1794217 Development of Mg-Containing Hydroxyapatite-Based Bioceramics From Phosphate Rock for Bone Applications
Authors: Sara Mercedes Barroso Pinzón, Álvaro Jesús Caicedo Castro, Antonio Javer Sánchez Herencia
Abstract:
In recent years there has been increased academic and industrial research into the development of orthopaedic implants with structural properties and functionality similar to mechanical strength, osseointegration, thermal stability and antibacterial capacity similar to bone structure. Hydroxyapatite has been considered for decades as an ideal biomaterial for bone regeneration due to its chemical and crystallographic similarity to the mineral structure bioapatites. However, the lack of trace elements in the hydroxyapatite structure confers very low mechanical and biological properties. Under this scenario, the objective of the research is the synthesis of hydroxyapatite with Mg from the francolite mineral present in phosphate rock from the central-eastern region of Colombia, taking advantage of the extraction of mineral species as natural precursors of Ca, P and Mg. The minerals present were studied, fluorapatite as the mineral of interest associated with magnesium carbonates and quartz. The chemical and mineralogical composition was determined by X-ray fluorescence (XRF) and X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX); the optimum conditions were established using the acid leaching mechanism in the wet concentration process. From the products obtained and characterised by XRD, XRF, SEM, FTIR, RAMAN, HAp-Mg biocomposite scaffolds are fabricated and the influence of Mg on morphometric parameters, mechanical and biological properties in the formed materials is evaluated.Keywords: phosphate rock, hydroxyapatite, magnesium, biomaterials
Procedia PDF Downloads 634216 Application of Flue Gas Recirculation in Fluidized Bed Combustor for Energy Efficiency Enhancement
Authors: Chien-Song Chyang
Abstract:
For a fluidized-bed combustion system, excess air ratio (EAR) and superficial velocity are major operating parameters affecting combustion behaviors, and these 2 factors are dependent variables since both fluidizing gas and combustion-supporting agent are air. EAR will change when superficial velocity alters, so that the effect of superficial velocity and/or EAR on combustion behaviors cannot be examined under a specific condition. When stage combustion is executed, one can discuss the effect of EAR under a certain specific superficial velocity, but the flow rate of secondary air and EAR are dependent. In order to investigate the effect of excess air ratio on the combustion behavior of a fluidized combustion system, the flue gas recirculation was adapted by the author in 2007. We can maintain a fixed flow rate of primary gas or secondary gas and change excess oxygen as an independent variable by adjusting the recirculated flue gas appropriately. In another word, we can investigate the effect of excess oxygen on the combustion behavior at a certain primary gas flow, or at a certain hydrodynamics conditions. This technique can be used at a lower turndown ratio to maintain the residual oxygen in the flue gas at a certain value. All the experiments were conducted in a pilot scale fluidized bed combustor. The fluidized bed combustor can be divided into four parts, i.e., windbox, distributor, combustion chamber, and freeboard. The combustion chamber with a cross-section of 0.8 m × 0.4 m was constructed of 6 mm carbon steel lined with 150 mm refractory to reduce heat loss. Above the combustion chamber, the freeboard is 0.64 m in inner diameter. A total of 27 tuyeres with orifices of 5 and 3 mm inside diameters mounted on a 6 mm stainless-steel plate were used as the gas distributor with an open-area-ratio of 0.52%. The Primary gas and secondary gas were fixed at 3 Nm3/min and 1 Nm3/min respectively. The bed temperature was controlled by three heat transfer tubes inserted into the bubbling bed zone. The experimental data shows that bed temperature, CO and NO emissions increase with the stoichiometric oxygen of the primary gas. NO emissions decrease with the stoichiometric oxygen of the primary. Compared with part of primary air substituted with nitrogen, a lower NO emission can be obtained while flue gas recirculation applies as part of primary air.Keywords: fluidized bed combustion, flue gas circulation, NO emission, recycle
Procedia PDF Downloads 1824215 Constructed Wetlands: A Sustainable Approach for Waste Water Treatment
Authors: S. Sehar, S. Khan, N. Ali, S. Ahmed
Abstract:
In the last decade, the hunt for cost-effective, eco-friendly and energy sustainable technologies for waste water treatment are gaining much attention due to emerging water crisis and rapidly depleting existing water reservoirs all over the world. In this scenario, constructed wetland being a “green technology” could be a reliable mean for waste water treatment especially in small communities due to cost-effectiveness, ease in management, less energy consumption and sludge production. Therefore, a low cost, lab-scale sub-surface flow hybrid constructed wetland (SS-HCW) was established for domestic waste water treatment.It was observed that not only the presence but also choice of suitable vegetation along with hydraulic retention time (HRT) are key intervening ingredients which directly influence pollutant removals in constructed wetlands. Another important aspect of vegetation is that it may facilitate microbial attachment in rhizosphere, thus promote biofilm formation via microbial interactions. The major factors that influence initial aggregation and subsequent biofilm formation i.e. divalent cations (Ca2+) and extra cellular DNA (eDNA) were also studied in detail. The presence of Ca2+ in constructed wetland demonstrate superior performances in terms of effluent quality, i.e BOD5, COD, TDS, TSS, and PO4- than in absence of Ca2+. Finally, light and scanning electron microscopies coupled with EDS were carried out to get more insights into the mechanics of biofilm formation with or without Ca addition. Therefore, the same strategy can be implemented in other waste water treatment technologies.Keywords: hybrid constructed wetland, biofilm formation, waste water treatment, waste water
Procedia PDF Downloads 4064214 Biosynthesis of Silver Nanoparticles Using Zataria multiflora Extract, and Study of Antibacterial Effects on UTI Bacteria (MDR)
Authors: Mohammad Hossein Pazandeh, Monir Doudi, Sona Rostampour Yasouri
Abstract:
Irregular consumption of current antibiotic makes increases of antibiotic resistance between urin pathogens on all worlds. This study selected based on this great community problem. The aim of this study was the biosynthesis of silver nanoparticles from Zataria multiflora extract and then to investigate its antibacterial effect on gram-negative bacilli common in Urinary Tract Infections (UTI) and MDR. The plant used in the present research was Zataria multiflora whose extract was prepared through Soxhlet extraction method. Green synthesis condition of silver nanoparticles was investigated in terms of three parameters including the extract amount, concentration of silver nitrate salt, and temperature. The seizes of nanoparticles were determined by Zetasizer. In order to identify synthesized silver nanoparticles Transmission Electron Microscopy (TEM) and X-ray Diffraction (XRD) methods were used. For evaluating the antibacterial effects of nanoparticles synthesized through biological method different concentrations of silver nanoparticles were studied on 140 cases of Muliple Drug Resistance (MDR) bacteria strains Escherichia coli, Klebsiella pneumoniae, Enterobacter aerogenes, Proteus vulgaris,Citrobacter freundii, Acinetobacter bumanii and Pseudomonas aeruginosa, (each genus of bacteria, 20 samples), which all were MDR and cause urinary tract infections , for identification of bacteria were used of Polymerase Chain Reaction (PCR) test and laboratory methods (Agar well diffusion and Microdilution methods) to assess their sensitivity to Nanoparticles. The data were analyzed using SPSS software by nonparametric Kruskal-Wallis and Mann-Whitney tests. Significant results were found about the effects of silver nitrate concentration, different amounts of Zataria multiflora extract, and temperature on nanoparticles; that is, by increasing the concentration of silver nitrate, extract amount, and temperature, the sizes of synthesized nanoparticles declined. However, the effect of above mentioned factors on particles diffusion index was not significant. Based on the TEM results, particles were mainly spherical shape with a diameter range of 25 to 50 nm. The results of XRD Analysis indicated the formation of Nanostructures and Nanocrystals of silver.. The obtained results of antibacterial effects of different concentrations of silver nanoparticles on according to agar well diffusion and microdilution method, biologically synthesized nanoparticles showed 1000 mg /ml highest and lowest mean inhibition zone diameter in E.coli , Acinetobacter bumanii 23 and 15mm, respectively. MIC was observed for all of bacteria 125mg/ml and for Acinetobacter bumanii 250mg/ml.Comparing the growth inhibitory effect of chemically synthesized Nanoparticles and biologically synthesized Nanoparticles showed that in the chemical method the highest growth inhibition belonged to the concentration of 62.5 mg /ml. The inhibitory effect on the growth all of bacteria causes of urine infection and MDR was observed and by increasing silver ion concentration in Nanoparticles, antibacterial activity increased. Generally, the biological synthesis can be considered an efficient way not only in making Nanoparticles but also for having anti-bacterial properties. It is more biocompatible and may be possess less toxicity than the Nanoparticles synthesized chemically.Keywords: biosynthesis, MDR bacteria, silver nanoparticles, UTI
Procedia PDF Downloads 604213 Investigation of the Self-Healing Sliding Wear Characteristics of Niti-Based PVD Coatings on Tool Steel
Authors: Soroush Momeni
Abstract:
Excellent damping capacity and superelasticity of the bulk NiTi shape memory alloy (SMA) makes it a suitable material of choice for tools in machining process as well as tribological systems. Although thin film of NiTi SMA has a same damping capacity as NiTi bulk alloys, it has a poor mechanical properties and undesirable tribological performance. This study aims at eliminating these application limitations for NiTi SMA thin films. In order to achieve this goal, NiTi thin films were magnetron sputtered as an interlayer between reactively sputtered hard TiCN coatings and hard work tool steel substrates. The microstructure, composition, crystallographic phases, mechanical and tribological properties of the deposited thin films were analyzed by using field emission scanning electron microscopy (FESEM), X-ray diffraction (XRD), nanoindentation, ball–on-disc, scratch test, and three dimensional (3D) optical microscopy. It was found that under a specific coating architecture, the superelasticity of NiTi inter-layer can be combined with high hardness and wear resistance of TiCN protective layers. The obtained results revealed that the thickness of NiTi interlayers is an important factor controlling mechanical and tribological performance of bi-layer composite coating systems.Keywords: PVD coatings, sliding wear, hardness, tool steel
Procedia PDF Downloads 2884212 Biosorption Kinetics, Isotherms, and Thermodynamic Studies of Copper (II) on Spirogyra sp.
Authors: Diwan Singh
Abstract:
The ability of non-living Spirogyra sp. biomass for biosorption of copper(II) ions from aqueous solutions was explored. The effect of contact time, pH, initial copper ion concentration, biosorbent dosage and temperature were investigated in batch experiments. Both the Freundlich and Langmuir Isotherms were found applicable on the experimental data (R2>0.98). Qmax obtained from the Langmuir Isotherms was found to be 28.7 mg/g of biomass. The values of Gibbs free energy (ΔGº) and enthalpy change (ΔHº) suggest that the sorption is spontaneous and endothermic at 20ºC-40ºC.Keywords: biosorption, Spirogyra sp., contact time, pH, dose
Procedia PDF Downloads 4314211 Green and Facile Fabrication and Characterization of Fe/ZnO Hollow Spheres and Photodegradation of Azo Dyes
Authors: Seyed Mohsen Mousavi, Ali Reza Mahjoub, Bahjat Afshari Razani
Abstract:
In this work, Fe/ZnO hollow spherical structures with high surface area using the template glucose was prepared by the hydrothermal method using an ultrasonic bath at room temperature was produced and were identified by FT-IR, XRD, FE-SEM and BET. The photocatalytic activity of synthesized spherical Fe/ZnO hollow sphere were studied in the destruction of Congo Red and Methylene Blue as Azo dyes. The results showed that the photocatalytic activity of Fe/ZnO hollow spherical structures is improved compared with ZnO hollow sphere and other morphologys.Keywords: azo dyes, Fe/ZnO hollow sphere, hollow sphere nanostructures, photocatalyst
Procedia PDF Downloads 3754210 Corellation between Soil Electrical Resistivity and Metal Corrosion Based on Soil Types for Structure Designs
Authors: L. O. A. Oyinkanola, J.A. Fajemiroye
Abstract:
Soil resistivity measurements are an important parameter employed in the designing earthing installations. Thus, The knowledge of soil resistivity with respect to how it varies with related parameters such as moisture content, Temperature and depth at the intended site is very vital to determine how the desired earth resistance value can be attained and sustained over the life of the installation with the lowest cost and effort. The relationship between corrosion and soil resistivity has been investigated in this work. Varios soil samples: Sand, Gravel, Loam, Clay and Silt were collected from different spot within the vicinity.Keywords: Corrosion, resistivity, clay, hydraulic conductivity
Procedia PDF Downloads 5724209 Improved Operating Strategies for the Optimization of Proton Exchange Membrane Fuel Cell System Performance
Authors: Guillaume Soubeyran, Fabrice Micoud, Benoit Morin, Jean-Philippe Poirot-Crouvezier, Magali Reytier
Abstract:
Proton Exchange Membrane Fuel Cell (PEMFC) technology is considered as a solution for the reduction of CO2 emissions. However, this technology still meets several challenges for high-scale industrialization. In this context, the increase of durability remains a critical aspect for competitiveness of this technology. Fortunately, performance degradations in nominal operating conditions is partially reversible, meaning that if specific conditions are applied, a partial recovery of fuel cell performance can be achieved, while irreversible degradations can only be mitigated. Thus, it is worth studying the optimal conditions to rejuvenate these reversible degradations and assessing the long-term impact of such procedures on the performance of the cell. Reversible degradations consist mainly of anode Pt active sites poisoning by carbon monoxide at the anode, heterogeneities in water management during use, and oxidation/deactivation of Pt active sites at the cathode. The latter is identified as a major source of reversible performance loss caused by the presence oxygen, high temperature and high cathode potential that favor platinum oxidation, especially in high efficiency operating points. Hence, we studied here a recovery procedure aiming at reducing the platinum oxides by decreasing cathode potential during operation. Indeed, the application of short air starvation phase leads to a drop of cathode potential. Cell performances are temporarily increased afterwards. Nevertheless, local temperature and current heterogeneities within the cells are favored and shall be minimized. The consumption of fuel during the recovery phase shall also be considered to evaluate the global efficiency. Consequently, the purpose of this work is to find an optimal compromise between the recovery of reversible degradations by air starvation, the increase of global cell efficiency and the mitigation of irreversible degradations effects. Different operating parameters have first been studied such as cell voltage, temperature and humidity in single cell set-up. Considering the global PEMFC system efficiency, tests showed that reducing duration of recovery phase and reducing cell voltage was the key to ensure an efficient recovery. Recovery phase frequency was a major factor as well. A specific method was established to find the optimal frequency depending on the duration and voltage of the recovery phase. Then, long-term degradations have also been studied by applying FC-DLC cycles based on NEDC cycles on a 4-cell short stack by alternating test sequences with and without recovery phases. Depending on recovery phase timing, cell efficiency during the cycle was increased up to 2% thanks to a mean voltage increase of 10 mV during test sequences with recovery phases. However, cyclic voltammetry tests results suggest that the implementation of recovery phases causes an acceleration of the decrease of platinum active areas that could be due to the high potential variations applied to the cathode electrode during operation.Keywords: durability, PEMFC, recovery procedure, reversible degradation
Procedia PDF Downloads 1384208 Wear Measurement of Thermomechanical Parameters of the Metal Carbide
Authors: Riad Harouz, Brahim Mahfoud
Abstract:
The threads and the circles on reinforced concrete are obtained by process of hot rolling with pebbles finishers in metal carbide which present a way of rolling around the outside diameter. Our observation is that this throat presents geometrical wear after the end of its cycle determined in tonnage. In our study, we have determined, in a first step, experimentally measurements of the wear in terms of thermo-mechanical parameters (Speed, Load, and Temperature) and the influence of these parameters on the wear. In the second stage, we have developed a mathematical model of lifetime useful for the prognostic of the wear and their changes.Keywords: lifetime, metal carbides, modeling, thermo-mechanical, wear
Procedia PDF Downloads 3144207 Mechanical Behavior of Sandwiches with Various Glass Fiber/Epoxy Skins under Bending Load
Authors: Emre Kara, Metehan Demir, Şura Karakuzu, Kadir Koç, Ahmet F. Geylan, Halil Aykul
Abstract:
While the polymeric foam cored sandwiches have been realized for many years, recently there is a growing and outstanding interest on the use of sandwiches consisting of aluminum foam core because of their some of the distinct mechanical properties such as high bending stiffness, high load carrying and energy absorption capacities. These properties make them very useful in the transportation industry (automotive, aerospace, shipbuilding industry), where the "lightweight design" philosophy and the safety of vehicles are very important aspects. Therefore, in this study, the sandwich panels with aluminum alloy foam core and various types and thicknesses of glass fiber reinforced polymer (GFRP) skins produced via Vacuum Assisted Resin Transfer Molding (VARTM) technique were obtained by using a commercial toughened epoxy based adhesive with two components. The aim of this contribution was the analysis of the bending response of sandwiches with various glass fiber reinforced polymer skins. The three point bending tests were performed on sandwich panels at different values of support span distance using a universal static testing machine in order to clarify the effects of the type and thickness of the GFRP skins in terms of peak load, energy efficiency and absorbed energy values. The GFRP skins were easily bonded to the aluminum alloy foam core under press machine with a very low pressure. The main results of the bending tests are: force-displacement curves, peak force values, absorbed energy, collapse mechanisms and the influence of the support span length and GFRP skins. The obtained results of the experimental investigation presented that the sandwich with the skin made of thicker S-Glass fabric failed at the highest load and absorbed the highest amount of energy compared to the other sandwich specimens. The increment of the support span distance made the decrease of the peak force and absorbed energy values for each type of panels. The common collapse mechanism of the panels was obtained as core shear failure which was not affected by the skin materials and the support span distance.Keywords: aluminum foam, collapse mechanisms, light-weight structures, transport application
Procedia PDF Downloads 3994206 Fabrication and Characterization of PPy/rGO|PPy/ZnO Composite with Varying Zno Concentration as Anode for Fuel Cell Applications
Authors: Bryan D. Llenarizas, Maria Carla F. Manzano
Abstract:
The rapid growth of electricity demand has led to a pursuit of alternative energy sources with high power output and not harmful to the environment. The fuel cell is a device that generates electricity via chemical reactions between the fuel and oxidant. Fuel cells have been known for decades, but the development of high-power output and durability was still one of the drawbacks of this energy source. This study investigates the potential of layer-by-layer composite for fuel cell applications. A two-electrode electrochemical cell was used for the galvanostatic electrochemical deposition method to fabricate a Polypyrrole/rGO|Polypyrrole/ZnO layer-by-layer composite material for fuel cell applications. In the synthesis, the first layer comprised 0.1M pyrrole monomer and 1mg of rGO, while the second layer had 0.1M pyrrole monomer and variations of ZnO concentration ranging from 0.08M up to 0.12M. A constant current density of 8mA/cm² was applied for 1 hour in fabricating each layer. Scanning electron microscopy (SEM) for the fabricated LBL material shows a globular surface with white spots. These white spots are the ZnO particles confirmed by energy-dispersive X-ray spectroscopy, indicating a successful deposition of the second layer onto the first layer. The observed surface morphology was consistent for each variation of ZnO concentrations. AC measurements were conducted to obtain the AC resistance of the fabricated film. Results show a decrease in AC resistance as the concentration of ZnO increases.Keywords: anode, composite material, electropolymerization, fuel cell, galvanostatic, polypyrrole
Procedia PDF Downloads 884205 Fabrication and Characterization of Al2O3 Based Electrical Insulation Coatings Around SiC Fibers
Authors: S. Palaniyappan, P. K. Chennam, M. Trautmann, H. Ahmad, T. Mehner, T. Lampke, G. Wagner
Abstract:
In structural-health monitoring of fiber reinforced plastics (FRPs), every single inorganic fiber sensor that are integrated into the bulk material requires an electrical insulation around itself, when the surrounding reinforcing fibers are electrically conductive. This results in a more accurate data acquisition only from the sensor fiber without any electrical interventions. For this purpose, thin nano-films of aluminium oxide (Al2O3)-based electrical-insulation coatings have been fabricated around the Silicon Carbide (SiC) single fiber sensors through reactive DC magnetron sputtering technique. The sputtered coatings were amorphous in nature and the thickness of the coatings increased with an increase in the sputter time. Microstructural characterization of the coated fibers performed using scanning electron microscopy (SEM) confirmed a homogeneous circumferential coating with no detectable defects or cracks on the surface. X-ray diffraction (XRD) analyses of the as-sputtered and 2 hours annealed coatings (825 & 1125 ˚C) revealed the amorphous and crystalline phases of Al2O3 respectively. Raman spectroscopic analyses produced no characteristic bands of Al2O3, as the thickness of the films was in the nanometer (nm) range, which is too small to overcome the actual penetration depth of the laser used. In addition, the influence of the insulation coatings on the mechanical properties of the SiC sensor fibers has been analyzed.Keywords: Al₂O₃ thin film, electrical insulation coating, PVD process, SiC fibre, single fibre tensile test
Procedia PDF Downloads 1274204 ORR Electrocatalyst for Batteries and Fuel Cells Development with SIO₂/Carbon Black Based Composite Nanomaterials
Authors: Maryam Kiani
Abstract:
This study focuses on the development of composite nanomaterials based on SiO₂ and carbon black for oxygen reduction reaction (ORR) electrocatalysts in batteries and fuel cells. The aim was to explore the potential of these composite materials as efficient catalysts for ORR, which is a critical process in energy conversion devices. The SiO₂/carbon black composite nanomaterials were synthesized using a facile and scalable method. The morphology, structure, and electrochemical properties of the materials were characterized using various techniques including scanning electron microscopy (SEM), X-ray diffraction (XRD), and electrochemical measurements. The results demonstrated that the incorporation of SiO₂ into the carbon black matrix enhanced the ORR performance of the composite material. The composite nanomaterials exhibited improved electrocatalytic activity, enhanced stability, and increased durability compared to pure carbon black. The presence of SiO₂ facilitated the formation of active sites, improved electron transfer, and increased the surface area available for ORR. This study contributes to the advancement of battery and fuel cell technology by offering a promising approach for the development of high-performance ORR electrocatalysts. The SiO₂/carbon black composite nanomaterials show great potential for improving the efficiency and durability of energy conversion devices, leading to more sustainable and efficient energy solutions.Keywords: ORR, fuel cells, batteries, electrocatalyst
Procedia PDF Downloads 1194203 Graphene Reinforced Magnesium Metal Matrix Composites for Biomedical Applications
Authors: Khurram Munir, Cuie Wen, Yuncang Li
Abstract:
Magnesium (Mg) metal matrix composites (MMCs) reinforced with graphene nanoplatelets (GNPs) have been developed by powder metallurgy (PM). In this study, GNPs with different concentrations (0.1-0.3 wt.%) were dispersed into Mg powders by high-energy ball-milling processes. The microstructure and resultant mechanical properties of the fabricated nanocomposites were characterized using transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), Raman spectroscopy (RS), compression and nano-wear tests. The corrosion resistance of the fabricated composites was evaluated by electrochemical tests and hydrogen evolution measurements. Finally, the biological response of Mg-GNPs composites was assessed using osteoblast-like SaOS2 cells. The results indicate that GNPs are excellent candidates as reinforcements in Mg matrices for the manufacture of biodegradable Mg-based composite implants. GNP addition improved the mechanical properties of Mg via synergetic strengthening modes. Moreover, retaining the structural integrity of GNPs during PM processing improved the ductility, compressive strength, and corrosion resistance of the Mg-GNP composites as compared to monolithic Mg. Cytotoxicity assessments did not reveal any significant toxicity with the addition of GNPs to Mg matrices. This study demonstrates that Mg-xGNPs with x < 0.3 wt.%, may constitute novel biodegradable implant materials for load-bearing applications.Keywords: magnesium-graphene composites, strengthening mechanisms, In vitro cytotoxicity, biocorrosion
Procedia PDF Downloads 1634202 Optimization of Batch to Up-Scaling of Soy-Based Prepolymer Polyurethane
Authors: Flora Elvistia Firdaus
Abstract:
The chemical structure of soybean oils have to be chemically modified through its tryglyceride to attain resemblance properties with petrochemicals. Sulfur acid catalyst in peracetic acid co-reagent has good performance on modified soybean oil strucutures through its unsaturated fatty acid moiety to the desired hydroxyl functional groups. A series of screening reactions have indicated that the ratio of acetic/peroxide acid 1:7.25 (mol/mol) with temperature of 600°C for soy-epoxide synthesis are prevailed for up-scaling of bodied soybean into 10 and 20 folds from initials. A two-step process was conducted for the preparation of soy-polyol in designated temperatures.Keywords: soybean, polyol, up-scaling, polyurethane
Procedia PDF Downloads 3664201 Detection of Temporal Change of Fishery and Island Activities by DNB and SAR on the South China Sea
Authors: I. Asanuma, T. Yamaguchi, J. Park, K. J. Mackin
Abstract:
Fishery lights on the surface could be detected by the Day and Night Band (DNB) of the Visible Infrared Imaging Radiometer Suite (VIIRS) on the Suomi National Polar-orbiting Partnership (Suomi-NPP). The DNB covers the spectral range of 500 to 900 nm and realized a higher sensitivity. The DNB has a difficulty of identification of fishing lights from lunar lights reflected by clouds, which affects observations for the half of the month. Fishery lights and lights of the surface are identified from lunar lights reflected by clouds by a method using the DNB and the infrared band, where the detection limits are defined as a function of the brightness temperature with a difference from the maximum temperature for each level of DNB radiance and with the contrast of DNB radiance against the background radiance. Fishery boats or structures on islands could be detected by the Synthetic Aperture Radar (SAR) on the polar orbit satellites using the reflected microwave by the surface reflecting targets. The SAR has a difficulty of tradeoff between spatial resolution and coverage while detecting the small targets like fishery boats. A distribution of fishery boats and island activities were detected by the scan-SAR narrow mode of Radarsat-2, which covers 300 km by 300 km with various combinations of polarizations. The fishing boats were detected as a single pixel of highly scattering targets with the scan-SAR narrow mode of which spatial resolution is 30 m. As the look angle dependent scattering signals exhibits the significant differences, the standard deviations of scattered signals for each look angles were taken into account as a threshold to identify the signal from fishing boats and structures on the island from background noise. It was difficult to validate the detected targets by DNB with SAR data because of time lag of observations for 6 hours between midnight by DNB and morning or evening by SAR. The temporal changes of island activities were detected as a change of mean intensity of DNB for circular area for a certain scale of activities. The increase of DNB mean intensity was corresponding to the beginning of dredging and the change of intensity indicated the ending of reclamation and following constructions of facilities.Keywords: day night band, SAR, fishery, South China Sea
Procedia PDF Downloads 2384200 Discovering Causal Structure from Observations: The Relationships between Technophile Attitude, Users Value and Use Intention of Mobility Management Travel App
Authors: Aliasghar Mehdizadeh Dastjerdi, Francisco Camara Pereira
Abstract:
The increasing complexity and demand of transport services strains transportation systems especially in urban areas with limited possibilities for building new infrastructure. The solution to this challenge requires changes of travel behavior. One of the proposed means to induce such change is multimodal travel apps. This paper describes a study of the intention to use a real-time multi-modal travel app aimed at motivating travel behavior change in the Greater Copenhagen Region (Denmark) toward promoting sustainable transport options. The proposed app is a multi-faceted smartphone app including both travel information and persuasive strategies such as health and environmental feedback, tailoring travel options, self-monitoring, tunneling users toward green behavior, social networking, nudging and gamification elements. The prospective for mobility management travel apps to stimulate sustainable mobility rests not only on the original and proper employment of the behavior change strategies, but also on explicitly anchoring it on established theoretical constructs from behavioral theories. The theoretical foundation is important because it positively and significantly influences the effectiveness of the system. However, there is a gap in current knowledge regarding the study of mobility-management travel app with support in behavioral theories, which should be explored further. This study addresses this gap by a social cognitive theory‐based examination. However, compare to conventional method in technology adoption research, this study adopts a reverse approach in which the associations between theoretical constructs are explored by Max-Min Hill-Climbing (MMHC) algorithm as a hybrid causal discovery method. A technology-use preference survey was designed to collect data. The survey elicited different groups of variables including (1) three groups of user’s motives for using the app including gain motives (e.g., saving travel time and cost), hedonic motives (e.g., enjoyment) and normative motives (e.g., less travel-related CO2 production), (2) technology-related self-concepts (i.e. technophile attitude) and (3) use Intention of the travel app. The questionnaire items led to the formulation of causal relationships discovery to learn the causal structure of the data. Causal relationships discovery from observational data is a critical challenge and it has applications in different research fields. The estimated causal structure shows that the two constructs of gain motives and technophilia have a causal effect on adoption intention. Likewise, there is a causal relationship from technophilia to both gain and hedonic motives. In line with the findings of the prior studies, it highlights the importance of functional value of the travel app as well as technology self-concept as two important variables for adoption intention. Furthermore, the results indicate the effect of technophile attitude on developing gain and hedonic motives. The causal structure shows hierarchical associations between the three groups of user’s motive. They can be explained by “frustration-regression” principle according to Alderfer's ERG (Existence, Relatedness and Growth) theory of needs meaning that a higher level need remains unfulfilled, a person may regress to lower level needs that appear easier to satisfy. To conclude, this study shows the capability of causal discovery methods to learn the causal structure of theoretical model, and accordingly interpret established associations.Keywords: travel app, behavior change, persuasive technology, travel information, causality
Procedia PDF Downloads 1484199 Dielectric Properties of NdTi₍₀.₅₋ₓ₎GeₓMo₀.₅O₄ Ceramics at Microwave Frequency
Authors: Yih-Chien Chen, Tse-Lung Lin
Abstract:
The microwave characteristics of NdTi₍₀.₅₋ₓ₎GeₓMo₀.₅O₄ are studied to determine the feasibility of their use in the liquid sensor. The microwave characteristics of NdTi₍₀.₅₋ₓ₎GeₓMo₀.₅O₄ are determined using X-ray diffraction (XRD) patterns. The permittivity (𝜀r) of NdTi₍₀.₄₉₎Ge₀.₀₁Mo₀.₅O₄ that is sintered at 1425 ℃ for 4 h is 17.6, the unloaded quality factor (Qu×f) is 33,400 GHz, and it has a temperature coefficient at the resonance frequency (TCF) of -30.7 ppm/℃. The proposed liquid sensor is at the 5G FR1 bands.Keywords: NdTi₍₀.₅₋ₓ₎GeₓMo₀.₅O₄, X-ray diffraction pattern, permittivity, Unloaded quality factor
Procedia PDF Downloads 2994198 Computer Software for Calculating Electron Mobility of Semiconductors Compounds; Case Study for N-Gan
Authors: Emad A. Ahmed
Abstract:
Computer software to calculate electron mobility with respect to different scattering mechanism has been developed. This software is adopted completely Graphical User Interface (GUI) technique and its interface has been designed by Microsoft Visual Basic 6.0. As a case study the electron mobility of n-GaN was performed using this software. The behaviour of the mobility for n-GaN due to elastic scattering processes and its relation to temperature and doping concentration were discussed. The results agree with other available theoretical and experimental data.Keywords: electron mobility, relaxation time, GaN, scattering, computer software, computation physics
Procedia PDF Downloads 6784197 The Potential of Tempo-Oxidized Cellulose Nanofibers to Replace EthylenE-propylene-Diene Monomer Rubber
Authors: Sibel Dikmen Kucuk, Yusuf Guner
Abstract:
In recent years, petroleum-based polymers began to be limited due to the effects on the human and environmental point of view in many countries. Thus, organic-based biodegradable materials have attracted much interest in the composite industry because of environmental concerns. As a result of this, it has been asked that inorganic and petroleum-based materials should be reduced and altered with biodegradable materials. In this point, in this study, it is aimed to investigate the potential of the use of TEMPO (2,2,6,6- tetramethylpiperidine 1-oxyl)-mediated oxidation nano-fibrillated cellulose instead of EPDM (ethylene-propylene-diene monomer) rubber, which is a petroleum-based material. Thus, the exchange of petroleum-based EPDM rubber with organic-based cellulose nanofibers, which are environmentally friendly (green) and biodegradable, will be realized. The effect of tempo-oxidized cellulose nanofibers (TCNF) instead of EPDM rubber was analyzed by rheological, mechanical, chemical, thermal, and aging analyses. The aged surfaces were visually scrutinized, and surface morphological changes were examined via scanning electron microscopy (SEM). The results obtained showed that TEMPO oxidation nano-fibrillated cellulose could be used at an amount of 1.0 and 2.2 phr resulting the values stay within tolerance according to customer standard and without any chemical degradation, crack, color change or staining.Keywords: EPDM, lignin, green materials, biodegradable fillers
Procedia PDF Downloads 1344196 Chemical Aging of High-Density Polyethylene (HDPE-100) in Interaction with Aggressive Environment
Authors: Berkas Khaoula, Chaoui Kamel
Abstract:
Polyethylene (PE) pipes are one of the best options for water and gas transmission networks. The main reason for such a choice is its high-quality performance in service conditions over long periods of time. PE pipes are installed in contact with different soils having various chemical compositions with confirmed aggressiveness. As a result, PE pipe surfaces undergo unwanted oxidation reactions. Usually, the polymer mixture is designed to include some additives, such as anti-oxidants, to inhibit or reduce the degradation effects. Some other additives are intended to increase resistance to the ESC phenomenon associated with polymers (ESC: Environmental Stress Cracking). This situation occurs in contact with aggressive external environments following different contaminations of soil, groundwater and transported fluids. In addition, bacterial activity and other physical or chemical media, such as temperature and humidity, can play an enhancing role. These conditions contribute to modifying the PE pipe structure and degrade its properties during exposure. In this work, the effect of distilled water, sodium hypochlorite (bleach), diluted sulfuric acid (H2SO4) and toluene-methanol (TM) mixture are studied when extruded PE samples are exposed to those environments for given periods. The chosen exposure periods are 7, 14 and 28 days at room temperature and in sealed glass containers. Post-exposure observations and ISO impact tests are presented as a function of time and chemical medium. Water effects are observed to be limited in explaining such use in real applications, whereas the changes in TM and acidic media are very significant. For the TM medium, the polymer toughness increased drastically (from 15.95 kJ/m² up to 32.01 kJ/m²), while sulfuric acid showed a steady augmentation over time. This situation may correspond to a hardening phenomenon of PE increasing its brittleness and its ability for structural degradation because of localized oxidation reactions and changes in crystallinity.Keywords: polyethylene, toluene-methanol mixture, environmental stress cracking, degradation, impact resistance
Procedia PDF Downloads 794195 Mechanical Properties of Polyurethane Scaffolds Reinforced with Green Nanofibers for Applications in Soft Tissue Regeneration
Authors: Mustafa Abu Ghalia, Yaser Dahman
Abstract:
A new class of polyurethane (PU) reinforced with green bacterial cellulose nanofibers (BC) were prepared using a solvent casting method, with the goal of fabricating green nanocomposites. Four series classes of BC (1, 2.5, 5, and 10 wt%) were reinforced into PU matrices via BC surface modification and subsequently BC-grafted into PU throughout silane coupling agent to improve BC dispersion and its interfacial interaction. The experiment results from the tensile tester were evaluated according to the response surface method (RSM) for optimizing the impacts of variable parameters, pore size, porosity, and BC contents on the mechanical properties. The compressive strength for PU-5 BC wt% was about 9.8 MPa, and decrease when being generated prosperity to recorded at 4.9 MPa. Nielson model was applied to investigate the BC stress concentration on the PU matrices. Likewise, krenche and Hapli-Tasi model were employed to evaluate the BC nanofiber reinforcement potential and BC orientation into PU matrices. The analysis of variance (ANOVA) demonstrated that only BC loading has a significant effect in increases tensile strength, young’s modulus, and a flexural modulus of the PU-BC nanocomposites. The optimal factors of the variables experiment confirmed to be 5 wt% for BC, 230 for pore size, and 80 % for porosity. Scanning electron microscopy (SEM) micrographs showed that the uniform distribution of nanofibers in the PU matrices with the addition of BC 5 wt %. Hydrolytic degradation revealed that the weight loss in PU-BC scaffold is higher than PU-BC wt %.Keywords: polyurethane scaffold, mechanical properties, tissue engineering, polyurethane
Procedia PDF Downloads 2134194 Effect of the Nature of Silica Precursor in Zeolite ZSM-22 Synthesis
Authors: Nyiko M. Chauke, James Ramontja, Richard M. Moutloali
Abstract:
The zeolite ZSM-22 material demonstrated effective hydrophilic character as a nanoadditive filler in the preparation of nanocomposite membranes. In this study, nanorods ZSM-22 zeolite materials were hydrothermally synthesised from a homogenous gel mixture prepared using different silica precursors: colloidal silica, fumed silica, tetraethylorthosilicate (TEOS), and aluminium precursor: aluminium sulphate octadecahydrate (Al₂(SO₄)₃.18H₂O to Si/Al of 60. This was focused on developing a defect-free zeolite framework for effective use in applications such as membrane separation process, adsorption, and catalysis. The obtained ZSM-22 zeolite materials with 60 Si/Al ratio exhibits high crystallinity, hydrophilicity, and needle-like morphologies, suggesting successful synthesis as shown by X-ray Diffraction (XRD), Brunauer-Emmett-Teller (BET), Fourier-Transform Infrared Spectroscopy (FTIR), Transmission Electron Microscopy (TEM) and Scanning Electron Microscopy (SEM) physicochemical analysis. It was revealed that the use of different nature of silica precursors significantly influenced the properties of the final product and contributed to the development of defect-free zeolite material. As such, the crystalline nanorods of Theta-1 (TON) ZSM-22 obtained from TEOS silica showed high phase purity, defect-free, and narrow particle size distribution. Morphological analysis exhibited that the use of TEOS as silica precursor was effective than its counterparts and produced high crystalline need-like agglomerated particles.Keywords: silica precursor, hydrothermal synthesis, zeolite material, ZSM-22
Procedia PDF Downloads 142