Search results for: treated waste water
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 12648

Search results for: treated waste water

12198 Analysis of Influence of Geometrical Set of Nozzles on Aerodynamic Drag Level of a Hero’s Based Steam Turbine

Authors: Mateusz Paszko, Miroslaw Wendeker, Adam Majczak

Abstract:

High temperature waste energy offers a number of management options. The most common energy recuperation systems, that are actually used to utilize energy from the high temperature sources are steam turbines working in a high pressure and temperature closed cycles. Due to the high costs of production of energy recuperation systems, especially rotary turbine discs equipped with blades, currently used solutions are limited in use with waste energy sources of temperature below 100 °C. This study presents the results of simulating the flow of the water vapor in various configurations of flow ducts in a reaction steam turbine based on Hero’s steam turbine. The simulation was performed using a numerical model and the ANSYS Fluent software. Simulation computations were conducted with use of the water vapor as an internal agent powering the turbine, which is fully safe for an environment in case of a device failure. The conclusions resulting from the conducted numerical computations should allow for optimization of the flow ducts geometries, in order to achieve the greatest possible efficiency of the turbine. It is expected that the obtained results should be useful for further works related to the development of the final version of a low drag steam turbine dedicated for low cost energy recuperation systems.

Keywords: energy recuperation, CFD analysis, waste energy, steam turbine

Procedia PDF Downloads 205
12197 Compaction of Municipal Solid Waste

Authors: Jovana Jankovic Pantic, Dragoslav Rakic, Tina Djuric, Irena Basaric Ikodinovic, Snezana Bogdanovic

Abstract:

Regardless of the numerous activities undertaken to reduce municipal solid waste, its annual volumes continue to grow. In Serbia, the most common and the only one form of waste disposal is at municipal landfills with daily compaction and soil covering. Municipal waste compacting is one of the basic components of the disposal process. Well compacted waste takes up less volume and allows much safer storage. In order to better predict the behavior of municipal waste at landfills, it is necessary to define compaction parameters: the maximum dry unit weight and optimal moisture content. In current geotechnical practice, the most common method of determination compaction parameters is by the standard method (Proctor compaction test) used in soil mechanics, with an eventual reduction of compaction energy. Although this methodology is accepted in newer geotechnical scientific discipline "waste mechanics", different treatments of municipal waste at the landfill itself (including pretreatment), indicate the need to change this classical approach. The main reason for that is the simulation of the operation of compactors (hedgehogs) at the landfill. Therefore, during the research, various innovative solutions are introduced, such as changing the classic flat Proctor hammer, by adding spikes, whose function is, in addition to compaction, destruction and shredding of municipal waste. The paper presents the behavior of municipal waste for four synthetic waste samples with different waste compositions (Plandište landfill). The samples were tested in standard Proctor apparatus at the same compaction energy, but with two different hammers: standard flat hammer and hammer with spikes.

Keywords: compaction, hammer with spikes, landfill, municipal solid waste, proctor compaction test

Procedia PDF Downloads 221
12196 Study of Management of Waste Construction Materials in Civil Engineering Projects

Authors: Jalindar R. Patil, Harish P. Gayakwad

Abstract:

The increased economic growth across the globe as well as urbanization in developing countries have led into extensive construction activities that generate large amounts of wastes. Material wastage in construction projects resulted into huge financial setbacks to builders and contractors. In addition to this, it may also cause significant effects over aesthetics, health, and the general environment. However in many cities across the globe where construction wastes material management is still a problem. In this paper, the discussion is all about the method for the management of waste construction materials. The objectives of this seminar are to identify the significant source of construction waste globally, to improve the performance of by extracting the major barriers construction waste management and to determine the cost impact on the construction project. These wastes needs to be managed as well as their impacts needs to be ascertained to pave way for their proper management. The seminar includes the details of construction waste management with the reference to construction project. The application of construction waste management in the civil engineering projects is to describe the reduction in the construction wastes.

Keywords: civil engineering, construction materials, waste management, construction activities

Procedia PDF Downloads 528
12195 Redefining Urban Landfills – Transformation of a Sanitary Landfill in Indian Cities

Authors: N. L. Divya Gayatri

Abstract:

In India, over 377 million urban people generate 62 million tons of municipal solid waste per annum. Forty-three million tons are collected, 11.9 million are treated and 31 million tons is dumped in landfill sites. The study aims to have an overall understanding of the working and functioning of a sanitary landfill from the siting to the closure stage and identifying various landscape design techniques that can be implemented in a landfill site and come up with a set of guidelines by analyzing the existing policies and guidelines pertaining to landfills. Constituents of municipal solid waste, methods of landfilling, issues, impacts, Mitigation strategies, Landscape design strategies, design approaches towards a landfill, infrastructure requirements, end-use opportunities have been discussed. The objective is to study the ecological and environmental degradation prevention methods, compare various techniques in remediation, study issues in landfill sites in India, analyze scope and opportunities and explore various landscape design strategies. The understanding of the function of landfills with respect to Municipal solid waste and landscaping is conveyed through this study. The study is limited to Landscape design factors in landfill design guidelines and policies mentioned with regard to the issues and impacts specific to the Indian context.

Keywords: sanitary landfill landscaping, environmental impact, municipal solid waste, guidelines, landscape design strategies, landscape design approaches

Procedia PDF Downloads 154
12194 Recycled Waste Glass Powder as a Partial Cement Replacement in Polymer-Modified Mortars

Authors: Nikol Žižková

Abstract:

The aim of this study was to observe the behavior of polymer-modified cement mortars with regard to the use of a pozzolanic admixture. Polymer-modified mortars (PMMs) containing various types of waste glass (waste packing glass and fluorescent tube glass) were produced always with 20% of cement substituted with a pozzolanic-active material. Ethylene/vinyl acetate copolymer (EVA) was used for polymeric modification. The findings confirm the possibility of using the waste glass examined herein as a partial substitute for cement in the production of PMM, which contributes to the preservation of non-renewable raw material resources and to the efficiency of waste glass material reuse.

Keywords: recycled waste glass, polymer-modified mortars, pozzolanic admixture, ethylene/vinyl acetate copolymer

Procedia PDF Downloads 252
12193 Application of Nanoparticles on Surface of Commercial Carbon-Based Adsorbent for Removal of Contaminants from Water

Authors: Ahmad Kayvani Fard, Gordon Mckay, Muataz Hussien

Abstract:

Adsorption/sorption is believed to be one of the optimal processes for the removal of heavy metals from water due to its low operational and capital cost as well as its high removal efficiency. Different materials have been reported in literature as adsorbent for heavy metal removal in waste water such as natural sorbents, organic polymers (synthetic) and mineral materials (inorganic). The selection of adsorbents and development of new functional materials that can achieve good removal of heavy metals from water is an important practice and depends on many factors, such as the availability of the material, cost of material, and material safety and etc. In this study we reported the synthesis of doped Activated carbon and Carbon nanotube (CNT) with different loading of metal oxide nanoparticles such as Fe2O3, Fe3O4, Al2O3, TiO2, SiO2 and Ag nanoparticles and their application in removal of heavy metals, hydrocarbon, and organics from waste water. Commercial AC and CNT with different loadings of mentioned nanoparticle were prepared and effect of pH, adsorbent dosage, sorption kinetic, and concentration effects are studied and optimum condition for removal of heavy metals from water is reported. The prepared composite sorbent is characterized using field emission scanning electron microscopy (FE-SEM), high transmission electron microscopy (HR-TEM), thermogravimetric analysis (TGA), X-ray diffractometer (XRD), the Brunauer, Emmett and Teller (BET) nitrogen adsorption technique, and Zeta potential. The composite materials showed higher removal efficiency and superior adsorption capacity compared to commercially available carbon based adsorbent. The specific surface area of AC increased by 50% reaching up to 2000 m2/g while the CNT specific surface area of CNT increased by more than 8 times reaching value of 890 m2/g. The increased surface area is one of the key parameters along with surface charge of the material determining the removal efficiency and removal efficiency. Moreover, the surface charge density of the impregnated CNT and AC have enhanced significantly where can benefit the adsorption process. The nanoparticles also enhance the catalytic activity of material and reduce the agglomeration and aggregation of material which provides more active site for adsorbing the contaminant from water. Some of the results for treating wastewater includes 100% removal of BTEX, arsenic, strontium, barium, phenolic compounds, and oil from water. The results obtained are promising for the use of AC and CNT loaded with metal oxide nanoparticle in treatment and pretreatment of waste water and produced water before desalination process. Adsorption can be very efficient with low energy consumption and economic feasibility.

Keywords: carbon nanotube, activated carbon, adsorption, heavy metal, water treatment

Procedia PDF Downloads 233
12192 Bridging the Gap: Living Machine in Educational Nature Preserve Center

Authors: Zakeia Benmoussa

Abstract:

Pressure on freshwater systems comes from removing too much water to grow crops; contamination from economic activities, land use practices, and human waste. The paper will be focusing on how water management can influence the design, implementation, and impacts of the ecological principles of biomimicry as sustainable methods in recycling wastewater. At Texas State, United States of America, in particular the lower area of the Trinity River refuge, there is a true example of the diversity to be found in that area, whether when exploring the lands or the waterways. However, as the Trinity River supplies water to the state’s residents, the lower part of the river at Liberty County presents several problem of wastewater discharge in the river. Therefore, conservation efforts are particularly important in the Trinity River basin. Clearly, alternative ways must be considered in order to conserve water to meet future demands. As a result, there should be another system provided rather than the conventional water treatment. Mimicking ecosystem's technologies out of context is not enough, but if we incorporate plants into building architecture, in addition to their beauty, they can filter waste, absorb excess water, and purify air. By providing an architectural proposal center, a living system can be explored through several methods that influence natural resources on the micro-scale in order to impact sustainability on the macro-scale. The center consists of an ecological program of Plant and Water Biomimicry study which becomes a living organism that purifies the river water in a natural way through architecture. Consequently, a rich beautiful nature could be used as an educational destination, observation and adventure, as well as providing unpolluted fresh water to the major cities of Texas. As a result, these facts raise a couple of questions: Why is conservation so rarely practiced by those who must extract a living from the land? Are we sufficiently enlightened to realize that we must now challenge that dogma? Do architects respond to the environment and reflect on it in the correct way through their public projects? The method adopted in this paper consists of general research into careful study of the system of the living machine, in how to integrate it at architectural level, and finally, the consolidation of the all the conclusions formed into design proposal. To summarise, this paper attempts to provide a sustainable alternative perspective in bridging physical and mental interaction with biodiversity to enhance nature by using architecture.

Keywords: Biodiversity, Design with Nature, Sustainable architecture, Waste water treatment.

Procedia PDF Downloads 296
12191 A Chemical-Free Colouration Technique for Regenerated Fibres Using Waste Alpaca Fibres

Authors: M. Abdullah Al Faruque, Rechana Remadevi, Abu Naser M. Ahsanul Haque, Joselito Razal, Xungai Wang, Maryam Naebe

Abstract:

Generally, the colouration of textile fibres is performed by using synthetic colourants in dope dyeing or conventional dyeing methods. However, the toxic effect of some synthetic colorants due to long-term exposure can cause several health threats including cancer, asthma and skin diseases. Moreover, in colouration process, these colourants not only consume a massive amount of water but also generates huge proportion of wastewater to the environment. Despite having the environmentally friendly characteristics, current natural colourants have downsides in their yield and need chemical extraction processes which are water consuming as well. In view of this, the present work focuses to develop a chemical-free biocompatible and natural pigment based colouration technique to colour regenerated fibres. Waste alpaca fibre was used as a colourant and the colour properties, as well as the mechanical properties, of the regenerated fibres were investigated. The colourant from waste alpaca was fabricated through mechanical milling process and it was directly applied to the polyacrylonitrile (PAN) dope solution in different ratios of alpaca: PAN (10:90, 20:80, 30:70). The results obtained from the chemical structure characterization suggested that all the coloured regenerated fibres exhibited chemical functional groups of both PAN and alpaca. Furthermore, the color strength was increased gradually with the increment of alpaca content and showed excellent washing fastness properties. These results reveal a potential new pathway for chemical-free dyeing technique for fibres with improved properties.

Keywords: alpaca, chemical-free coloration, natural colorant, polyacrylonitrile, water consumption, wet spinning

Procedia PDF Downloads 171
12190 Recycling in Bogotá: A SWOT Analysis of Three Associations to Evaluate the Integrating the Informal Sector into Solid Waste Management

Authors: Clara Inés Pardo Martínez

Abstract:

In emerging economies, recycling is an opportunity for the cities to increase the lifespan of sanitary landfills, reduce the costs of the solid waste management, decrease the environmental problems of the waste treatment through reincorporate waste in the productive cycle and protect and develop people’s livelihoods of informal waste pickers. However, few studies have analysed the possibilities and strategies to integrate formal and informal sectors in the solid waste management for the benefit of both. This study seek to make a strength, weakness, opportunity, and threat (SWOT) analysis in three recycling associations of Bogotá with the aim to understand and determine the situation of recycling from perspective of informal sector in its transition to enter as authorized waste providers. Data used in the analysis are derived from multiple strategies such as literature review, the Bogota’s recycling database, focus group meetings, governmental reports, national laws and regulations and specific interviews with key stakeholders. Results of this study show as the main stakeholders of formal and informal sector of waste management can identify the internal and internal conditions of recycling in Bogotá. Several strategies were designed based on the SWOTs determined, could be useful for Bogotá to advance and promote recycling as a key strategy for integrated sustainable waste management in the city.

Keywords: Bogotá, recycling, solid waste management, SWOT analysis

Procedia PDF Downloads 400
12189 Effect of Electrodes Spacing on Energy Consumption of Electrocoagulation Cells

Authors: Khalid S. Hashim, Andy Shaw, Rafid Al-Khaddar, Montserrat Ortoneda Pedrola

Abstract:

In spite of the acknowledged advantages of the electrocoagulation (EC) method to remove a wide range of pollutants from waters and wastewaters, its efficiency is limited by several operational parameters (such as electrolysis time, current density, electrode material, distance between electrodes, and water temperature). Hence, optimizing these key operating parameters is considered a vital step to remove a pollutant efficiently. In this context, the present study has been carried out to explore the influence of electrodes spacing on energy consumption, temperature of the water being treated, and iron removal from water. To achieve this target, iron containing synthetic water samples were electrolysed for 20 min, using a new flow column electrocoagulation reactor (FCER), at three different gaps between electrodes (5, 10, and 20 mm). These batch experiments were commenced at a constant current density of 1.5 mA/cm² and initial pH of 6. The obtained results demonstrated that increasing gap between electrodes negatively influenced the performance of the EC method. It was found that increasing the gap between electrodes from 5 to 20 mm increased the energy consumption from about 3.3 to 7.3 kW.h/m³, and water temperature from 20.2 to 22 °C, respectively. In addition, it has been found, after 20 min of electrolysing, that increasing the gap between electrodes from 5 to 20 mm increased the residual iron concentration from 0.05 to 1.01 mg/L, respectively.

Keywords: electrocoagulation, water, electrodes, iron

Procedia PDF Downloads 262
12188 Assessment of Waste Management Practices in Bahrain

Authors: T. Radu, R. Sreenivas, H. Albuflasa, A. Mustafa Khan, W. Aloqab

Abstract:

The Kingdom of Bahrain, a small island country in the Gulf region, is experiencing fast economic growth resulting in a sharp increase in population and greater than ever amounts of waste being produced. However, waste management in the country is still very basic, with landfilling being the most popular option. Recycling is still a scarce practice, with small recycling businesses and initiatives emerging in recent years. This scenario is typical for other countries in the region, with similar amounts of per capita waste being produced. In this paper, we are reviewing current waste management practices in Bahrain by collecting data published by the Government and various authors, and by visiting the country’s only landfill site, Askar. In addition, we have performed a survey of the residents to learn more about the awareness and attitudes towards sustainable waste management strategies. A review of the available data on waste management indicates that the Askar landfill site is nearing its capacity. The site uses open tipping as the method of disposal. The highest percentage of disposed waste comes from the building sector (38.4%), followed by domestic (27.5%) and commercial waste (17.9%). Disposal monitoring and recording are often based on estimates of weight and without proper characterization/classification of received waste. Besides, there is a need for assessment of the environmental impact of the site with systematic monitoring of pollutants in the area and their potential spreading to the surrounding land, groundwater, and air. The results of the survey indicate low awareness of what happens with the collected waste in the country. However, the respondents have shown support for future waste reduction and recycling initiatives. This implies that the education of local communities would be very beneficial for such governmental initiatives, securing greater participation. Raising awareness of issues surrounding recycling and waste management and systematic effort to divert waste from landfills are the first steps towards securing sustainable waste management in the Kingdom of Bahrain.

Keywords: landfill, municipal solid waste, survey, waste management

Procedia PDF Downloads 157
12187 Deproteination and Demineralization of Shrimp Waste Using Lactic Acid Bacteria for the Production of Crude Chitin and Chitosan

Authors: Farramae Francisco, Rhoda Mae Simora, Sharon Nunal

Abstract:

Deproteination and demineralization efficiencies of shrimp waste using two Lactobacillus species treated with different carbohydrate sources for chitin production, its chemical conversion to chitosan and the quality of chitin and chitosan produced were determined. Using 5% glucose and 5% cassava starch as carbohydrate sources, pH slightly increased from the initial pH of 6.0 to 6.8 and 7.2, respectively after 24 h and maintained their pH at 6.7 to 7.3 throughout the treatment period. Demineralization (%) in 5 % glucose and 5 % cassava was highest during the first day of treatment which was 82% and 83%, respectively. Deproteination (%) was highest in 5% cassava starch on the 3rd day of treatment at 84.4%. The obtained chitin from 5% cassava and 5% glucose had a residual ash and protein below 1% and solubility of 59% and 44.3%, respectively. Chitosan produced from 5% cassava and 5% glucose had protein content below 0.05%; residual ash was 1.1% and 0.8%, respectively. Chitosan solubility and degree of deacetylation were 56% and 33% in 5% glucose and 48% and 29% in 5% cassava, respectively. The advantage this alternative technology offers over that of chemical extraction is large reduction in chemicals needed thus less effluent production and generation of a protein-rich liquor, although the demineralization process should be improved to achieve greater degree of deacetylation.

Keywords: alternative carbon source, bioprocessing, lactic acid bacteria, waste utilization

Procedia PDF Downloads 484
12186 A Review on the Use of Plastic Waste with Viable Materials in Composite Construction Block

Authors: Mohan T. Harish, Masson Lauriane, Sreevalsa Kolathayar

Abstract:

Environmental issues raise alarm in the constructional field which implies a need for exploring new construction materials derived from the waste and residual products. This paper presents a detailed review of the alternatives approaches employed in the construction field using plastic waste in mixture with mixed with fillers. A detailed analysis of the plastic waste used in concrete, with soil, sand, clay and natural residues like sawdust, rice husk etc are presented. The different process carried forward was also discussed along with the scrutiny of the change in mechanical properties. The effect of coupling agents in the proposed mixture has been appraised in detail which gives implications for its future application in the field of plastic waste with viable materials in composite construction blocks.

Keywords: plastic waste, composite materials, construction block, concrete, natural residue, coupling agent

Procedia PDF Downloads 250
12185 Household Solid Waste Generation per Capita and Management Behaviour in Mthatha City, South Africa

Authors: Vuyayo Tsheleza, Simbarashe Ndhleve, Christopher Mpundu Musampa

Abstract:

Mismanagement of waste is continuously emerging as a rising malpractice in most developing countries, especially in fast growing cities. Household solid waste in Mthatha has been reported to be one of the problems facing the city and is overwhelming local authorities, as it is beyond the environment and management capacity of the existing waste management system. This study estimates per capita waste generation, quantity of different waste types generated by inhabitants of formal and informal settlements in Mthatha as well as waste management practices in the aforementioned socio-economic stratums. A total of 206 households were systematically selected for the study using stratified random sampling categorized into formal and informal settlements. Data on household waste generation rate, composition, awareness, and household waste management behaviour and practices was gathered through mixed methods. Sampled households from both formal and informal settlements with a total of 684 people generated 1949kg per week. This translates to 2.84kg per capita per week. On average, the rate of solid waste generation per capita was 0.40 kg per day for a person living in informal settlement and 0.56 kg per day person living in formal settlement. When recorded in descending order, the proportion food waste accounted for the most generated waste at approximately 23.7%, followed by disposable nappies at 15%, papers and cardboards 13.34%, glass 13.03%, metals at 11.99%, plastics at 11.58%, residue at 5.17, textiles 3.93%, with leather and rubber at 2.28% as the least generated waste type. Different waste management practices were reported in both formal and informal settlements with formal settlements proving to be more concerned about environmental management as compared to their counterparts, informal settlement. Understanding attitudes and perceptions on waste management, waste types and per capita solid waste generation rate can help evolve appropriate waste management strategies based on the principle of reduce, re-use, recycle, environmental sound disposal and also assist in projecting future waste generation rate. These results can be utilized as input when designing growing cities’ waste management plans.

Keywords: awareness, characterisation, per capita, quantification

Procedia PDF Downloads 298
12184 Food Service Waste Management In Nigeria: Emerging Opportunities And Policy Initiatives For Mitigation

Authors: Victor Oyewumi Ogunbiyi

Abstract:

Food waste is recognised as one of the major global challenges in achieving a sustainable future. Currently, very little is known about the multi-stakeholder approach to food waste management downstream of the supply chain, particularly in the foodservice sector. In order to better understand and explain the complex issues of food waste, a qualitative study was conducted on the generation of food waste in food services (restaurants, catering, canteens, and local food vendors) and policy initiatives to mitigate it from the perspective of the stakeholders. A semi-structured interview approach and observation were used to collect data from some 32 selected stakeholders in Garki, Abuja, Nigeria. Thematic analysis was employed to analyse the data from the qualitative instrument adopted in this study. Results revealed that the attitude of stakeholders, poor environmental hygiene, poor food cooking skills and handling, and lack of communication are the major causes of food waste. This study identified seven policy initiatives: regulations, information and education campaigns, economic instruments, mobile applications, stakeholders’ collaboration, firm internal action, and training. Finally, we link policy initiatives to food waste mitigation to provide a response to the damaging shock of food waste.

Keywords: food waste, foodservices, emerging opportunities, policy initiatives, food waste prevention, multistakeholder. garki district-abuja

Procedia PDF Downloads 79
12183 Catalytic Depolymerisation of Waste Plastic Material into Hydrocarbon Liquid

Authors: Y. C. Bhattacharyulu, Amit J. Agrawal, Vikram S. Chatake, Ketan S. Desai

Abstract:

In recent years, the improper disposal of waste polymeric materials like plastics, rubber, liquid containers, daily household materials, etc. is posing a grave problem by polluting the environment. On the other hand fluctuations in the oil market and limited stocks of fossil fuels have diverted the interest of researchers to study the production of fuels and hydrocarbons from alternative sources. Hence, to study the production of fuels from waste plastic is the need of hour at present. Effect of alkali solutions of different concentrations with copper comprising catalyst on depolymerisation reactions was studied here. The present study may become a preliminary method for obtaining valuable hydrocarbons from waste plastics and an effective way for depolymerising or degrading waste plastics for their safe disposal without causing any environmental problems.

Keywords: catalyst, depolymerisation, disposal, hydrocarbon liquids, waste plastic

Procedia PDF Downloads 267
12182 Character and Evolution of Electronic Waste: A Technologically Developing Country's Experience

Authors: Karen C. Olufokunbi, Odetunji A. Odejobi

Abstract:

The discourse of this paper is the examination of the generation, accumulation and growth of e-waste in a developing country. Images and other data about computer e-waste were collected using a digital camera, 290 copies of questionnaire and three structured interviews using Obafemi Awolowo University (OAU), Ile-Ife, Nigeria environment as a case study. The numerical data were analysed using R data analysis and process tool. Automata-based techniques and Petri net modeling tool were used to design and simulate a computational model for the recovery of saleable materials from e-waste. The R analysis showed that at a 95 percent confidence level, the computer equipment that will be disposed by 2020 will be 417 units. Compared to the 800 units in circulation in 2014, 50 percent of personal computer components will become e-waste. This indicates that personal computer components were in high demand due to their low costs and will be disposed more rapidly when replaced by new computer equipment Also, 57 percent of the respondents discarded their computer e-waste by throwing it into the garbage bin or by dumping it. The simulated model using Coloured Petri net modelling tool for the process showed that the e-waste dynamics is a forward sequential process in the form of a pipeline meaning that an e-waste recovery of saleable materials process occurs in identifiable discrete stages indicating that e-waste will continue to accumulate and grow in volume with time.

Keywords: Coloured Petri net, computational modelling, electronic waste, electronic waste process dynamics

Procedia PDF Downloads 164
12181 Evaluation of Paper Effluent with Two Bacterial Strain and Their Consortia

Authors: Priya Tomar, Pallavi Mittal

Abstract:

As industrialization is inevitable and progress with rapid acceleration, the need for innovative ways to get rid of waste has increased. Recent advancement in bioresource technology paves novel ideas for recycling of factory waste that has been polluting the agro-industry, soil and water bodies. Paper industries in India are in a considerable number, where molasses and impure alcohol are still being used as raw materials for manufacturing of paper. Paper mills based on nonconventional agro residues are being encouraged due to increased demand of paper and acute shortage of forest-based raw materials. The colouring body present in the wastewater from pulp and paper mill is organic in nature and is comprised of wood extractives, tannin, resins, synthetic dyes, lignin and its degradation products formed by the action of chlorine on lignin which imparts an offensive colour to the water. These mills use different chemical process for paper manufacturing due to which lignified chemicals are released into the environment. Therefore, the chemical oxygen demand (COD) of the emanating stream is quite high. This paper presents some new techniques that were developed for the efficiency of bioremediation on paper industry. A short introduction to paper industry and a variety of presently available methods of bioremediation on paper industry and different strategies are also discussed here. For solving the above problem, two bacterial strains (Pseudomonas aeruginosa and Bacillus subtilis) and their consortia (Pseudomonas aeruginosa and Bacillus subtilis) were utilized for the pulp and paper mill effluent. Pseudomonas aeruginosa and Bacillus subtilis named as T–1, T–2, T–3, T–4, T–5, T–6, for the decolourisation of paper industry effluent. The results indicated that a maximum colour reduction is (60.5%) achieved by Pseudomonas aeruginosa and COD reduction is (88.8%) achieved by Bacillus subtilis, maximum pH changes is (4.23) achieved by Pseudomonas aeruginosa, TSS reduction is (2.09 %) achieved by Bacillus subtilis, and TDS reduction is (0.95 %) achieved by Bacillus subtilis. When the wastewater was supplemented with carbon (glucose) and nitrogen (yeast extract) source and data revealed the efficiency of Bacillus subtilis, having more with glucose than Pseudomonas aeruginosa.

Keywords: bioremediation, paper and pulp mill effluent, treated effluent, lignin

Procedia PDF Downloads 247
12180 Mechanical Properties of Waste Clay Brick Based Geopolymer Cured at Various Temperature

Authors: Shihab Ibrahim

Abstract:

Geopolymer binders as an alternative binder system to ordinary Portland cement are the focus of the past 2 decades of researches. In order to eliminate CO2 emission by cement manufacturing and utilizing construction waste as a source material, clean waste clay bricks which are the waste from Levent Brick factory was activated with a mixture of sodium hydroxide and sodium silicate solution. 12 molarity of sodium hydroxide solution was used and the ratio of sodium silicate to sodium hydroxide was 2.5. Alkaline solution to clay brick powder ratio of 0.35, 0.4, 0.45, and 0.5 was studied. Alkaline solution to powder ratio of 0.4 was found to be optimum ratio to have the same workability as ordinary Portland cement paste. Compressive strength of the clay brick based geopolymer paste samples was evaluated under different curing temperatures and curing durations. One day compressive strength of 57.3 MPa after curing at 85C for 24 hours was obtained which was higher than 7 days compressive strength of ordinary Portland cement paste. The highest compressive strength 71.4 MPa was achieved at seventh day age for the geopolymer paste samples cured at 85C for 24 hours. It was found that 8 hour curing at elevated temperature 85C, is sufficient to get 96% of total strength. 37.4 MPa strength at seventh day of clay brick based geopolymer sample cured at room temperature was achieved. Water absorption around 10% was found for clay brick based geopolymer samples cured at different temperatures with compare to 9.14% water absorption of ordinary Portland cement paste. The clay brick based geopolymer binder can have the potentiality to be used as an alternative binder to Portland cement in a case that the heat treatment provided. Further studies are needed in order to produce the binder in a way that can harden and gain strength without any elevated curing.

Keywords: construction and demolition waste, geopolymer, clay brick, compressive strength.

Procedia PDF Downloads 258
12179 Experimental Investigation on High Performance Concrete with Silica Fume and Ceramic Waste

Authors: P. Vinayagam, A. Madhanagopal

Abstract:

This experimental investigation focuses on the study of the strength of concrete with ceramic waste as coarse aggregate. It is not a new concept of using alternate materials for aggregates. Pottery and ceramics have been an important part of human culture for thousands of years. The ceramic waste from ceramic and construction industries is a major contribution to construction demolition waste (CDW), representing a serious environmental, technical, and economical problem of today’s society. The major sources of ceramic waste are ceramic industry, building construction and building demolition. In ceramic industries, a significant part of the losses in the manufacturing of ceramic elements is not returned to the production process. In building construction, ceramic waste is produced during transportation to the building site, on the execution of several construction elements and on subsequent works. This waste is regionally deposited in dumping grounds, without any separation or reuse. In this study an attempt has been made to find the suitability of the ceramic industrial wastes as a possible replacement for conventional crushed stone coarse aggregate in high performance concrete. In this study, glazed stoneware pipe waste was used as coarse aggregates. In this investigation, physical properties of ceramic waste coarse aggregates were studied. Experiments were carried out to determine the strength of high performance concrete with silica fume and ceramic stoneware pipe waste coarse aggregate of 10%, 20%, 30%, 40% and 50% different replacement ratios in comparison with those of corresponding conventional concrete mixes.

Keywords: ceramic waste, coarse aggregate replacement, glazed stoneware pipe waste, silica fume

Procedia PDF Downloads 287
12178 The Role of Home Composting in Waste Management Cost Reduction

Authors: Nahid Hassanshahi, Ayoub Karimi-Jashni, Nasser Talebbeydokhti

Abstract:

Due to the economic and environmental benefits of producing less waste, the US Environmental Protection Agency (EPA) introduces source reduction as one of the most important means to deal with the problems caused by increased landfills and pollution. Waste reduction involves all waste management methods, including source reduction, recycling, and composting, which reduce waste flow to landfills or other disposal facilities. Source reduction of waste can be studied from two perspectives: avoiding waste production, or reducing per capita waste production, and waste deviation that indicates the reduction of waste transfer to landfills. The present paper has investigated home composting as a managerial solution for reduction of waste transfer to landfills. Home composting has many benefits. The use of household waste for the production of compost will result in a much smaller amount of waste being sent to landfills, which in turn will reduce the costs of waste collection, transportation and burial. Reducing the volume of waste for disposal and using them for the production of compost and plant fertilizer might help to recycle the material in a shorter time and to use them effectively in order to preserve the environment and reduce contamination. Producing compost in a home-based manner requires very small piece of land for preparation and recycling compared with other methods. The final product of home-made compost is valuable and helps to grow crops and garden plants. It is also used for modifying the soil structure and maintaining its moisture. The food that is transferred to landfills will spoil and produce leachate after a while. It will also release methane and greenhouse gases. But, composting these materials at home is the best way to manage degradable materials, use them efficiently and reduce environmental pollution. Studies have shown that the benefits of the sale of produced compost and the reduced costs of collecting, transporting, and burying waste can well be responsive to the costs of purchasing home compost machine and the cost of related trainings. Moreover, the process of producing home compost may be profitable within 4 to 5 years and as a result, it will have a major role in reducing waste management.

Keywords: compost, home compost, reducing waste, waste management

Procedia PDF Downloads 424
12177 Assessment of Conventional Drinking Water Treatment Plants as Removal Systems of Virulent Microsporidia

Authors: M. A. Gad, A. Z. Al-Herrawy

Abstract:

Microsporidia comprises various pathogenic species can infect humans by means of water. Moreover, chlorine disinfection of drinking-water has limitations against this protozoan pathogen. A total of 48 water samples were collected from two drinking water treatment plants having two different filtration systems (slow sand filter and rapid sand filter) during one year period. Samples were collected from inlet and outlet of each plant. Samples were separately filtrated through nitrocellulose membrane (142 mm, 0.45 µm), then eluted and centrifuged. The obtained pellet from each sample was subjected to DNA extraction, then, amplification using genus-specific primer for microsporidia. Each microsporidia-PCR positive sample was performed by two species specific primers for Enterocytozoon bieneusi and Encephalitozoon intestinalis. The results of the present study showed that the percentage of removal for microsporidia through different treatment processes reached its highest rate in the station using slow sand filters (100%), while the removal by rapid sand filter system was 81.8%. Statistically, the two different drinking water treatment plants (slow and rapid) had significant effect for removal of microsporidia. Molecular identification of microsporidia-PCR positive samples using two different primers for Enterocytozoon bieneusi and Encephalitozoon intestinalis showed the presence of the two pervious species in the inlet water of the two stations, while Encephalitozoon intestinalis was detected in the outlet water only. In conclusion, the appearance of virulent microsporidia in treated drinking water may cause potential health threat.

Keywords: removal, efficacy, microsporidia, drinking water treatment plants, PCR

Procedia PDF Downloads 209
12176 Pineapple Waste Valorization through Biogas Production: Effect of Substrate Concentration and Microwave Pretreatment

Authors: Khamdan Cahyari, Pratikno Hidayat

Abstract:

Indonesia has produced more than 1.8 million ton pineapple fruit in 2013 of which turned into waste due to industrial processing, deterioration and low qualities. It was estimated that this waste accounted for more than 40 percent of harvested fruits. In addition, pineapple leaves were one of biomass waste from pineapple farming land, which contributed even higher percentages. Most of the waste was only dumped into landfill area without proper pretreatment causing severe environmental problem. This research was meant to valorize the pineapple waste for producing renewable energy source of biogas through mesophilic (30℃) anaerobic digestion process. Especially, it was aimed to investigate effect of substrate concentration of pineapple fruit waste i.e. peel, core as well as effect of microwave pretreatment of pineapple leaves waste. The concentration of substrate was set at value 12, 24 and 36 g VS/liter culture whereas 800-Watt microwave pretreatment conducted at 2 and 5 minutes. It was noticed that optimum biogas production obtained at concentration 24 g VS/l with biogas yield 0.649 liter/g VS (45%v CH4) whereas microwave pretreatment at 2 minutes duration performed better compare to 5 minutes due to shorter exposure of microwave heat. This results suggested that valorization of pineapple waste could be carried out through biogas production at the aforementioned process condition. Application of this method is able to both reduce the environmental problem of the waste and produce renewable energy source of biogas to fulfill local energy demand of pineapple farming areas.

Keywords: pineapple waste, substrate concentration, microwave pretreatment, biogas, anaerobic digestion

Procedia PDF Downloads 580
12175 Processes for Valorization of Valuable Products from Kerf Slurry Waste

Authors: Nadjib Drouiche, Abdenour Lami, Salaheddine Aoudj, Tarik Ouslimane

Abstract:

Although solar cells manufacturing is a conservative industry, economics drivers continue to encourage innovation, feedstock savings and cost reduction. Kerf slurry waste is a complex product containing both valuable substances as well as contaminants. The valuable substances are: i) high purity silicon, ii) polyethylene glycol, and iii) silicon carbide. The contaminants mainly include metal fragments and organics. Therefore, recycling of the kerf slurry waste is an important subject not only from the treatment of waste but also from the recovery of valuable products. The present paper relates to processes for the recovery of valuable products from the kerf slurry waste in which they are contained, such products comprising nanoparticles, polyethylene glycol, high purity silicon, and silicon carbide.

Keywords: photovoltaic cell, Kerf slurry waste, recycling, silicon carbide

Procedia PDF Downloads 328
12174 Environmental and Health Risks Associated with Dental Waste Management: A Review

Authors: Y. Y. Babanyara, B. A. Gana, T. Garba, M. A. Batari

Abstract:

Proper management of dental waste is a crucial issue for maintaining human health and the environment. The waste generated in the dental clinics has the potential for spreading infections and causing diseases, so improper disposal of these dental wastes can cause harm to the dentist, the people in immediate vicinity of the dentist, waste handlers, general public and the environment through production of toxins or as by-products of the destruction process. Staff that provide dental healthcare ought to be aware of the proper handling and the system of management of dental waste used by different dental hospitals. The method of investigation adopted in the paper involved a desk study in which documents and records relating to dental waste handling were studied to obtain background information on existing dental waste management in Nigeria other countries of the world are also mentioned as examples. Additionally, information on generation, handling, segregation, risk associated during handling and treatment of dental medical waste were sought in order to determine the best method for safe disposal. This article provides dentists with the information they need to properly dispose of mercury and amalgam waste, and provides suggestions for managing the other wastes that result from the day-to-day activities of a dental office such as: used X-ray fixers and developers; cleaners for X-ray developer systems; lead foils, shields and aprons; chemiclave/chemical sterilant solutions; disinfectants, cleaners, and other chemicals; and, general office waste. Additionally, this study may be beneficial for authorities and researchers of developing countries to work towards improving their present dental waste management system.

Keywords: clinic, dental, disposal, environment, waste management

Procedia PDF Downloads 317
12173 Household Knowledge, Attitude, and Determinants in Solid Waste Segregation: The Case of Sfax City

Authors: Leila Kharrat, Younes Boujelbene

Abstract:

In recent decades, solid waste management (SWM) has become a global concern because rapid population growth and overexploitation of non-renewable resources have generated enormous amounts of waste far exceeding carrying capacity; too, it poses serious threats to the environment and health. However, it is still difficult to combat the growing amount of solid waste before assessing the condition of people. Therefore, this study was conducted to assess the knowledge, attitudes, perception, and practices on the separation of solid waste in Sfax City. Nowadays, GDS is essential for sustainable development, hence the need for intensive research. Respondents from seven different districts in the city of Sfax were analyzed through a questionnaire survey with 342 households. This paper presents a qualitative exploratory study on the behavior of the citizens in the field of waste separation. The objective knows the antecedents of waste separation and the representation that individuals have about sorting waste on a specific territory which presents some characteristics regarding waste management in Sfax city. Source separation is not widely practiced and people usually sweep their places throwing waste components into the streets or neighboring plots. The results also indicate that participation in solid waste separation activities depends on the level of awareness of separating activities in the area, household income and educational level. It is, therefore, argued that increasing quality of municipal service is the best means of promoting positive attitudes to solid waste separation activities. One of the effective strategies identified by households that can be initiated by policymakers to increase the rate of participation in separation activities and eventually encourage them to participate in recycling activities is to provide a financial incentive in all residential areas in Sfax city.

Keywords: solid waste management, waste separation, public policy, econometric modelling

Procedia PDF Downloads 234
12172 Level of Knowledge, Attitude, Perceived Behavior Control, Subjective Norm and Behavior of Household Solid Waste towards Zero Waste Management among Malaysian Consumer

Authors: M. J. Zuroni, O. Syuhaily, M. A. Afida Mastura, M. S. Roslina, A. K. Nurul Aini

Abstract:

The impact of country development has caused an increase of solid waste. The increase in population causes of excess usage thus effecting the sustainable environment. Zero waste management involves maximizing practices of recycling and minimizing residual waste. This paper seeks to analyze the relationship between knowledge, attitude, perceived behavior control, subjective norm and behavior of household solid waste towards household solid waste management among urban households in 8 states that have been implemented and enforced regulations under the Solid Waste Management and Public Cleansing Act 2007 (Act 672) in Malaysia. A total of respondents are 605 and we used a purposive sampling for location and simple sampling for sample size. Data collected by using self-administered questionnaire and were analyzed using SPSS software. The Pearson Correlation Test is to examine the relationship between four variables. Results show that knowledge scores are high because they have an awareness of the importance of managing solid waste. For attitude, perceived behavior control, subjective norm and behavioral scores at a moderate level in solid waste management activities. The findings show that there is a significant relationship between knowledge and behavior of household solid waste (r = 0.136 **, p = 0.001), there is a significant relationship between attitude and behavior (r = 0.238 **, p = 0.000), there is a significant relationship between perceived behavior control and behavior (r = 0.516 **, p = 0.000) and there is a significant relationship between subjective norm and behavior (r = 0.494 **, p = 0.000). The conclusion is that there is a relationship between knowledge, attitude, perceived behavior control and subjective norm toward the behavior of household solid waste management. Therefore, in the findings of the study, all parties including the government should work together to enhance the knowledge, attitude, perceived behavior control and behavior of household solid waste management in other states that have not implemented and enforced regulations under the Solid Waste and Public Cleansing Management Act 2007 (Act 672).

Keywords: solid waste management, knowledge, attitude, perceived behavior control, subjective norm, behavior

Procedia PDF Downloads 331
12171 Managing the Baltic Sea Region Resilience: Prevention, Treatment Actions and Circular Economy

Authors: J. Burlakovs, Y. Jani, L. Grinberga, M. Kriipsalu, O. Anne, I. Grinfelde, W. Hogland

Abstract:

The worldwide future sustainable economies are oriented towards the sea: the maritime economy is becoming one of the strongest driving forces in many regions as population growth is the highest in coastal areas. For hundreds of years sea resources were depleted unsustainably by fishing, mining, transportation, tourism, and waste. European Sustainable Development Strategy is identifying and developing actions to enable the EU to achieve a continuous, long-term improvement of the quality of life through the creation of sustainable communities. The aim of this paper is to provide insight in Baltic Sea Region case studies on implemented actions on tourism industry waste and beach wrack management in coastal areas, hazardous contaminants and plastic flow treatment from waste, wastewaters and stormwaters. These projects mentioned in study promote successful prevention of contaminant flows to the sea environments and provide perspectives for creation of valuable new products from residuals for future circular economy are the step forward to green innovation winning streak.

Keywords: resilience, hazardous waste, phytoremediation, water management, circular economy

Procedia PDF Downloads 172
12170 INNPT Nano Particles Material Technology as Enhancement Technology for Biological WWTP Performance and Capacity

Authors: Medhat Gad

Abstract:

Wastewater treatment became a big issue in this decade due to shortage of water resources, growth of population and modern live requirements. Reuse of treated wastewater in industrial and agriculture sectors has a big demand to substitute the shortage of clean water supply as well as to save the eco system from dangerous pollutants in insufficient treated wastewater In last decades, most of wastewater treatment plants are built using primary or secondary biological treatment technology which almost does not provide enough treatment and removal of phosphorus and nitrogen. those plants which built ten to 15 years ago also now suffering from overflow which decrease the treatment efficiency of the plant. Discharging treated wastewater which contains phosphorus and nitrogen to water reservoirs and irrigation canals destroy ecosystem and aquatic life. Using chemical material to enhance treatment efficiency for domestic wastewater but it leads to huge amount of sludge which cost a lot of money. To enhance wastewater treatment, we used INNPT nano material which consists of calcium, aluminum and iron oxides and compounds plus silica, sodium and magnesium. INNPT nano material used with a dose of 100 mg/l to upgrade SBR treatment plant in Cairo Egypt -which has three treatment tanks each with a capacity of 2500 cubic meters per day - to tertiary treatment level by removing Phosphorus, Nitrogen and increase dissolved oxygen in final effluent. The results showed that the treatment retention time decreased from 9 hours in SBR system to one hour using INNPT nano material with improvement in effluent quality while increasing plant capacity to 20 k cubic meters per day. Nitrogen removal efficiency achieved 77%, while phosphorus removal efficiency achieved 90% and COD removal efficiency was 93% which all comply with tertiary treatment limits according to Egyptian law.

Keywords: INNPT technology, nanomaterial, tertiary wastewater treatment, capacity extending

Procedia PDF Downloads 162
12169 Effect of Surface Treatment on Physico-Mechanical Properties of Sisal Fiber-Unsaturated Polyester Composites

Authors: A. H. Birniwa, A. A. Salisu, M. Y. Yakasai, A. Sabo, K. Aujara, A. Isma’il

Abstract:

Sisal fibre was extracted from Sisal leaves by enzymatic retting method. A portion of the fibre was subjected to treatment with alkali, benzoyl chloride and silane compounds. Sisal fibre composites were fabricated using unsaturated polyester resin, by hand lay-up technique using both the treated and untreated fibre. Tensile, flexural and water absorption tests were conducted and evaluated on the composites. The results obtained were found to increase in the treated fibre compared to untreated fibre. Surface morphology of the fibre was observed using scanning electron microscopy (SEM) and the result obtained showed variation in the morphology of the treated and untreated fibre. FT-IR results showed inclusion of benzoyl and silane groups on the fibre surface. The fibre chemical modification improves its adhesion to the matrix, mechanical properties of the composites were also found to improve.

Keywords: composite, flexural strength, matrix, sisal fibre

Procedia PDF Downloads 393