Search results for: metal ion detection
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5807

Search results for: metal ion detection

1187 Development and Validation of HPLC Method on Determination of Acesulfame-K in Jelly Drink Product

Authors: Candra Irawan, David Yudianto, Ahsanu Nadiyya, Dewi Anna Br Sitepu, Hanafi, Erna Styani

Abstract:

Jelly drink was produced from a combination of both natural and synthetic materials, such as acesulfame potassium (acesulfame-K) as synthetic sweetener material. Acesulfame-K content in jelly drink could be determined by High-Performance Liquid Chromatography (HPLC), but this method needed validation due to having a change on the reagent addition step which skips the carrez addition and comparison of mix mobile phase (potassium dihydrogen phosphate and acetonitrile) with ratio from 75:25 to 90:10 to be more efficient and cheap. This study was conducted to evaluate the performance of determination method for acesulfame-K content in the jelly drink by HPLC. The method referred to Deutsches Institut fur Normung European Standard International Organization for Standardization (DIN EN ISO):12856 (1999) about Foodstuffs, Determination of acesulfame-K, aspartame and saccharin. The result of the correlation coefficient value (r) on the linearity test was 0.9987 at concentration range 5-100 mg/L. Detection limit value was 0.9153 ppm, while the quantitation limit value was 1.1932 ppm. The recovery (%) value on accuracy test for sample concentration by spiking 100 mg/L was 102-105%. Relative Standard Deviation (RSD) value for precision and homogenization tests were 2.815% and 4.978%, respectively. Meanwhile, the comparative and stability tests were tstat (0.136) < ttable (2.101) and |µ1-µ2| (1.502) ≤ 0.3×CV Horwitz. Obstinacy test value was tstat < ttable. It can be concluded that the HPLC  method for the determination of acesulfame-K in jelly drink product by HPLC has been valid and can be used for analysis with good performance.

Keywords: acesulfame-K, jelly drink, HPLC, validation

Procedia PDF Downloads 129
1186 Phase Composition Analysis of Ternary Alloy Materials for Gas Turbine Applications

Authors: Mayandi Ramanathan

Abstract:

Gas turbine blades see the most aggressive thermal stress conditions within the engine, due to high Turbine Entry Temperatures in the range of 1500 to 1600°C. The blades rotate at very high rotation rates and remove a significant amount of thermal power from the gas stream. At high temperatures, the major component failure mechanism is a creep. During its service over time under high thermal loads, the blade will deform, lengthen and rupture. High strength and stiffness in the longitudinal direction up to elevated service temperatures are certainly the most needed properties of turbine blades and gas turbine components. The proposed advanced Ti alloy material needs a process that provides a strategic orientation of metallic ordering, uniformity in composition and high metallic strength. The chemical composition of the proposed Ti alloy material (25% Ta/(Al+Ta) ratio), unlike Ti-47Al-2Cr-2Nb, has less excess Al that could limit the service life of turbine blades. Properties and performance of Ti-47Al-2Cr-2Nb and Ti-6Al-4V materials will be compared with that of the proposed Ti alloy material to generalize the performance metrics of various gas turbine components. This paper will involve the summary of the effects of additive manufacturing and heat treatment process conditions on the changes in the phase composition, grain structure, lattice structure of the material, tensile strength, creep strain rate, thermal expansion coefficient and fracture toughness at different temperatures. Based on these results, additive manufacturing and heat treatment process conditions will be optimized to fabricate turbine blade with Ti-43Al matrix alloyed with an optimized amount of refractory Ta metal. Improvement in service temperature of the turbine blades and corrosion resistance dependence on the coercivity of the alloy material will be reported. A correlation of phase composition and creep strain rate will also be discussed.

Keywords: high temperature materials, aerospace, specific strength, creep strain, phase composition

Procedia PDF Downloads 117
1185 Improved Classification Procedure for Imbalanced and Overlapped Situations

Authors: Hankyu Lee, Seoung Bum Kim

Abstract:

The issue with imbalance and overlapping in the class distribution becomes important in various applications of data mining. The imbalanced dataset is a special case in classification problems in which the number of observations of one class (i.e., major class) heavily exceeds the number of observations of the other class (i.e., minor class). Overlapped dataset is the case where many observations are shared together between the two classes. Imbalanced and overlapped data can be frequently found in many real examples including fraud and abuse patients in healthcare, quality prediction in manufacturing, text classification, oil spill detection, remote sensing, and so on. The class imbalance and overlap problem is the challenging issue because this situation degrades the performance of most of the standard classification algorithms. In this study, we propose a classification procedure that can effectively handle imbalanced and overlapped datasets by splitting data space into three parts: nonoverlapping, light overlapping, and severe overlapping and applying the classification algorithm in each part. These three parts were determined based on the Hausdorff distance and the margin of the modified support vector machine. An experiments study was conducted to examine the properties of the proposed method and compared it with other classification algorithms. The results showed that the proposed method outperformed the competitors under various imbalanced and overlapped situations. Moreover, the applicability of the proposed method was demonstrated through the experiment with real data.

Keywords: classification, imbalanced data with class overlap, split data space, support vector machine

Procedia PDF Downloads 308
1184 Artificial Intelligence-Based Thermal Management of Battery System for Electric Vehicles

Authors: Raghunandan Gurumurthy, Aricson Pereira, Sandeep Patil

Abstract:

The escalating adoption of electric vehicles (EVs) across the globe has underscored the critical importance of advancing battery system technologies. This has catalyzed a shift towards the design and development of battery systems that not only exhibit higher energy efficiency but also boast enhanced thermal performance and sophisticated multi-material enclosures. A significant leap in this domain has been the incorporation of simulation-based design optimization for battery packs and Battery Management Systems (BMS), a move further enriched by integrating artificial intelligence/machine learning (AI/ML) approaches. These strategies are pivotal in refining the design, manufacturing, and operational processes for electric vehicles and energy storage systems. By leveraging AI/ML, stakeholders can now predict battery performance metrics—such as State of Health, State of Charge, and State of Power—with unprecedented accuracy. Furthermore, as Li-ion batteries (LIBs) become more prevalent in urban settings, the imperative for bolstering thermal and fire resilience has intensified. This has propelled Battery Thermal Management Systems (BTMs) to the forefront of energy storage research, highlighting the role of machine learning and AI not just as tools for enhanced safety management through accurate temperature forecasts and diagnostics but also as indispensable allies in the early detection and warning of potential battery fires.

Keywords: electric vehicles, battery thermal management, industrial engineering, machine learning, artificial intelligence, manufacturing

Procedia PDF Downloads 97
1183 Using Autoencoder as Feature Extractor for Malware Detection

Authors: Umm-E-Hani, Faiza Babar, Hanif Durad

Abstract:

Malware-detecting approaches suffer many limitations, due to which all anti-malware solutions have failed to be reliable enough for detecting zero-day malware. Signature-based solutions depend upon the signatures that can be generated only when malware surfaces at least once in the cyber world. Another approach that works by detecting the anomalies caused in the environment can easily be defeated by diligently and intelligently written malware. Solutions that have been trained to observe the behavior for detecting malicious files have failed to cater to the malware capable of detecting the sandboxed or protected environment. Machine learning and deep learning-based approaches greatly suffer in training their models with either an imbalanced dataset or an inadequate number of samples. AI-based anti-malware solutions that have been trained with enough samples targeted a selected feature vector, thus ignoring the input of leftover features in the maliciousness of malware just to cope with the lack of underlying hardware processing power. Our research focuses on producing an anti-malware solution for detecting malicious PE files by circumventing the earlier-mentioned shortcomings. Our proposed framework, which is based on automated feature engineering through autoencoders, trains the model over a fairly large dataset. It focuses on the visual patterns of malware samples to automatically extract the meaningful part of the visual pattern. Our experiment has successfully produced a state-of-the-art accuracy of 99.54 % over test data.

Keywords: malware, auto encoders, automated feature engineering, classification

Procedia PDF Downloads 73
1182 The Identification of Combined Genomic Expressions as a Diagnostic Factor for Oral Squamous Cell Carcinoma

Authors: Ki-Yeo Kim

Abstract:

Trends in genetics are transforming in order to identify differential coexpressions of correlated gene expression rather than the significant individual gene. Moreover, it is known that a combined biomarker pattern improves the discrimination of a specific cancer. The identification of the combined biomarker is also necessary for the early detection of invasive oral squamous cell carcinoma (OSCC). To identify the combined biomarker that could improve the discrimination of OSCC, we explored an appropriate number of genes in a combined gene set in order to attain the highest level of accuracy. After detecting a significant gene set, including the pre-defined number of genes, a combined expression was identified using the weights of genes in a gene set. We used the Principal Component Analysis (PCA) for the weight calculation. In this process, we used three public microarray datasets. One dataset was used for identifying the combined biomarker, and the other two datasets were used for validation. The discrimination accuracy was measured by the out-of-bag (OOB) error. There was no relation between the significance and the discrimination accuracy in each individual gene. The identified gene set included both significant and insignificant genes. One of the most significant gene sets in the classification of normal and OSCC included MMP1, SOCS3 and ACOX1. Furthermore, in the case of oral dysplasia and OSCC discrimination, two combined biomarkers were identified. The combined genomic expression achieved better performance in the discrimination of different conditions than in a single significant gene. Therefore, it could be expected that accurate diagnosis for cancer could be possible with a combined biomarker.

Keywords: oral squamous cell carcinoma, combined biomarker, microarray dataset, correlated genes

Procedia PDF Downloads 425
1181 Effects of Different Thermal Processing Routes and Their Parameters on the Formation of Voids in PA6 Bonded Aluminum Joints

Authors: Muhammad Irfan, Guillermo Requena, Jan Haubrich

Abstract:

Adhesively bonded aluminum joints are common in automotive and aircraft industries and are one of the enablers of lightweight construction to minimize the carbon emissions during transportation for a sustainable life. This study is focused on the effects of two thermal processing routes, i.e., by direct and induction heating, and their parameters on void formation in PA6 bonded aluminum EN-AW6082 joints. The joints were characterized microanalytically as well as by lap shear experiments. The aging resistance of the joints was studied by accelerated aging tests at 80°C hot water. It was found that the processing of single lap joints by direct heating in a convection oven causes the formation of a large number of voids in the bond line. The formation of voids in the convection oven was due to longer processing times and was independent of any surface pretreatments of the metal as well as the processing temperature. However, when processing at low temperatures, a large number of small-sized voids were observed under the optical microscope, and they were larger in size but reduced in numbers at higher temperatures. An induction heating process was developed, which not only successfully reduced or eliminated the voids in PA6 bonded joints but also reduced the processing times for joining significantly. Consistent with the trend in direct heating, longer processing times and higher temperatures in induction heating also led to an increased formation of voids in the bond line. Subsequent single lap shear tests revealed that the increasing void contents led to a 21% reduction in lap shear strengths (i.e., from ~47 MPa for induction heating to ~37 MPa for direct heating). Also, there was a 17% reduction in lap shear strengths when the consolidation temperature was raised from 220˚C to 300˚C during induction heating. However, below a certain threshold of void contents, there was no observable effect on the lap shear strengths as well as on hydrothermal aging resistance of the joints consolidated by the induction heating process.

Keywords: adhesive, aluminium, convection oven, induction heating, mechanical properties, nylon6 (PA6), pretreatment, void

Procedia PDF Downloads 123
1180 Investigation of Correlation Between Radon Concentration and Metals in Produced Water from Oilfield Activities

Authors: Nacer Hamza

Abstract:

Naturally radiation exposure that present due to the cosmic ray or the naturel occurring radioactives materials(NORMs) that originated in the earth's crust and are present everywhere in the environment(1) , a significant concentration of NORMs reported in the produced water which comes out during the oil extraction process, so that the management of this produced water is a challenge for oil and gas companies which include either minimization of produced water which considered as the best way in the term of environment based in the fact that ,the lower water produced the lower cost in treating this water , recycling and reuse by reinjected produced water that fulfills some requirements to enhance oil recovery or disposal in the case that the produced water cannot be minimize or reuse. In the purpose of produced water management, the investigation of NORMs activity concentration present in it considered as the main step for more understanding of the radionuclide’s distribution. Many studies reported the present of NORMs in produced water and investigated the correlation between 〖Ra〗^226and the different metals present in produced water(2) including Cations and anions〖Na〗^+,〖Cl〗^-, 〖Fe〗^(2+), 〖Ca〗^(2+) . and lead, nickel, zinc, cadmium, and copper commonly exist as heavy metal in oil and gas field produced water(3). However, there are no real interesting to investigate the correlation between 〖Rn〗^222and the different metals exist in produced water. methods using, in first to measure the radon concentration activity in produced water samples is a RAD7 .RAD7 is a radiometer instrument based on the solid state detectors(4) which is a type of semi-conductor detector for alpha particles emitting from Rn and their progenies, in second the concentration of different metals presents in produced water measure using an atomic absorption spectrometry AAS. Then to investigate the correlation between the 〖Rn〗^222concentration activity and the metals concentration in produced water a statistical method is Pearson correlation analysis which based in the correlation coefficient obtained between the 〖Rn〗^222 and metals. Such investigation is important to more understanding how the radionuclides act in produced water based on this correlation with metals , in first due to the fact that 〖Rn〗^222decays through the sequence 〖Po〗^218, 〖Pb〗^214, 〖Bi〗^214, 〖Po〗^214, and〖Pb〗^210, those daughters are metals thus they will precipitate with metals present in produced water, secondly the short half-life of 〖Rn〗^222 (3.82 days) lead to faster precipitation of its progenies with metals in produced water.

Keywords: norms, radon concentration, produced water, heavy metals

Procedia PDF Downloads 150
1179 A Functional Correlate of the Two Polarities of Depressive Experience Model

Authors: Jaime R. Silva, Gabriel E. Reyes, Marianne Krause

Abstract:

Background: The two-polarity model of the depressive personality argues that experience is organized around two axes: interpersonal relatedness and self-definition. Differential emphasis on one of these poles defines three types of depressive experience: Anaclitic, Introjective or Mixed pattern. On the one hand, Anaclitic pattern has been conceptually related with exaggerated biological stress sensitivity. On the other hand, the Introjective pattern was linked with anhedonic symptomatology. The general aim of the study was to find empirical support for this relationship. Methods: 101 non-clinical individuals participated in two experimental sessions. During the first session, the biological stress reactivity (cortisol concentration in saliva) and the subjective stress perceived (self-reported) during the Trier Social Stress Test (TSST), were investigated. In the second session, a visual discrimination task with a specific reward system, to study the reinforcement sensitivity (anhedonia), was performed. Results: Results evidenced that participants with Introjective depressive symptoms showed a higher interpersonal sensitivity and a diminished sensitivity to reinforcement. In addition, results also indicated that such a group has a poor psychological detection of its exacerbated reactivity to stress, which is the opposite pattern evidenced amongst the Anaclitic group. Conclusions: In perspective, these results empirically support the two-polarity of the depressive personality model. Clinical implications are discussed.

Keywords: depression, interpersonal stress, personality, trier social stress test

Procedia PDF Downloads 251
1178 Virtual Prototyping of LED Chip Scale Packaging Using Computational Fluid Dynamic and Finite Element Method

Authors: R. C. Law, Shirley Kang, T. Y. Hin, M. Z. Abdullah

Abstract:

LED technology has been evolving aggressively in recent years from incandescent bulb during older days to as small as chip scale package. It will continue to stay bright in future. As such, there is tremendous pressure to stay competitive in the market by optimizing products to next level of performance and reliability with the shortest time to market. This changes the conventional way of product design and development to virtual prototyping by means of Computer Aided Engineering (CAE). It comprises of the deployment of Finite Element Method (FEM) and Computational Fluid Dynamic (CFD). FEM accelerates the investigation for early detection of failures such as crack, improve the thermal performance of system and enhance solder joint reliability. CFD helps to simulate the flow pattern of molding material as a function of different temperature, molding parameters settings to evaluate failures like voids and displacement. This paper will briefly discuss the procedures and applications of FEM in thermal stress, solder joint reliability and CFD of compression molding in LED CSP. Integration of virtual prototyping in product development had greatly reduced the time to market. Many successful achievements with minimized number of evaluation iterations required in the scope of material, process setting, and package architecture variant have been materialized with this approach.

Keywords: LED, chip scale packaging (CSP), computational fluid dynamic (CFD), virtual prototyping

Procedia PDF Downloads 287
1177 Impact of Joule Heating on the Electrical Conduction Behavior of Carbon Composite Laminates under Simulated Lightning Strike

Authors: Hong Yu, Dirk Heider, Suresh Advani

Abstract:

Increasing demands for high strength and lightweight materials in aircraft industry prompted the wide use of carbon composites in recent decades. Carbon composite laminates used on aircraft structures are subject to lightning strikes. Unlike its metal/alloy counterparts, carbon fiber reinforced composites demonstrate smaller electrical conductivity, yielding more severe damages due to Joule heating. The anisotropic nature of composite laminates makes the electrical and thermal conduction within carbon composite laminates even more complicated. Good understanding of the electrical conduction behavior of carbon composites is the key to effective lightning protection design. The goal of this study is to numerically and experimentally investigate the impact of ultra-high temperature induced by simulated lightning strike on the electrical conduction of carbon composites. A lightning simulator is designed to apply standard lightning current waveform to composite laminates. Multiple carbon composite laminates made from IM7 and AS4 carbon fiber are tested and the transient resistance data is recorded. A microstructure based resistor network model is developed to describe the electrical and thermal conduction behavior, with consideration of temperature dependent material properties. Material degradations such as thermal and electrical breakdown are also modeled to include the effect of high current and high temperature induced by lightning strikes. Good match between the simulation results and experimental data indicates that the developed model captures the major conduction mechanisms. A parametric study is then conducted using the validated model to investigate the effect of system parameters such as fiber volume fraction, inter-ply interface quality, and lightning current waveforms.

Keywords: carbon composite, joule heating, lightning strike, resistor network

Procedia PDF Downloads 228
1176 Electrochemistry Analysis of Oxygen Reduction with Microalgal on Microbial Fuel Cell

Authors: Azri Yamina Mounia, Zitouni Dalila, Aziza Majda, Tou Insaf, Sadi Meriem

Abstract:

To confront the fossil fuel crisis and the consequences of global warning, many efforts were devoted to develop alternative electricity generation and attracted numerous researchers, especially in the microbial fuel cell field, because it allows generating electric energy and degrading multiple organics compounds at the same time. However, one of the main constraints on power generation is the slow rate of oxygen reduction at the cathode electrode. This paper describes the potential of algal biomass (Chlorella vulgaris) as photosynthetic cathodes, eliminating the need for a mechanical air supply and the use of often expensive noble metal cathode catalysts, thus improving the sustainability and cost-effectiveness of the MFC system. During polarizations, MFC power density using algal biomass was 0.4mW/m², whereas the MFC with mechanic aeration showed a value of 0.2mW/m². Chlorella vulgaris was chosen due to its fastest growing. C. vulgaris grown in BG11 medium in sterilized Erlenmeyer flask. C. vulgaris was used as a bio‐cathode. Anaerobic activated sludge from the plant of Beni‐Messous WWTP(Algiers) was used in an anodic compartment. A dual‐chamber reactor MFC was used as a reactor. The reactor has been fabricated in the laboratory using plastic jars. The cylindrical and rectangular jars were used as the anode and cathode chambers, respectively. The volume of anode and cathode chambers was 0.8 and 2L, respectively. The two chambers were connected with a proton exchange membrane (PEM). The plain graphite plates (5 x 2cm) were used as electrodes for both anode and cathode. The cyclic voltammetry analysis of oxygen reduction revealed that the cathode potential was proportional to the amount of oxygen available in the cathode surface electrode. In the case of algal aeration, the peak reduction value of -2.18A/m² was two times higher than in mechanical aeration -1.85A/m². The electricity production reached 70 mA/m² and was stimulated immediately by the oxygen produced by algae up to the value of 20 mg/L.

Keywords: Chlorella vulgaris, cyclic voltammetry, microbial fuel cell, oxygen reduction

Procedia PDF Downloads 63
1175 Risk Factors for High Resistance of Ciprofloxacin Against Escherichia coli in Complicated Urinary Tract Infection

Authors: Liaqat Ali, Khalid Farooq, Shafieullah Khan, Nasir Orakzai, Qudratullah

Abstract:

Objectives: To determine the risk factors for high resistance of ciprofloxacin in complicated urinary tract infections. Materials and Methods: It is an analytical study that was conducted in the department of Urology (Team ‘C’) at Institute of Kidney Diseases Hayatabad Peshawar from 1st June 2012 till 31st December 2012. Total numbers of 100 patients with complicated UTI was selected in the study. Multivariate analysis and linear regression were performed for the detection of risk factors. All the data was recorded on structured Proforma and was analyzed on SPSS version 17. Results: The mean age of the patient was 55.6 years (Range 3-82 years). 62 patients were male while 38 patients were female. 66 isolates of E-Coli were found sensitive to ciprofloxacin while 34 isolates were found Resistant for ciprofloxacin. Using multivariate analysis and linear regression, an increasing age above 50 (p=0.002) History of urinary catheterization especially for bladder outflow obstruction (p=0.001) and previous multiple use of ciprofloxacin (p=0.001) and poor brand of ciprofloxacin were found to be independent risk factors for high resistance of ciprofloxacin. Conclusion: UTI is common illness across the globe with increasing trend of antimicrobial resistance for ciprofloxacin against E Coli in complicated UTI. The risk factors for emerging resistance are increasing age, urinary catheterization and multiple use and poor brand of ciprofloxacin.

Keywords: urinary tract infection, ciprofloxacin, urethral catheterization, antimicrobial resistance

Procedia PDF Downloads 354
1174 Comet Assay: A Promising Tool for the Risk Assessment and Clinical Management of Head and Neck Tumors

Authors: Sarim Ahmad

Abstract:

The Single Cell Gel Electrophoresis Assay (SCGE, known as comet assay) is a potential, uncomplicated, sensitive and state-of-the-art technique for quantitating DNA damage at individual cell level and repair from in vivo and in vitro samples of eukaryotic cells and some prokaryotic cells, being popular in its widespread use in various areas including human biomonitoring, genotoxicology, ecological monitoring and as a tool for research into DNA damage or repair in different cell types in response to a range of DNA damaging agents, cancer risk and therapy. The method involves the encapsulation of cells in a low-melting-point agarose suspension, lysis of the cells in neutral or alkaline (pH > 13) conditions, and electrophoresis of the suspended lysed cells, resulting in structures resembling comets as observed by fluorescence microscopy; the intensity of the comet tail relative to the head reflects the number of DNA breaks. The likely basis for this is that loops containing a break lose their supercoiling and become free to extend towards the anode. This is followed by visual analysis with staining of DNA and calculating fluorescence to determine the extent of DNA damage. This can be performed by manual scoring or automatically by imaging software. The assay can, therefore, predict an individual’s tumor sensitivity to radiation and various chemotherapeutic drugs and further assess the oxidative stress within tumors and to detect the extent of DNA damage in various cancerous and precancerous lesions of oral cavity.

Keywords: comet assay, single cell gel electrophoresis, DNA damage, early detection test

Procedia PDF Downloads 292
1173 Investigation of Rifampicin and Isoniazid Resistance Mutated Genes in Mycobacterium Tuberculosis Isolated From Patients

Authors: Seyyed Mohammad Amin Mousavi Sagharchi, Alireza Mahmoudi Nasab, Tim Bakker

Abstract:

Introduction: Mycobacterium tuberculosis (MTB) is the most intelligent bacterium that existed in the world to our best knowledge. This bacterium can cause tuberculosis (TB) which is responsible for its spread speed and murder of millions of people around the world. MTB has the practical function to escape from anti-tuberculosis drugs (AT), for this purpose, it handles some mutations in the main genes and creates new patterns for inhibited genes. Method and materials: Researchers have their best tries to safely isolate MTB from the sputum specimens of 35 patients in some hospitals in the Tehran province and detect MTB by culture on Löwenstein-Jensen (LJ) medium and microscopic examination. DNA was extracted from the established bacterial colony by enzymatic extraction method. It was amplified by the polymerase chain reaction (PCR) method, reverse hybridization, and evaluation for detection of resistance genes; generally, researchers apply GenoType MTBDRplus assay. Results: Investigations of results declare us that 21 of the isolated specimens (about 60%) have mutation in rpoB gene, which resisted to rifampicin (most prevalence), and 8 of them (about 22.8%) have mutation in katG or inhA genes which resisted to isoniazid. Also, 4 of them (about 11.4%) don't have any mutation, and 2 of them (about 5.7%) have mutation in every three genes, which makes them resistant to the two drugs mentioned above. Conclusion: Rifampicin and isoniazid are two essential AT that using in the first line of treatment. Resistance in rpoB, and katG, and inhA genes related to mentioned drugs lead to ineffective treatment.

Keywords: mycobacterium tuberculosis, tuberculosis, drug resistance, isoniazid, rifampicin

Procedia PDF Downloads 97
1172 Unattended Crowdsensing Method to Monitor the Quality Condition of Dirt Roads

Authors: Matias Micheletto, Rodrigo Santos, Sergio F. Ochoa

Abstract:

In developing countries, the most roads in rural areas are dirt road. They require frequent maintenance since are affected by erosive events, such as rain or wind, and the transit of heavy-weight trucks and machinery. Early detection of damages on the road condition is a key aspect, since it allows to reduce the main-tenance time and cost, and also the limitations for other vehicles to travel through. Most proposals that help address this problem require the explicit participation of drivers, a permanent internet connection, or important instrumentation in vehicles or roads. These constraints limit the suitability of these proposals when applied into developing regions, like in Latin America. This paper proposes an alternative method, based on unattended crowdsensing, to determine the quality of dirt roads in rural areas. This method involves the use of a mobile application that complements the road condition surveys carried out by organizations in charge of the road network maintenance, giving them early warnings about road areas that could be requiring maintenance. Drivers can also take advantage of the early warnings while they move through these roads. The method was evaluated using information from a public dataset. Although they are preliminary, the results indicate the proposal is potentially suitable to provide awareness about dirt roads condition to drivers, transportation authority and road maintenance companies.

Keywords: dirt roads automatic quality assessment, collaborative system, unattended crowdsensing method, roads quality awareness provision

Procedia PDF Downloads 201
1171 Molecular Detection of Naegleria fowleri and Fecal Indicator Bacteria in Brackish Water of Lake Pontchartrain, Louisiana

Authors: Jia Xue, Frederica G. Lamar, Siyu Lin, Jennifer G. Lamori, Samendra Sherchan

Abstract:

Brackish water samples from Lake Pontchartrain in Louisiana were assessed for the presence of pathogenic amoeba Naegleria fowleri, which causes primary amoebic meningoencephalitis (PAM). In our study, quantitative polymerase chain reaction (qPCR) methods were used to determine N. fowleri, E. coli, and Enterococcus in water collected from Lake Pontchartrain. A total of 158 water samples were analyzed over the 10-month sampling period. Statistically significant positive correlation between water temperature and N. fowleri concentration was observed. N. fowleri target sequence was detected at 35.4% (56/158) of the water samples from ten sites around the Lake ranged from 11.6 GC/100 ml water to 457.8 GC/100 ml water. A single factor (ANOVA) analysis shows the average concentration of N. fowleri in summer (119.8 GC/100 ml) was significantly higher than in winter (58.6 GC/100 ml) (p < 0.01). Statistically significant positive correlations were found between N. fowleri and qPCR E. coli results and N. fowleri and colilert E. coli (culture method), respectively. A weak positive correlation between E. coli and Enterococcus was observed from both qPCR (r = 0.27, p < 0.05) and culture based method (r = 0.52, p < 0.05). Meanwhile, significant positive correlation between qPCR and culture based methods for E. coli (r = 0.30, p < 0.05) and Enterococcus concentration was observed (r = 0.26, p < 0.05), respectively. Future research is needed to determine whether sediment is a source of N. fowleri found in the water column.

Keywords: brackish water, Escherichia coli, Enterococcus, Naegleria fowleri, primary amoebic meningoencephalitis (PAM), qPCR

Procedia PDF Downloads 161
1170 Detection of Internal Mold Infection of Intact Tomatoes by Non-Destructive, Transmittance VIS-NIR Spectroscopy

Authors: K. Petcharaporn

Abstract:

The external characteristics of tomatoes, such as freshness, color and size are typically used in quality control processes for tomatoes sorting. However, the internal mold infection of intact tomato cannot be sorted based on a visible assessment and destructive method alone. In this study, a non-destructive technique was used to predict the internal mold infection of intact tomatoes by using transmittance visible and near infrared (VIS-NIR) spectroscopy. Spectra for 200 samples contained 100 samples for normal tomatoes and 100 samples for mold infected tomatoes were acquired in the wavelength range between 665-955 nm. This data was used in conjunction with partial least squares-discriminant analysis (PLS-DA) method to generate a classification model for tomato quality between groups of internal mold infection of intact tomato samples. For this task, the data was split into two groups, 140 samples were used for a training set and 60 samples were used for a test set. The spectra of both normal and internally mold infected tomatoes showed different features in the visible wavelength range. Combined spectral pretreatments of standard normal variate transformation (SNV) and smoothing (Savitzky-Golay) gave the optimal calibration model in training set, 85.0% (63 out of 71 for the normal samples and 56 out of 69 for the internal mold samples). The classification accuracy of the best model on the test set was 91.7% (29 out of 29 for the normal samples and 26 out of 31 for the internal mold tomato samples). The results from this experiment showed that transmittance VIS-NIR spectroscopy can be used as a non-destructive technique to predict the internal mold infection of intact tomatoes.

Keywords: tomato, mold, quality, prediction, transmittance

Procedia PDF Downloads 363
1169 The Use of Remotely Sensed Data to Extract Wetlands Area in the Cultural Park of Ahaggar, South of Algeria

Authors: Y. Fekir, K. Mederbal, M. A. Hammadouche, D. Anteur

Abstract:

The cultural park of the Ahaggar, occupying a large area of Algeria, is characterized by a rich wetlands area to be preserved and managed both in time and space. The management of a large area, by its complexity, needs large amounts of data, which for the most part, are spatially localized (DEM, satellite images and socio-economic information...), where the use of conventional and traditional methods is quite difficult. The remote sensing, by its efficiency in environmental applications, became an indispensable solution for this kind of studies. Remote sensing imaging data have been very useful in the last decade in very interesting applications. They can aid in several domains such as the detection and identification of diverse wetland surface targets, topographical details, and geological features... In this work, we try to extract automatically wetlands area using multispectral remotely sensed data on-board the Earth Observing 1 (EO-1) and Landsat satellite. Both are high-resolution multispectral imager with a 30 m resolution. The instrument images an interesting surface area. We have used images acquired over the several area of interesting in the National Park of Ahaggar in the south of Algeria. An Extraction Algorithm is applied on the several spectral index obtained from combination of different spectral bands to extract wetlands fraction occupation of land use. The obtained results show an accuracy to distinguish wetlands area from the other lad use themes using a fine exploitation on spectral index.

Keywords: multispectral data, EO1, landsat, wetlands, Ahaggar, Algeria

Procedia PDF Downloads 378
1168 Optical Design and Modeling of Micro Light-Emitting Diodes for Display Applications

Authors: Chaya B. M., C. Dhanush, Inti Sai Srikar, Akula Pavan Parvatalu, Chirag Gowda R

Abstract:

Recently, there has been a lot of interest in µ-LED technology because of its exceptional qualities, including auto emission, high visibility, low consumption of power, rapid response and longevity. Light-emitting diodes (LED) using III-nitride, such as lighting sources, visible light communication (VLC) devices, and high-power devices, are finding increasing use as miniaturization technology advances. The use of micro-LED displays in place of traditional display technologies like liquid crystal displays (LCDs) and organic light-emitting diodes (OLEDs) is one of the most prominent recent advances, which may even represent the next generation of displays. The development of fully integrated, multifunctional devices and the incorporation of extra capabilities into micro-LED displays, such as sensing, light detection, and solar cells, are the pillars of advanced technology. Due to the wide range of applications for micro-LED technology, the effectiveness and dependability of these devices in numerous harsh conditions are becoming increasingly important. Enough research has been conducted to overcome the under-effectiveness of micro-LED devices. In this paper, different Micro LED design structures are proposed in order to achieve optimized optical properties. In order to attain improved external quantum efficiency (EQE), devices' light extraction efficiency (LEE) has also been boosted.

Keywords: finite difference time domain, light out coupling efficiency, far field intensity, power density, quantum efficiency, flat panel displays

Procedia PDF Downloads 80
1167 Statistical Design of Synthetic VP X-bar Control Chat Using Markov Chain Approach

Authors: Ali Akbar Heydari

Abstract:

Control charts are an important tool of statistical quality control. Thesecharts are used to detect and eliminate unwanted special causes of variation that occurred during aperiod of time. The design and operation of control charts require the determination of three design parameters: the sample size (n), the sampling interval (h), and the width coefficient of control limits (k). Thevariable parameters (VP) x-bar controlchart is the x-barchart in which all the design parameters vary between twovalues. These values are a function of the most recent process information. In fact, in the VP x-bar chart, the position of each sample point on the chart establishes the size of the next sample and the timeof its sampling. The synthetic x-barcontrol chartwhich integrates the x-bar chart and the conforming run length (CRL) chart, provides significant improvement in terms of detection power over the basic x-bar chart for all levels of mean shifts. In this paper, we introduce the syntheticVP x-bar control chart for monitoring changes in the process mean. To determine the design parameters, we used a statistical design based on the minimum out of control average run length (ARL) criteria. The optimal chart parameters of the proposed chart are obtained using the Markov chain approach. A numerical example is also done to show the performance of the proposed chart and comparing it with the other control charts. The results show that our proposed syntheticVP x-bar controlchart perform better than the synthetic x-bar controlchart for all shift parameter values. Also, the syntheticVP x-bar controlchart perform better than the VP x-bar control chart for the moderate or large shift parameter values.

Keywords: control chart, markov chain approach, statistical design, synthetic, variable parameter

Procedia PDF Downloads 155
1166 Microfabrication of Three-Dimensional SU-8 Structures Using Positive SPR Photoresist as a Sacrificial Layer for Integration of Microfluidic Components on Biosensors

Authors: Su Yin Chiam, Qing Xin Zhang, Jaehoon Chung

Abstract:

Complementary metal-oxide-semiconductor (CMOS) integrated circuits (ICs) have obtained increased attention in the biosensor community because CMOS technology provides cost-effective and high-performance signal processing at a mass-production level. In order to supply biological samples and reagents effectively to the sensing elements, there are increasing demands for seamless integration of microfluidic components on the fabricated CMOS wafers by post-processing. Although the PDMS microfluidic channels replicated from separately prepared silicon mold can be typically aligned and bonded onto the CMOS wafers, it remains challenging owing the inherently limited aligning accuracy ( > ± 10 μm) between the two layers. Here we present a new post-processing method to create three-dimensional microfluidic components using two different polarities of photoresists, an epoxy-based negative SU-8 photoresist and positive SPR220-7 photoresist. The positive photoresist serves as a sacrificial layer and the negative photoresist was utilized as a structural material to generate three-dimensional structures. Because both photoresists are patterned using a standard photolithography technology, the dimensions of the structures can be effectively controlled as well as the alignment accuracy, moreover, is dramatically improved (< ± 2 μm) and appropriately can be adopted as an alternative post-processing method. To validate the proposed processing method, we applied this technique to build cell-trapping structures. The SU8 photoresist was mainly used to generate structures and the SPR photoresist was used as a sacrificial layer to generate sub-channel in the SU8, allowing fluid to pass through. The sub-channel generated by etching the sacrificial layer works as a cell-capturing site. The well-controlled dimensions enabled single-cell capturing on each site and high-accuracy alignment made cells trapped exactly on the sensing units of CMOS biosensors.

Keywords: SU-8, microfluidic, MEMS, microfabrication

Procedia PDF Downloads 523
1165 Daily Variations of Particulate Matter (PM10) in Industrial Sites in an Suburban Area of Sour El Ghozlane, Algeria

Authors: Sidali Khedidji, Riad Ladji, Noureddine Yassaa

Abstract:

In this study, particulate matter (PM10) which are hazardous for environment and human health were investigated in Sour El Ghozlane suburban atmosphere at a sampling point from March 2013 to April 2013. Ambient concentration measurements of polycyclic aromatic hydrocarbons were carried out at a regional study of the cement industry in Sour El Ghozlane. During sampling, the airborne particulate matter was enriched onto PTFE filters by using a two medium volume samplers with or without a size-selective inlet for PM10 and TSP were used and each sampling period lasted approximately 24 h. The organic compounds were characterized using gas chromatography coupled with mass spectrometric detection (GC-MSD). Total concentrations for PAHs recorded in sour el ghozlane suburban ranged from 101 to 204 ng m-3. Gravimeter method was applied to the black smoke concentration data for Springer seasons. The 24 h average concentrations of PM10 and TSP of Sour El Ghozlane suburban atmosphere were found in the range 4.76–165.76 μg/m3 and 28.63–800.14 μg/m3, respectively, in the sampling period. Meteorological factors, such as (relative humidity and temperature) were typically found to be affecting PMs, especially PM10. Air temperature did not seem to be significantly affecting TSP and PM10 mass concentrations.The guide value fixed by the European Community «40 μg/m3» not to exceed 35 days, were exceeded in some samples. However, it should be noted that the value limit fixed by the Algerian regulations «80 μg/m3» has been exceeded in 3 samplers during the period study.

Keywords: PAHs, PM10, TSP, particulate matter, cement industry

Procedia PDF Downloads 378
1164 A Pipeline for Detecting Copy Number Variation from Whole Exome Sequencing Using Comprehensive Tools

Authors: Cheng-Yang Lee, Petrus Tang, Tzu-Hao Chang

Abstract:

Copy number variations (CNVs) have played an important role in many kinds of human diseases, such as Autism, Schizophrenia and a number of cancers. Many diseases are found in genome coding regions and whole exome sequencing (WES) is a cost-effective and powerful technology in detecting variants that are enriched in exons and have potential applications in clinical setting. Although several algorithms have been developed to detect CNVs using WES and compared with other algorithms for finding the most suitable methods using their own samples, there were not consistent datasets across most of algorithms to evaluate the ability of CNV detection. On the other hand, most of algorithms is using command line interface that may greatly limit the analysis capability of many laboratories. We create a series of simulated WES datasets from UCSC hg19 chromosome 22, and then evaluate the CNV detective ability of 19 algorithms from OMICtools database using our simulated WES datasets. We compute the sensitivity, specificity and accuracy in each algorithm for validation of the exome-derived CNVs. After comparison of 19 algorithms from OMICtools database, we construct a platform to install all of the algorithms in a virtual machine like VirtualBox which can be established conveniently in local computers, and then create a simple script that can be easily to use for detecting CNVs using algorithms selected by users. We also build a table to elaborate on many kinds of events, such as input requirement, CNV detective ability, for all of the algorithms that can provide users a specification to choose optimum algorithms.

Keywords: whole exome sequencing, copy number variations, omictools, pipeline

Procedia PDF Downloads 320
1163 Isolation and Molecular IdentıFıCation of Polyethylene Degrading Bacteria From Soil and Degradation Detection by FTIR Analysis

Authors: Morteza Haghi, Cigdem Yilmazbas, Ayse Zeynep Uysal, Melisa Tepedelen, Gozde Turkoz Bakirci

Abstract:

Today, the increase in plastic waste accumulation is an inescapable consequence of environmental pollution; the disposal of these wastes has caused a significant problem. Variable methods have been utilized; however, biodegradation is the most environmentally friendly and low-cost method. Accordingly, the present study aimed to isolate the bacteria capable of biodegradation of plastics. In doing so, we applied the liquid carbon-free basal medium (LCFBM) prepared with deionized water for the isolation of bacterial species obtained from soil samples taken from the Izmir Menemen region. Isolates forming biofilms on plastic were selected and named (PLB3, PLF1, PLB1B) and subjected to a degradation test. FTIR analysis, 16s rDNA amplification, sequencing, identification of isolates were performed. Finally, at the end of the process, a mass loss of 16.6% in PLB3 isolate and 25% in PLF1 isolate was observed, while no mass loss was detected in PLB1B isolate. Only PLF1 and PLB1B created transparent zones on plastic texture. Considering the FTIR result, PLB3 changed plastic structure by 13.6% and PLF1 by 17%, while PLB1B did not change the plastic texture. According to the 16s rDNA sequence analysis, FLP1, PLB1B, and PLB3 isolates were identified as Streptomyces albogriseolus, Enterobacter cloacae, and Klebsiella pneumoniae, respectively.

Keywords: polyethylene, biodegradation, bacteria, 16s rDNA, FTIR

Procedia PDF Downloads 203
1162 Behave Imbalances Comparative Checking of Children with and without Fathers between the Ages of 7 to 11 in Rasht

Authors: Farnoush Haghanipour

Abstract:

Objective: Father loss as one of the major stress factor, can causethe mental imbalances in children. It's clear that children's family condition of lacking a father is very clearly different from the condition of having a father. The goal of this research is to examine mental imbalances comparative checking in complete form and in five subsidiary categories as aggression, stress and depression, social incompatibility, anti-social behavior, and attention deficit imbalances (wackiness) do between children without father and normal ones. Method: This research is in descriptive and analytical method that reimburse to checking mental imbalances from 50 children that are student in one zone of Rasht’s education and nurture office. Material of this research is RATER behavior questionnaire (teacher form) and data analyses were did by SPSS software. Results: The results showed that there are clear different in relation with behavior imbalances between have father children and children without father and in children without a father behavior imbalance is more. Also showed that there is clearly a difference in aggression, stress, and depression and social incompatibility between children without and without fathers, and in children without a father the proportion increases. However, in antisocial behaviours and attention deficit imbalances there are not a clear difference between them. Conclusion: With upper amount of imbalance behaviour detection in children without fathers compared with children with fathers, it is essential that practitioners of society hygienic and remedy put efforts in order to primary and secondary prevention, for mental health of this group of society.

Keywords: child, behave imbalances, children without father, mental imbalances

Procedia PDF Downloads 257
1161 Characterization the Internal Corrosion Behavior by Using Natural Inhibitor in Crude Oil of Low Carbon Steel Pipeline

Authors: Iman Adnan Annon, Kadhim F. Alsultan

Abstract:

This study investigate the internal corrosion of low carbon steel pipelines in the crude oil, as well as prepare and use natural and locally available plant as a natural corrosion inhibiter, the nature extraction achieved by two types of solvents in order to show the solvent effect on inhibition process, the first being distilled water and the second is diethyl ether. FT-IR spectra and using a chemical reagents achieved to detection the presence of many active groups and the presence of tannins, phenols, and alkaloids in the natural extraction. Some experiments were achieved to estimate the performance of a new inhibitor, one of these tests include corrosion measurement by simple immersion in crude oil within and without inhibitors which added in different amounts 30,40,50and 60 ppm at tow temperature 300 and 323k, where the best inhibition efficiencies which get when added the inhibitors in a critical amounts or closest to it, since for the aqueous extract (EB-A) the inhibition efficiency reached (94.4) and (86.71)% at 300 and 323k respectively, and for diethyl ether extract (EB-D) reached (82.87) and (84.6)% at 300 and 323k respectively. Optical microscopy examination have been conducted to evaluate the corrosion nature where it show a clear difference in the topography of the immersed samples surface after add the inhibitors at two temperatures. The results show that the new corrosion inhibitor is not only equivalent to a chemical inhibitor but has greatly improvement properties such as: high efficiency, low cost, non-toxic, easily to produce, and nonpolluting as compared with chemical inhibitor.

Keywords: corrosion in pipeline, inhibitors, crude oil, carbon steel, types of solvent

Procedia PDF Downloads 140
1160 Feasibility Study on the Bioattactants from Pandanus Palm Extracts for Trapping Rice Insect Pests

Authors: Pisit Poolprasert, Phakin Kubchanan, Keerati Tanruean, Wisanu Thongchai, Yuttasak Chammui, Wirot Likittrakulwong

Abstract:

Rice insect pests are problems to rice production. Use of chemicals to minimize these problems of insect pests in paddy field can lead to the residue and affect the health of farmers. Therefore, botanical extracts applied for controlling rice serious enemies should be promoted especially use of plant extract as attractants to lure insects. This research aimed to feasibility study of bioattractants from pandanus palm extracts for trapping insect pets using two different trap models, including plastic bottle and yellow sticky traps. Two main growth and development stages of rice, namely tillering and booting stages, were selected and trapped. The results from both trap models revealed that four rice insect species, including Orseolia oryzae (Wood-Mason), Nilaparvata lugens, Recilia dorsalis, and Nephotettix nigropictus from three families (Cecidomyiidae, Cicadellidae and Delphacidae) and two main orders (Diptera and Hemiptera) were exhibited. All rice insect species mentioned could be found from the yellow sticky trap that were higher than in the bottle trap in which only O. oryzae could be only trapped. From this survey, it was indicated that the yellow sticky trap coated with pandanus palm extracts had a promising potential to use as an attractant for the detection of rice paddy insects in the next future.

Keywords: pandanus palm, bioattractant, bottle trap, yellow sticky trap

Procedia PDF Downloads 126
1159 Detection of Internal Mold Infection of Intact For Tomatoes by Non-Destructive, Transmittance VIS-NIR Spectroscopy

Authors: K. Petcharaporn, N. Prathengjit

Abstract:

The external characteristics of tomatoes, such as freshness, color and size are typically used in quality control processes for tomatoes sorting. However, the internal mold infection of intact tomato cannot be sorted based on a visible assessment and destructive method alone. In this study, a non-destructive technique was used to predict the internal mold infection of intact tomatoes by using transmittance visible and near infrared (VIS-NIR) spectroscopy. Spectra for 200 samples contained 100 samples for normal tomatoes and 100 samples for mold infected tomatoes were acquired in the wavelength range between 665-955 nm. This data was used in conjunction with partial least squares-discriminant analysis (PLS-DA) method to generate a classification model for tomato quality between groups of internal mold infection of intact tomato samples. For this task, the data was split into two groups, 140 samples were used for a training set and 60 samples were used for a test set. The spectra of both normal and internally mold infected tomatoes showed different features in the visible wavelength range. Combined spectral pretreatments of standard normal variate transformation (SNV) and smoothing (Savitzky-Golay) gave the optimal calibration model in training set, 85.0% (63 out of 71 for the normal samples and 56 out of 69 for the internal mold samples). The classification accuracy of the best model on the test set was 91.7% (29 out of 29 for the normal samples and 26 out of 31 for the internal mold tomato samples). The results from this experiment showed that transmittance VIS-NIR spectroscopy can be used as a non-destructive technique to predict the internal mold infection of intact tomatoes.

Keywords: tomato, mold, quality, prediction, transmittance

Procedia PDF Downloads 519
1158 Sources and Potential Ecological Risks of Heavy Metals in the Sediment Samples From Coastal Area in Ondo, Southwest Nigeria

Authors: Ogundele Lasun Tunde, Ayeku Oluwagbemiga Patrick

Abstract:

Heavy metals are released into the sediments in aquatic environment from both natural and anthropogenic sources and they are considered as worldwide issue due to their deleterious ecological risks and food chain disruption. In this study, sediments samples were collected at three major sites (Awoye, Abereke and Ayetoro) along Ondo coastal area using VanVeen grab sampler. The concentrations of As, Cd, Cr, Cu, Fe, Mn, Ni, Pb, V and Zn were determined by employing Atomic Absorption Spectroscopy (AAS). The combined concentrations data were subjected to Positive Matrix Factorization (PMF) receptor approach for source identification and apportionment. The probable risks that might be posed by heavy metals in the sediment were estimated by potential and integrated ecological risks indices. Among the measured heavy metals, Fe had the average concentrations of 20.38 ± 2.86, 23.56 ± 4.16 and 25.32 ± 4.83 lg/g at Abereke, Awoye and Ayetoro sites, respectively. The PMF resulted in identification of four sources of heavy metals in the sediments. The resolved sources and their percentage contributions were oil exploration (39%), industrial waste/sludge (35%), detrital process (18%) and Mn-sources (8%). Oil exploration activities and industrial wastes are the major sources that contribute heavy metals into the coastal sediments. The major pollutants that posed ecological risks to the local aquatic ecosystem are As, Pb, Cr and Cd (40 B Ei ≤ 80) classifying the sites as moderate risk. The integrate risks values of Awoye, Abereke and Ayetoro are 231.2, 234.0 and 236.4, respectively suggesting that the study areas had a moderate ecological risk. The study showed the suitability of PMF receptor model for source identification of heavy metals in the sediments. Also, the intensive anthropogenic activities and natural sources could largely discharge heavy metals into the study area, which may increase the heavy metal contents of the sediments and further contribute to the associated ecological risk, thus affecting the local aquatic ecosystem.

Keywords: positive matrix factorization, sediments, heavy metals, sources, ecological risks

Procedia PDF Downloads 24