Search results for: computational fluid dynamics.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5721

Search results for: computational fluid dynamics.

1401 Housing Prices and Travel Costs: Insights from Origin-Destination Demand Estimation in Taiwan’s Science Parks

Authors: Kai-Wei Ji, Dung-Ying Lin

Abstract:

This study investigates the impact of transportation on housing prices in regions surrounding Taiwan's science parks. As these parks evolve into crucial economic and population growth centers, they attract an increasing number of residents and workers, significantly influencing local housing markets. This demographic shift raises important questions about the role of transportation in shaping real estate values. Our research examines four major science parks in Taiwan, providing a comparative analysis of how transportation conditions and population dynamics interact to affect housing price premiums. We employ an origin-destination (OD) matrix derived from pervasive traffic data to model travel patterns and their effects on real estate values. The methodology utilizes a bi-level framework: a genetic algorithm optimizes OD demand estimation at the upper level, while a user equilibrium (UE) model simulates traffic flow at the lower level. This approach enables a nuanced exploration of how population growth impacts transportation conditions and housing price premiums. By analyzing the interplay between travel costs based on OD demand estimation and housing prices, we offer valuable insights for urban planners and policymakers. These findings are crucial for informed decision-making in rapidly developing areas, where understanding the relationship between mobility and real estate values is essential for sustainable urban development.

Keywords: demand estimation, genetic algorithm, housing price, transportation

Procedia PDF Downloads 20
1400 Species Composition and Plasmodium Infection Rates of Anopheles Mosquitoes in Kilosa, Tanzania

Authors: Amina R. Issae, Godfrey C. Katusi, Beda J. Mwang’Onde, Ladslaus L. Mnyone, Allen L. Malisa

Abstract:

Background: The fluctuating composition of mosquito species over time, driven by ecological changes in specific regions, plays a pivotal role in the transmission of malaria. Grasping these dynamics is fundamental for establishing a baseline understanding and is crucial for identifying transmission patterns. This knowledge is essential in devising effective strategies for managing and controlling vector populations. Our study focused on examining the species composition and Plasmodium infection rates of malaria vectors, aiming to enhance the health and well-being of communities affected by malaria. Methods: Species composition was determined through a cross-sectional collection of mosquitoes, conducted once in the village, in four selected villages of Kilosa district, Tanzania. Mosquitoes were collected indoors and outdoors using CDC light traps. A sub-sample of all collected mosquitoes was subjected to PCR identification and assayed for Plasmodium porozoites. Results: A total of 6493 female Anophelines mosquitoes were collected, of which eight species were identified as Anopheles gambiaes.l., An. funestus group, An. coustani, An. pharoensis, An. squamosus, and An. rufipes. The abundance of the Anopheles gambiaes.s.and An. funestuss.s. varied with location and village. A total of 5 sporozoite-positive mosquitoes were found, of which 4 were An. funestuss.s. and 1 was An. gambiaes.s. Conclusions: Anopheles gambiaes.s.and An. funestuss.s. were identified as the most abundant malaria vectors, respectively. Sporozoite analysis indicated this for An. funestuss.s. contribute to most of the malaria transmission in the area. Further studies are required to assess the role of seasonal shifts in vector abundance, insecticide resistance and malaria transmission of the vectors.

Keywords: mosquito, composition, malaria, sporozoites

Procedia PDF Downloads 46
1399 Nietzsche's 'Will to Power' as a Potentially Irrational-Rational Psychopathology: How and Why Amor Fati May Prove to Be Its 'Horse Whisperer'

Authors: Nikolai David Blaskow

Abstract:

Nietzsche's scholarship in the main has never quite resolved its deeply divided, at times self-contradictory responses to what Friedrich Nietzsche might have actually meant by his notion of the 'will to power'. Yet, in the context of the current global pandemic and climate change crisis, never has there been a more urgent need to investigate and resolve that contradiction. This paper argues for the 'will to power' as being a potentially irrational-rational psychopathology, one that can properly be understood only by means of Nietzsche's agonistic insights into another psychopathology—that of ressentiment. The argument also makes a case for the contention that amor fati (Nietzsche’s positive affirmation of life) may prove to be ressentiment's cure. In addition, as an integral part of the case’s methodology, the lens defined as the Mimetic and Scapegoat theory of Rene Girard (1923-2015) is brought to bear on resolving the contradiction. Ressentiment and Mimetic Theory will prove to be key players in the investigation, in as much as they expose the reasons for a modernity in crisis. The major finding of this study is that when the explanatory power of the two theories is applied, an understanding of the dynamics of the crisis in which we find ourselves emerges. The keys to that insight will include: (1) how these two psychopathologies closely resemble the contemporary neurologically defined 'borderline conditions' and their implications for culture (2) how identity politics stifle exemplary leadership, and so create toxic cultures (3) a critical assessment of Achille Mbembe's (2019) re-working of Frantz Fanon's 'ethics of the passerby' and its resonances with Nietzsche's amor fati.

Keywords: agon, amor fati, borderline conditions, ethics of the passer by, exemplary leadership, identity politics, mimesis, ressentiment, scapegoat mechanism

Procedia PDF Downloads 252
1398 Determining Optimal Number of Trees in Random Forests

Authors: Songul Cinaroglu

Abstract:

Background: Random Forest is an efficient, multi-class machine learning method using for classification, regression and other tasks. This method is operating by constructing each tree using different bootstrap sample of the data. Determining the number of trees in random forests is an open question in the literature for studies about improving classification performance of random forests. Aim: The aim of this study is to analyze whether there is an optimal number of trees in Random Forests and how performance of Random Forests differ according to increase in number of trees using sample health data sets in R programme. Method: In this study we analyzed the performance of Random Forests as the number of trees grows and doubling the number of trees at every iteration using “random forest” package in R programme. For determining minimum and optimal number of trees we performed Mc Nemar test and Area Under ROC Curve respectively. Results: At the end of the analysis it was found that as the number of trees grows, it does not always means that the performance of the forest is better than forests which have fever trees. In other words larger number of trees only increases computational costs but not increases performance results. Conclusion: Despite general practice in using random forests is to generate large number of trees for having high performance results, this study shows that increasing number of trees doesn’t always improves performance. Future studies can compare different kinds of data sets and different performance measures to test whether Random Forest performance results change as number of trees increase or not.

Keywords: classification methods, decision trees, number of trees, random forest

Procedia PDF Downloads 395
1397 Analysis of Knowledge Circulation in Digital Learning Environments: A Case Study of the MOOC 'Communication des Organisations'

Authors: Hasna Mekkaoui Alaoui, Mariem Mekkaoui Alaoui

Abstract:

In a context marked by a growing and pressing demand for online training within Moroccan universities, massive open online courses (Moocs) are undergoing constant evolution, amplified by the widespread use of digital technology and accentuated by the Coronavirus pandemic. However, despite their growing popularity and expansion, these courses are still lacking in terms of tools, enabling teachers and researchers to carry out a fine-grained analysis of the learning processes taking place within them. What's more, the circulation and sharing of knowledge within these environments is becoming increasingly important. The crucial aspect of traceability emerges here, as MOOCs record and generate traces from the most minute to the most visible. This leads us to consider traceability as a valuable approach in the field of educational research, where the trace is envisaged as a research tool in its own right. In this exploratory research project, we are looking at aspects of community knowledge sharing based on traces observed in the "Communication des organisations" Mooc. Focusing in particular on the mediating trace and its impact in identifying knowledge circulation processes in this learning space, we have mobilized the traces of video capsules as an index of knowledge circulation in the Mooc device. Our study uses a methodological approach based on thematic analysis, and although the results show that learners reproduce knowledge from different video vignettes in almost identical ways, they do not limit themselves to the knowledge provided to them. This research offers concrete perspectives for improving the dynamics of online devices, with a potentially positive impact on the quality of online university teaching.

Keywords: circulation, index, digital environments, mediation., trace

Procedia PDF Downloads 63
1396 Compact LWIR Borescope Sensor for Thermal Imaging of 2D Surface Temperature in Gas-Turbine Engines

Authors: Andy Zhang, Awnik Roy, Trevor B. Chen, Bibik Oleksandar, Subodh Adhikari, Paul S. Hsu

Abstract:

The durability of a combustor in gas-turbine engines is a strong function of its component temperatures and requires good control of these temperatures. Since the temperature of combustion gases frequently exceeds the melting point of the combustion liner walls, an efficient air-cooling system with optimized flow rates of cooling air is significantly important to elongate the lifetime of liner walls. To determine the effectiveness of the air-cooling system, accurate two-dimensional (2D) surface temperature measurement of combustor liner walls is crucial for advanced engine development. Traditional diagnostic techniques for temperature measurement in this application include the rmocouples, thermal wall paints, pyrometry, and phosphors. They have shown some disadvantages, including being intrusive and affecting local flame/flow dynamics, potential flame quenching, and physical damages to instrumentation due to harsh environments inside the combustor and strong optical interference from strong combustion emission in UV-Mid IR wavelength. To overcome these drawbacks, a compact and small borescope long-wave-infrared (LWIR) sensor is developed to achieve 2D high-spatial resolution, high-fidelity thermal imaging of 2D surface temperature in gas-turbine engines, providing the desired engine component temperature distribution. The compactLWIRborescope sensor makes it feasible to promote the durability of a combustor in gas-turbine engines and, furthermore, to develop more advanced gas-turbine engines.

Keywords: borescope, engine, low-wave-infrared, sensor

Procedia PDF Downloads 135
1395 Digital Platforms: Creating Value through Network Effects under Pandemic Conditions

Authors: S. Łęgowik-Świącik

Abstract:

This article is a contribution to the research into the determinants of value creation via digital platforms in variable operating conditions. The dynamics of the market environment caused by the COVID-19 pandemic have made enterprises built on digital platforms financially successful. While many classic companies are struggling with the uncertainty of conducting a business and difficulties in the process of value creation, digital platforms create value by modifying the existing business model to meet the changing needs of customers. Therefore, the objective of this publication is to understand and explain the relationship between value creation and the conversion of the business model built on digital platforms under pandemic conditions. The considerations relating to the conceptual framework and determining the research objective allowed for adopting the hypothesis, assuming that the processes of value creation are evolving, and the measurement of these processes allows for the protection of value created and enables its growth in changing circumstances. The research methods, such as critical literature analysis and case study, were applied to accomplish the objective pursued and verify the hypothesis formulated. The empirical research was carried out based on the data from enterprises listed on the Nasdaq Stock Exchange: Amazon, Alibaba, and Facebook. The research period was the years 2018-2021. The surveyed enterprises were chosen based on the targeted selection. The problem discussed is important and current since the lack of in-depth theoretical research results in few attempts to identify the determinants of value creation via digital platforms. The above arguments led to an attempt at theoretical analysis and empirical research to fill in the gap perceived by deepening the understanding of the process of value creation through network effects via digital platforms under pandemic conditions.

Keywords: business model, digital platforms, enterprise management, pandemic conditions, value creation process

Procedia PDF Downloads 128
1394 Manufacturing of Race Car Case Study AGH Racing

Authors: Hanna Faron, Wojciech Marcinkowski, Daniel Prusak

Abstract:

The aim of this article is to familiarize with the activity of AGH Racing scientific circle, pertaining to the international project -Formula Student, giving the opportunity to young engineers from all around the world to validate their talent and knowledge in the real world conditions, under the pressure of time, and the design requirements. Every year, the team begins the process of building a race car from the formation of human resources. In case of the public sector, to which public universities can be included, the scientific circles represent the structure uniting students with the common interests and level of determination. Due to the scientific nature of the project which simulates the market conditions, they have a chance to verify previously acquired knowledge in practice. High level of the innovation and competitiveness of participating in the project Formula Student teams, requires an intelligent organizational system, which is characterized by a high dynamics. It is connected with the necessity of separation of duties, setting priorities, selecting optimal solutions which is often a compromise between the available technology and a limited budget. Proper selection of the adequate guidelines in the design phase allows an efficient transition to the implementation stage, which is process-oriented implementation of the project. Four dynamic and three static competitions are the main verification and evaluation of year-round work and effort put into the process of building a race car. Acquired feedback flowing during the race is a very important part while monitoring the effectiveness of AGH Racing scientific circle, as well as the main criterion while determining long-term goals and all the necessary improvements in the team.

Keywords: SAE, formula student, race car, public sector, automotive industry

Procedia PDF Downloads 347
1393 Design and Analysis of Hybrid Morphing Smart Wing for Unmanned Aerial Vehicles

Authors: Chetan Gupta, Ramesh Gupta

Abstract:

Unmanned aerial vehicles, of all sizes, are prime targets of the wing morphing concept as their lightweight structures demand high aerodynamic stability while traversing unsteady atmospheric conditions. In this research study, a hybrid morphing technology is developed to aid the trailing edge of the aircraft wing to alter its camber as a monolithic element rather than functioning as conventional appendages like flaps. Kinematic tailoring, actuation techniques involving shape memory alloys (SMA), piezoelectrics – individually fall short of providing a simplistic solution to the conundrum of morphing aircraft wings. On the other hand, the feature of negligible hysteresis while actuating using compliant mechanisms has shown higher levels of applicability and deliverability in morphing wings of even large aircrafts. This research paper delves into designing a wing section model with a periodic, multi-stable compliant structure requiring lower orders of topological optimization. The design is sub-divided into three smaller domains with external hyperelastic connections to achieve deflections ranging from -15° to +15° at the trailing edge of the wing. To facilitate this functioning, a hybrid actuation system by combining the larger bandwidth feature of piezoelectric macro-fibre composites and relatively higher work densities of shape memory alloy wires are used. Finite element analysis is applied to optimize piezoelectric actuation of the internal compliant structure. A coupled fluid-surface interaction analysis is conducted on the wing section during morphing to study the development of the velocity boundary layer at low Reynold’s numbers of airflow.

Keywords: compliant mechanism, hybrid morphing, piezoelectrics, shape memory alloys

Procedia PDF Downloads 312
1392 Improving the Corrosion Resistance of Magnesium by Application of TiO₂-MgO Coatings

Authors: Eric Noe Hernandez Rodriguez, Cristian Esneider Penuela Cruz

Abstract:

Magnesium is a biocompatible and biodegradable material that has gained increased interest for application in resorbable orthopedic implants. However, to date, much research is being conducted to overcome the main disadvantage: its low corrosion resistance. In this work, we report our findings on the development and application of TiO₂-MgO coatings to improve and modulate the corrosion resistance of magnesium pieces. The plasma electrolytic oxidation (PEO) technique was employed to obtain the TiO₂-MgO coatings. The effect of the experimental parameters on the modulation of the TiO₂:MgO ratio was investigated. The most critical parameters were the chemical composition of the precursor electrolytic solution and the current density. According to scanning electron microscopy (SEM) observations, the coatings were porous; however, they become more compact as the current density increases. XRD measurements showed that the coatings are formed by a composite consisting of TiO₂ and MgO oxides, whose ratio can be changed by the experimental conditions. TiO₂ had the anatase crystalline structure, while the MgO had the FCC crystalline structure. The corrosion resistance was evaluated through the corrosion current (Icorr) measured at room temperature by the polarization technique (Tafel). For doing it, Hank's solution was used in order to simulate the body fluids. Also, immersion tests were conducted. Tafel curves showed an improvement of the corrosion resistance at some coated magnesium pieces in contrast to control pieces (uncoated). Corrosion currents were lower, and the corrosion potential changed to positive values. It was observed that the experimental parameters allowed to modulate the protective capacity of the coatings by changing the TiO₂:MgO ratio. Coatings with a higher content of TiO₂ (measured by energy dispersive spectroscopy) showed higher corrosion resistance. Results showed that TiO₂-MgO coatings can be successfully applied to improve the corrosion resistance of Mg pieces in simulated body fluid; even more, the corrosion resistance can be tuned by changing the TiO₂:MgO ratio.

Keywords: biomaterials, PEO, corrosion resistance, magnesium

Procedia PDF Downloads 104
1391 Investigating the Role of Dystrophin in Neuronal Homeostasis

Authors: Samantha Shallop, Hakinya Karra, Tytus Bernas, Gladys Shaw, Gretchen Neigh, Jeffrey Dupree, Mathula Thangarajh

Abstract:

Abnormal neuronal homeostasis is considered a structural correlate of cognitive deficits in Duchenne Muscular Dystrophy. Neurons are highly polarized cells with multiple dendrites but a single axon. Trafficking of cellular organelles are highly regulated, with the cargo in the somatodendritic region of the neuron not permitted to enter the axonal compartment. We investigated the molecular mechanisms that regular organelle trafficking in neurons using a multimodal approach, including high-resolution structural illumination, proteomics, immunohistochemistry, and computational modeling. We investigated the expression of ankyrin-G, the master regulator controlling neuronal polarity. The expression of ankyrin G and the morphology of the axon initial segment was profoundly abnormal in the CA1 hippocampal neurons in the mdx52 animal model of DMD. Ankyrin-G colocalized with kinesin KIF5a, the anterograde protein transporter, with higher levels in older mdx52 mice than younger mdx52 mice. These results suggest that the functional trafficking from the somatodendritic compartment is abnormal. Our data suggests that dystrophin deficiency compromised neuronal homeostasis via ankyrin-G-based mechanisms.

Keywords: neurons, axonal transport, duchenne muscular dystrophy, organelle transport

Procedia PDF Downloads 95
1390 EcoMush: Mapping Sustainable Mushroom Production in Bangladesh

Authors: A. A. Sadia, A. Emdad, E. Hossain

Abstract:

The increasing importance of mushrooms as a source of nutrition, health benefits, and even potential cancer treatment has raised awareness of the impact of climate-sensitive variables on their cultivation. Factors like temperature, relative humidity, air quality, and substrate composition play pivotal roles in shaping mushroom growth, especially in Bangladesh. Oyster mushrooms, a commonly cultivated variety in this region, are particularly vulnerable to climate fluctuations. This research explores the climatic dynamics affecting oyster mushroom cultivation and, presents an approach to address these challenges and provides tangible solutions to fortify the agro-economy, ensure food security, and promote the sustainability of this crucial food source. Using climate and production data, this study evaluates the performance of three clustering algorithms -KMeans, OPTICS, and BIRCH- based on various quality metrics. While each algorithm demonstrates specific strengths, the findings provide insights into their effectiveness for this specific dataset. The results yield essential information, pinpointing the optimal temperature range of 13°C-22°C, the unfavorable temperature threshold of 28°C and above, and the ideal relative humidity range of 75-85% with the suitable production regions in three different seasons: Kharif-1, 2, and Robi. Additionally, a user-friendly web application is developed to support mushroom farmers in making well-informed decisions about their cultivation practices. This platform offers valuable insights into the most advantageous periods for oyster mushroom farming, with the overarching goal of enhancing the efficiency and profitability of mushroom farming.

Keywords: climate variability, mushroom cultivation, clustering techniques, food security, sustainability, web-application

Procedia PDF Downloads 69
1389 Examining Diversity, Equity, and Inclusion in New Media Strategies within Contemporary Marketing Communication

Authors: Namirimu Beatrice Doreen

Abstract:

In recent years, there has been growing recognition of the importance of diversity, equity, and inclusion (DEI) in advertising, driven in part by the increasing diversity of society and the expanding reach of new media platforms. As marketers grapple with the challenge of creating campaigns that resonate with a wide range of audiences, the role of new media adoption emerges as a critical, independent variable shaping the landscape of DEI in advertising. This paper delves into the evolving dynamics of DEI in advertising, examining the multifaceted challenges and opportunities encountered by brands in their pursuit of more inclusive marketing strategies. Drawing on theoretical frameworks from marketing, sociology, and communication studies, this paper explores the intricate interplay between DEI initiatives and their impact on consumer perceptions, brand reputation, and market performance. The analysis considers how new media adoption influences the effectiveness and reach of DEI initiatives as brands leverage digital platforms to engage with diverse audiences in innovative ways. Through insightful case studies, this paper illustrates best practices and identifies areas for improvement in the realm of inclusive advertising, shedding light on the practical implications of DEI principles for marketers. By synthesizing insights from academia and industry, this paper offers actionable recommendations for marketers seeking to navigate the complexities of DEI in their advertising strategies. By embracing DEI principles and harnessing the power of new media platforms, brands can foster a more equitable and inclusive advertising landscape, ultimately enhancing their connections with diverse audiences and driving positive social change.

Keywords: diversity, equity, inclusion, new media, contemporary marketing communication

Procedia PDF Downloads 65
1388 Human Rights in Cross-Border Surrogacy: An Exploratory Study Applied to Surrogacy Facilitators

Authors: Yingyi Luo

Abstract:

Cross-border commercial surrogacy, where Australians travel overseas to access reproduction through a surrogate mother, is an increasing phenomenon. This paper focuses on the role of Australian surrogacy facilitators, including lawyers, non-for-profit agents, fertility counselors, who act as intermediaries managing cross-border surrogacy arrangements in Australia. It explores the extent to which surrogacy facilitators are concerned with the human rights of children born through cross-border surrogacy, surrogate mothers in developing countries, and intended parents. Commercial surrogacy is a matter that is often cast in the language of human rights. This paper will contribute to an in-depth understanding of the dynamics between intended parents, surrogates, and surrogacy facilitators by adopting a human rights framework to inform data analysis regarding the role of facilitators. The purpose of this research is to inform debate and discussion on law reform related to surrogacy. This paper presented here centers on interviews with surrogacy facilitators in Australia and non-participant observations in Australia to generate thick, empirical data about the fertility industry. The data showed that the process of facilitating surrogacy arrangements had prompted facilitators to form a view on human rights as they applied to their works. Although facilitators claimed that the right of intended parents, surrogate mothers, and children were all taken into consideration, the researcher observed that the commercial surrogacy contracts described by these facilitators favored the interests of intended parents with the baby acting as their unique selling point. The interests and needs of surrogate mothers were not prioritized in the views or actions of facilitators. The result was a commercial transaction that entailed the purchase, through cross-border surrogacy, of a child, as a commodity, by relatively affluent intended parents from disadvantaged surrogate mothers through unfair contracts.

Keywords: cross-border surrogacy, facilitators, human rights, surrogacy

Procedia PDF Downloads 116
1387 Enhancing Emotional Intelligence through Non-Verbal Communication Training in Higher Education Exchange Programs: A Longitudinal Study

Authors: Maciej Buczowski

Abstract:

This study investigates the impact of non-verbal communication training on enhancing the emotional intelligence (EI) of participants in higher education exchange programs. Recognizing the vital role EI plays in academic and professional success, particularly in multicultural environments, this research aims to explore the interplay between non-verbal cues and EI. Utilizing a longitudinal mixed-methods approach, the study will assess EI development over time among international students and faculty members. Participants will undergo a comprehensive non-verbal communication training program, covering modules on recognizing and interpreting emotional expressions, understanding cultural variations, and using non-verbal cues to manage interpersonal dynamics. EI levels will be measured using established instruments such as the Mayer-Salovey-Caruso Emotional Intelligence Test (MSCEIT) and the Emotional Quotient Inventory (EQ-i), supplemented by qualitative data from interviews and focus groups. A control group will be included to validate the intervention's effectiveness. Data collection at multiple time points (pre-training, mid-training, post-training, and follow-up) will enable tracking of EI changes. The study hypothesizes significant improvements in participants' EI, particularly in emotional awareness, empathy, and relationship management, leading to better academic performance and increased satisfaction with the exchange experience. This research aims to provide insights into the relationship between non-verbal communication and EI, potentially influencing the design of exchange programs to include EI development components and enhancing the effectiveness of international education initiatives.

Keywords: emotional intelligence, higher education exchange program, non-verbal communication, intercultural communication, cognitive linguistics

Procedia PDF Downloads 24
1386 Dialectics of Modern Law: Perspectives and Strategies of Resistance from the Margins

Authors: Nisar Alungal Chungath

Abstract:

“No human being is illegal" has become a dictum strongly upheld in the context of global immigration and migration, highlighting the ethical and moral dimensions of how societies and governments treat individuals and communities who have crossed political borders or are living in a country without legal authorization. It seeks to shift the focus from categorizing human beings as illegal immigrants to recognizing their inherent human rights and the complexities of their circumstances. As a complex social phenomenon, law has been a crucial instrument in shaping, regulating and governing human societies and vice versa. The law has now become a humongous political project of the modern majoritarian regimes to democratically illegitimize and illegalize the unpopular sections and minorities. Drawing from the theoretical frameworks of dialectics, the paper explores the philosophical underpinnings of the historical evolution and dynamic nature of modern law. The paper employs a phenomenological approach to analyze the dialectical relations between individuals, societies, and legal systems, aiming to shed light on the ethical and political implications of these interactions. By examining the historical essence of law, its relationship with social and cultural norms, and the role of power dynamics, this article argues for constantly maintaining the dialectics of law—the dynamic interplay between legal norms, social practices, cultural values, and historical contexts through a philosophical and phenomenological lens, in order to bridge the gap between universal principles and particular contexts. The paper will shed light to the dialectics of the law in the context of instances of the legal persecutions of the modern secular democracies such as Citizenship Amendment Act-2019, India.

Keywords: phenomenology, dialectic, modern law, politics, resistance, margins

Procedia PDF Downloads 56
1385 De Novo Design of a Minimal Catalytic Di-Nickel Peptide Capable of Sustained Hydrogen Evolution

Authors: Saroj Poudel, Joshua Mancini, Douglas Pike, Jennifer Timm, Alexei Tyryshkin, Vikas Nanda, Paul Falkowski

Abstract:

On the early Earth, protein-metal complexes likely harvested energy from a reduced environment. These complexes would have been precursors to the metabolic enzymes of ancient organisms. Hydrogenase is an essential enzyme in most anaerobic organisms for the reduction and oxidation of hydrogen in the environment and is likely one of the earliest evolved enzymes. To attempt to reinvent a precursor to modern hydrogenase, we computationally designed a short thirteen amino acid peptide that binds the often-required catalytic transition metal Nickel in hydrogenase. This simple complex can achieve hundreds of hydrogen evolution cycles using light energy in a broad range of temperature and pH. Biophysical and structural investigations strongly indicate the peptide forms a di-nickel active site analogous to Acetyl-CoA synthase, an ancient protein central to carbon reduction in the Wood-Ljungdahl pathway and capable of hydrogen evolution. This work demonstrates that prior to the complex evolution of multidomain enzymes, early peptide-metal complexes could have catalyzed energy transfer from the environment on the early Earth and enabled the evolution of modern metabolism

Keywords: hydrogenase, prebiotic enzyme, metalloenzyme, computational design

Procedia PDF Downloads 217
1384 A Fast Parallel and Distributed Type-2 Fuzzy Algorithm Based on Cooperative Mobile Agents Model for High Performance Image Processing

Authors: Fatéma Zahra Benchara, Mohamed Youssfi, Omar Bouattane, Hassan Ouajji, Mohamed Ouadi Bensalah

Abstract:

The aim of this paper is to present a distributed implementation of the Type-2 Fuzzy algorithm in a parallel and distributed computing environment based on mobile agents. The proposed algorithm is assigned to be implemented on a SPMD (Single Program Multiple Data) architecture which is based on cooperative mobile agents as AVPE (Agent Virtual Processing Element) model in order to improve the processing resources needed for performing the big data image segmentation. In this work we focused on the application of this algorithm in order to process the big data MRI (Magnetic Resonance Images) image of size (n x m). It is encapsulated on the Mobile agent team leader in order to be split into (m x n) pixels one per AVPE. Each AVPE perform and exchange the segmentation results and maintain asynchronous communication with their team leader until the convergence of this algorithm. Some interesting experimental results are obtained in terms of accuracy and efficiency analysis of the proposed implementation, thanks to the mobile agents several interesting skills introduced in this distributed computational model.

Keywords: distributed type-2 fuzzy algorithm, image processing, mobile agents, parallel and distributed computing

Procedia PDF Downloads 429
1383 Detection of Important Biological Elements in Drug-Drug Interaction Occurrence

Authors: Reza Ferdousi, Reza Safdari, Yadollah Omidi

Abstract:

Drug-drug interactions (DDIs) are main cause of the adverse drug reactions and nature of the functional and molecular complexity of drugs behavior in human body make them hard to prevent and treat. With the aid of new technologies derived from mathematical and computational science the DDIs problems can be addressed with minimum cost and efforts. Market basket analysis is known as powerful method to identify co-occurrence of thing to discover patterns and frequency of the elements. In this research, we used market basket analysis to identify important bio-elements in DDIs occurrence. For this, we collected all known DDIs from DrugBank. The obtained data were analyzed by market basket analysis method. We investigated all drug-enzyme, drug-carrier, drug-transporter and drug-target associations. To determine the importance of the extracted bio-elements, extracted rules were evaluated in terms of confidence and support. Market basket analysis of the over 45,000 known DDIs reveals more than 300 important rules that can be used to identify DDIs, CYP 450 family were the most frequent shared bio-elements. We applied extracted rules over 2,000,000 unknown drug pairs that lead to discovery of more than 200,000 potential DDIs. Analysis of the underlying reason behind the DDI phenomena can help to predict and prevent DDI occurrence. Ranking of the extracted rules based on strangeness of them can be a supportive tool to predict the outcome of an unknown DDI.

Keywords: drug-drug interaction, market basket analysis, rule discovery, important bio-elements

Procedia PDF Downloads 310
1382 Geometric Nonlinear Dynamic Analysis of Cylindrical Composite Sandwich Shells Subjected to Underwater Blast Load

Authors: Mustafa Taskin, Ozgur Demir, M. Mert Serveren

Abstract:

The precise study of the impact of underwater explosions on structures is of great importance in the design and engineering calculations of floating structures, especially those used for military purposes, as well as power generation facilities such as offshore platforms that can become a target in case of war. Considering that ship and submarine structures are mostly curved surfaces, it is extremely important and interesting to examine the destructive effects of underwater explosions on curvilinear surfaces. In this study, geometric nonlinear dynamic analysis of cylindrical composite sandwich shells subjected to instantaneous pressure load is performed. The instantaneous pressure load is defined as an underwater explosion and the effects of the liquid medium are taken into account. There are equations in the literature for pressure due to underwater explosions, but these equations have been obtained for flat plates. For this reason, the instantaneous pressure load equations are arranged to be suitable for curvilinear structures before proceeding with the analyses. Fluid-solid interaction is defined by using Taylor's Plate Theory. The lower and upper layers of the cylindrical composite sandwich shell are modeled as composite laminate and the middle layer consists of soft core. The geometric nonlinear dynamic equations of the shell are obtained by Hamilton's principle, taken into account the von Kàrmàn theory of large displacements. Then, time dependent geometric nonlinear equations of motion are solved with the help of generalized differential quadrature method (GDQM) and dynamic behavior of cylindrical composite sandwich shells exposed to underwater explosion is investigated. An algorithm that can work parametrically for the solution has been developed within the scope of the study.

Keywords: cylindrical composite sandwich shells, generalized differential quadrature method, geometric nonlinear dynamic analysis, underwater explosion

Procedia PDF Downloads 192
1381 Land Cover Change Analysis Using Remote Sensing

Authors: Tahir Ali Akbar, Hirra Jabbar

Abstract:

Land cover change analysis plays a significant role in understanding the trends of urban sprawl and land use transformation due to anthropogenic activities. In this study, the spatio-temporal dynamics of major land covers were analyzed in the last twenty years (1988-2016) for District Lahore located in the Punjab Province of Pakistan. The Landsat satellite imageries were downloaded from USGS Global Visualization Viewer of Earth Resources Observation and Science Center located in Sioux Falls, South Dakota USA. The imageries included: (i) Landsat TM-5 for 1988 and 2001; and (ii) Landsat-8 OLI for 2016. The raw digital numbers of Landsat-5 images were converted into spectral radiance and then planetary reflectance. The digital numbers of Landsat-8 image were directly converted into planetary reflectance. The normalized difference vegetation index (NDVI) was used to classify the processed images into six major classes of water, buit-up, barren land, shrub and grassland, sparse vegetation and dense vegetation. The NDVI output results were improved by visual interpretation using high-resolution satellite imageries. The results indicated that the built-up areas were increased to 21% in 2016 from 10% in 1988. The decrease in % areas was found in case of water, barren land and shrub & grassland. There were improvements in percentage of areas for the vegetation. The increasing trend of urban sprawl for Lahore requires implementation of GIS based spatial planning, monitoring and management system for its sustainable development.

Keywords: land cover changes, NDVI, remote sensing, urban sprawl

Procedia PDF Downloads 318
1380 Psychoanalytic Understanding of the Autistic Self

Authors: Aastha Chaudhry

Abstract:

This continuous structuring of the ego through the developmental ages, starting with the body, has been understood through various perspectives from the object-relations world. Klein, Ogden, Winnicott to name a few, have been masters at helping mark a trajectory for the self to come to fruition. However, what constitutes those states, those relational structures, the dynamics of transference and the concept of inner objects has been more or less left unexplored in the psychoanalytic developmental theory. In this paper, through the help of a case study, Ogden’s ideas of an autistic contagious position and Kleinian theory of object relations is proposed to visualize a lens that helps to understand the relationship of the autistic self and body and allows us to take a look at object relations through countertransference. With the help of case vignettes, an understanding of experience is seen as dominated in the autistic contagious position with the help of defensive structuring that is not only self-fulfilling and sensorial oriented, but is also a pre symbolic mode of relating to the other. The aim of this clinical, experiential study is to better understand the self-body and the self-other relationships, or the absence thereof, in the autistic world and states. The goal of the study was to find such a relationship between play, body, structuring of experience and an autistic self in these individuals through that. Aim being that psychotherapy is brought to fore in the world of autism. The method was case study with one on one intervention, that was psychodynamically informed and play therapy based. Some of the findings after a year of work with these individuals were that: in the absence of a shared vocabulary, communication in two contrasting individuals happens primarily through the assistance of the body. Somatic countertransference, for instance, is how one can be with someone in a therapeutic relationship – and with autistic adolescents it is a further complicated relationship. With a mind somewhere in infanthood, and body experiencing adulthood, it becomes a challenge for the therapist to meet the client where they are. With pre-verbal states, play becomes such a potential space where two individuals could meet – a safe ground for forces to be contained. Play, then, becomes a mode of communication with such a population.

Keywords: autism, psychoanalytic, play, self

Procedia PDF Downloads 132
1379 Optimization of Acid Treatments by Assessing Diversion Strategies in Carbonate and Sandstone Formations

Authors: Ragi Poyyara, Vijaya Patnana, Mohammed Alam

Abstract:

When acid is pumped into damaged reservoirs for damage removal/stimulation, distorted inflow of acid into the formation occurs caused by acid preferentially traveling into highly permeable regions over low permeable regions, or (in general) into the path of least resistance. This can lead to poor zonal coverage and hence warrants diversion to carry out an effective placement of acid. Diversion is desirably a reversible technique of temporarily reducing the permeability of high perm zones, thereby forcing the acid into lower perm zones. The uniqueness of each reservoir can pose several challenges to engineers attempting to devise optimum and effective diversion strategies. Diversion techniques include mechanical placement and/or chemical diversion of treatment fluids, further sub-classified into ball sealers, bridge plugs, packers, particulate diverters, viscous gels, crosslinked gels, relative permeability modifiers (RPMs), foams, and/or the use of placement techniques, such as coiled tubing (CT) and the maximum pressure difference and injection rate (MAPDIR) methodology. It is not always realized that the effectiveness of diverters greatly depends on reservoir properties, such as formation type, temperature, reservoir permeability, heterogeneity, and physical well characteristics (e.g., completion type, well deviation, length of treatment interval, multiple intervals, etc.). This paper reviews the mechanisms by which each variety of diverter functions and discusses the effect of various reservoir properties on the efficiency of diversion techniques. Guidelines are recommended to help enhance productivity from zones of interest by choosing the best methods of diversion while pumping an optimized amount of treatment fluid. The success of an overall acid treatment often depends on the effectiveness of the diverting agents.

Keywords: diversion, reservoir, zonal coverage, carbonate, sandstone

Procedia PDF Downloads 432
1378 Machine Learning Algorithms for Rocket Propulsion

Authors: Rômulo Eustáquio Martins de Souza, Paulo Alexandre Rodrigues de Vasconcelos Figueiredo

Abstract:

In recent years, there has been a surge in interest in applying artificial intelligence techniques, particularly machine learning algorithms. Machine learning is a data-analysis technique that automates the creation of analytical models, making it especially useful for designing complex situations. As a result, this technology aids in reducing human intervention while producing accurate results. This methodology is also extensively used in aerospace engineering since this is a field that encompasses several high-complexity operations, such as rocket propulsion. Rocket propulsion is a high-risk operation in which engine failure could result in the loss of life. As a result, it is critical to use computational methods capable of precisely representing the spacecraft's analytical model to guarantee its security and operation. Thus, this paper describes the use of machine learning algorithms for rocket propulsion to aid the realization that this technique is an efficient way to deal with challenging and restrictive aerospace engineering activities. The paper focuses on three machine-learning-aided rocket propulsion applications: set-point control of an expander-bleed rocket engine, supersonic retro-propulsion of a small-scale rocket, and leak detection and isolation on rocket engine data. This paper describes the data-driven methods used for each implementation in depth and presents the obtained results.

Keywords: data analysis, modeling, machine learning, aerospace, rocket propulsion

Procedia PDF Downloads 115
1377 Dynamic Analysis of Mono-Pile: Spectral Element Method

Authors: Rishab Das, Arnab Banerjee, Bappaditya Manna

Abstract:

Mono-pile foundations are often used in soft soils in order to support heavy mega-structures, whereby often these deep footings may undergo dynamic excitation due to many causes like earthquake, wind or wave loads acting on the superstructure, blasting, and unbalanced machines, etc. A comprehensive analytical study is performed to study the dynamics of the mono-pile system embedded in cohesion-less soil. The soil is considered homogeneous and visco-elastic in nature and is analytically modeled using complex springs. Considering the N number of the elements of the pile, the final global stiffness matrix is obtained by using the theories of the spectral element matrix method. Further, statically condensing the intermediate internal nodes of the global stiffness matrix results to a smaller sub matrix containing the nodes experiencing the external translation and rotation, and the stiffness and damping functions (impedance functions) of the embedded piles are determined. Proper plots showing the variation of the real and imaginary parts of these impedance functions with the dimensionless frequency parameter are obtained. The plots obtained from this study are validated by that provided by Novak,1974. Further, the dynamic analysis of the resonator impregnated pile is proposed within this study. Moreover, with the aid of Wood's 1g laboratory scaling law, a proper scaled-down resonator-pile model is 3D printed using PLA material. Dynamic analysis of the scaled model is carried out in the time domain, whereby the lateral loads are imposed on the pile head. The response obtained from the sensors through the LabView software is compared with the proposed theoretical data.

Keywords: mono-pile, visco-elastic, impedance, LabView

Procedia PDF Downloads 118
1376 On the Monitoring of Structures and Soils by Tromograph

Authors: Magarò Floriana, Zinno Raffaele

Abstract:

Since 2009, with the coming into force of the January 14, 2008 Ministerial Decree "New technical standards for construction", and the explanatory ministerial circular N°.617 of February 2, 2009, the question of seismic hazard and the design of seismic-resistant structures in Italy has acquired increasing importance. One of the most discussed aspects in recent Italian and international scientific literature concerns the dynamic interaction between land and structure, and the effects which dynamic coupling may have on individual buildings. In effect, from systems dynamics, it is well known that resonance can have catastrophic effects on a stimulated system, leading to a response that is not compatible with the previsions in the design phase. The method used in this study to estimate the frequency of oscillation of the structure is as follows: the analysis of HVSR (Horizontal to Vertical Spectral Ratio) relations. This allows for evaluation of very simple oscillation frequencies for land and structures. The tool used for data acquisition is an experimental digital tromograph. This is an engineered development of the experimental Languamply RE 4500 tromograph, equipped with an engineered amplification circuit and improved electronically using extremely small electronic components (size of each individual amplifier 16 x 26 mm). This tromograph is a modular system, completely "free" and "open", designed to interface Windows, Linux, OSX and Android with the outside world. It an amplifier designed to carry out microtremor measurements, yet which will also be useful for seismological and seismic measurements in general. The development of single amplifiers of small dimension allows for a very clean signal since being able to position it a few centimetres from the geophone eliminates cable “antenna” phenomena, which is a necessary characteristic in seeking to have signals which are clean at the very low voltages to be measured.

Keywords: microtremor, HVSR, tromograph, structural engineering

Procedia PDF Downloads 409
1375 Weapon Collection Initiatives and the Threat of Small Arms and Light Weapons Proliferation in Volatile Areas of North-Eastern Nigeria as a Way Forward for National Security and Development

Authors: Halilu Babaji, Adamu Buba

Abstract:

The proliferation of small arms and light weapons (SALW) and its illicit trafficking in West Africa and Nigeria in particular, pose a major threat to peace, security and development in the Sub-region. The high circulation of these weapons in the region is a product of the interplay of several factors, which derives principally from the internal socio-economic and political dynamics compounded by globalization. The process of globalization has congealed both time and space making it easier for ideas, goods, persons, services, information, products and money to move across borders with fewer restrictions. And this has a negative effect in the entire region making it easier for arms, ammunition, insurgents, criminal and drugs to flow within national boundaries. The failure of public security in most parts of Nigeria has lead communities to indulge in different forms of ‘self-help ‘security measures, ranging from vigilante groups to community-owned arms stockpiling. Having lost confidence in the Nigerian state, parties to some of these conflicts have become entangled in a security dilemma. The quest to procure more arms to guarantee personal and community protection from perceived and real enemies is fuelling the ‘domestic arms race ‘. Therefore, as small arms remain-and proliferate – development is impeded. The impact of SALW on economic well being and national development in Nigeria is of vast significant. Therefore the need to collect these arms in circulation in Nigeria particularly the volatile area of North-east is of very important. This will hopefully contribute to government effort in building a free, secured and peaceful society.

Keywords: arms, development, proliferation, security

Procedia PDF Downloads 326
1374 Isolation and Identification of Microorganisms from Marine-Associated Samples under Laboratory Conditions

Authors: Sameen Tariq, Saira Bano, Sayyada Ghufrana Nadeem

Abstract:

The Ocean, which covers over 70% of the world's surface, is wealthy in biodiversity as well as a rich wellspring of microorganisms with huge potential. The oceanic climate is home to an expansive scope of plants, creatures, and microorganisms. Marine microbial networks, which incorporate microscopic organisms, infections, and different microorganisms, enjoy different benefits in biotechnological processes. Samples were collected from marine environments, including soil and water samples, to cultivate the uncultured marine organisms by using Zobell’s medium, Sabouraud’s dextrose agar, and casein media for this purpose. Following isolation, we conduct microscopy and biochemical tests, including gelatin, starch, glucose, casein, catalase, and carbohydrate hydrolysis for further identification. The results show that more gram-positive and gram-negative bacteria. The isolation process of marine organisms is essential for understanding their ecological roles, unraveling their biological secrets, and harnessing their potential for various applications. Marine organisms exhibit remarkable adaptations to thrive in the diverse and challenging marine environment, offering vast potential for scientific, medical, and industrial applications. The isolation process plays a crucial role in unlocking the secrets of marine organisms, understanding their biological functions, and harnessing their valuable properties. They offer a rich source of bioactive compounds with pharmaceutical potential, including antibiotics, anticancer agents, and novel therapeutics. This study is an attempt to explore the diversity and dynamics related to marine microflora and their role in biofilm formation.

Keywords: marine microorganisms, ecosystem, fungi, biofilm, gram-positive, gram-negative

Procedia PDF Downloads 45
1373 The Effect of Action Potential Duration and Conduction Velocity on Cardiac Pumping Efficacy: Simulation Study

Authors: Ana Rahma Yuniarti, Ki Moo Lim

Abstract:

Slowed myocardial conduction velocity (CV) and shortened action potential duration (APD) due to some reason are associated with an increased risk of re-entrant excitation, predisposing to cardiac arrhythmia. That is because both of CV reduction and APD shortening induces shortening of wavelength. In this study, we investigated quantitatively the cardiac mechanical responses under various CV and APD using multi-scale computational model of the heart. The model consisted of electrical model coupled with the mechanical contraction model together with a lumped model of the circulatory system. The electrical model consisted of 149.344 numbers of nodes and 183.993 numbers of elements of tetrahedral mesh, whereas the mechanical model consisted of 356 numbers of nodes and 172 numbers of elements of hexahedral mesh with hermite basis. We performed the electrical simulation with two scenarios: 1) by varying the CV values with constant APD and 2) by varying the APD values with constant CV. Then, we compared the electrical and mechanical responses for both scenarios. Our simulation showed that faster CV and longer APD induced largest resultants wavelength and generated better cardiac pumping efficacy by increasing the cardiac output and consuming less energy. This is due to the long wave propagation and faster conduction generated more synchronous contraction of whole ventricle.

Keywords: conduction velocity, action potential duration, mechanical contraction model, circulatory model

Procedia PDF Downloads 204
1372 Competing Interactions, and Magnetization Dynamics in Doped Rare-Earth Manganites Nanostructural System

Authors: Wiqar Hussain Shah

Abstract:

The Structural, magnetic and transport behavior of La1-xCaxMnO3+ (x=0.48, 0.50, 0.52 and 0.55 and =0.015) compositions close to charge ordering, was studied through XRD, resistivity, DC magnetization and AC susceptibility measurements. With time and thermal cycling (T<300 K) there is an irreversible transformation of the low-temperature phase from a partially ferromagnetic and metallic to one that is less ferromagnetic and highly resistive. For instance, an increase of resistivity can be observed by thermal cycling, where no effect is obtained for lower Ca concentration. The time changes in the magnetization are logarithmic in general and activation energies are consistent with those expected for electron transfer between Mn ions. The data suggest that oxygen non-stoichiometry results in mechanical strains in this two-phase system, leading to the development of irreversible metastable states, which relax towards the more stable charge-ordered and antiferromagnetic microdomains at the nano-meter size. This behavior is interpreted in terms of strains induced charge localization at the interface between FM/AFM domains in the antiferromagnetic matrix. Charge, orbital ordering and phase separation play a prominent role in the appearance of such properties, since they can be modified in a spectacular manner by external factor, making the different physical properties metastable. Here we describe two factors that deeply modify those properties, viz. the doping concentration and the thermal cycling. The metastable state is recovered by the high temperature annealing. We also measure the magnetic relaxation in the metastable state and also the revival of the metastable state (in a relaxed sample) due to high temperature (800 ) thermal treatment.

Keywords: Rare-earth maganites, nano-structural materials, doping effects on electrical, magnetic properties, competing interactions

Procedia PDF Downloads 125