Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2570

Search results for: climate variability

2570 Investigation of Surface Water Quality Intera-Annual Variations, Gorganroud Basin, Iran

Authors: K. Ebrahimi, S. Shahid, H. Dehban


Climate variability can affect surface water quality. The objective of present study is to assess the impacts of climate variability on water quality of Gorganroud River, Iran, over the time period 1971 to 2011. To achieve this aim, climate variability and water quality variations were studied involving a newly developed drought index (MRDI) and hysteresis curves, respectively. The results show that climate variability significantly affected surface water quality over the time. The existence of yearly internal variation and hysteresis phenomenon for pH and EC parameters was observed. It was found that though drought affected pH considerably, it could not affect EC significantly.

Keywords: climate variability, hysteresis curves, multi drought index, water quality

Procedia PDF Downloads 285
2569 Climate Change, Agriculture and Food Security in Sub-Saharan Africa: What Effects and What Answers?

Authors: Abdoulahad Allamine


The objective of this study is to assess the impact of climate variability on agriculture and food security in 43 countries of sub-Saharan Africa. We use for this purpose the data from BADC bases, UNCTAD, and WDI FAOSTAT to estimate a VAR model on panel data. The sample is divided into three (03) agro-climatic zones, more explicitly the equatorial zone, the Sahel region and the semi-arid zone. This allows to highlight the differential impacts sustained by countries and appropriate responses to each group of countries. The results show that the sharp fluctuations in the volume of rainfall negatively affect agriculture and food security of countries in the equatorial zone, with heavy rainfall and high temperatures in the Sahel region. However, countries with low temperatures and low rainfall are the least affected. The hedging policies against the risks of climate variability must be more active in the first two groups of countries. On this basis and in general, we recommend integration of agricultural policies between countries is done to reduce the effects of climate variability on agriculture and food security. It would be logical to encourage regional and international closer collaboration on the development and dissemination of improved varieties, ecological intensification, and management of biotic and abiotic stresses facing these climate variability to sustainably increase food production. Small farmers also need training in agricultural risk hedging techniques related to climate variations; this requires an increase in state budgets allocated to agriculture.

Keywords: agro-climatic zones, climate variability, food security, Sub-Saharan Africa, VAR on panel data

Procedia PDF Downloads 292
2568 An Investigation of Trends and Variability of Rainfall in Shillong City

Authors: Kamal Kumar Tanti, Nayan Moni Saikia, Markynti Swer


This study aims to investigate and analyse the trends and variability of rainfall in Shillong and its nearby areas, located in Meghalaya hills of North-East India; which is geographically a neighbouring area to the wettest places of the Earth, i.e., Cherrapunji and Mawsynram. The analysis of variability and trends to annual, seasonal, monthly and daily rainfall was carried out, using the data collected from the IMD station at Shillong; thereby attempting to highlight whether rainfall in Shillong area has been increasing or decreasing over the years. Rainfall variability coefficient is utilized to compare the current rainfall trend of the area with its past rainfall trends. The present study also aims to analyse the frequency of occurrence of extreme rainfall events over the region. These studies will help us to establish a correlation between the current rainfall trend and climate change scenario of the study area.

Keywords: trends and variability of rainfall, annual, seasonal, monthly and daily rainfall, rainfall variability coefficient, extreme rainfall events, climate change, Shillong, Cherrapunji, Mawsynram

Procedia PDF Downloads 190
2567 Impact of Climate Variability on Household's Crop Income in Central Highlands and Arssi Grain Plough Areas of Ethiopia

Authors: Arega Shumetie Ademe, Belay Kassa, Degye Goshu, Majaliwa Mwanjalolo


Currently the world economy is suffering from one critical problem, climate change. Some studies done before identified that impact of the problem is region specific means in some part of the world (temperate zone) there is improvement in agricultural performance but in some others like in the tropics there is drastic reduction in crop production and crop income. Climate variability is becoming dominant cause of short-term fluctuation in rain-fed agricultural production and income of developing countries. The purely rain-fed Ethiopian agriculture is the most vulnerable sector to the risks and impacts of climate variability. Thus, this study tried to identify impact of climate variability on crop income of smallholders in Ethiopia. The research used eight rounded unbalanced panel data from 1994- 2014 collected from six villages in the study area. After having all diagnostic tests the research used fixed effect method of regression. Based on the regression result rainfall and temperature deviation from their respective long term averages have negative and significant effect on crop income. Other extreme devastating shocks like flood, storm and frost, which are sourced from climate variability, have significant and negative effect on crop income of households’. Parameters that notify rainfall inconsistency like late start, variation in availability at growing season, and early cessation are critical problems for crop income of smallholder households as to the model result. Given this, impact of climate variability is not consistent in different agro-ecologies of the country. Rainfall variability has similar impact on crop income in different agro-ecology, but variation in temperature affects cold agro-ecology villages negatively and significantly, while it has positive effect in warm villages. Parameters that represent rainfall inconsistency have similar impact in both agro-ecologies and the aggregate model regression. This implies climate variability sourced from rainfall inconsistency is the main problem of Ethiopian agriculture especially the crop production sub-sector of smallholder households.

Keywords: climate variability, crop income, household, rainfall, temperature

Procedia PDF Downloads 283
2566 Trend Analysis of Rainfall: A Climate Change Paradigm

Authors: Shyamli Singh, Ishupinder Kaur, Vinod K. Sharma


Climate Change refers to the change in climate for extended period of time. Climate is changing from the past history of earth but anthropogenic activities accelerate this rate of change and which is now being a global issue. Increase in greenhouse gas emissions is causing global warming and climate change related issues at an alarming rate. Increasing temperature results in climate variability across the globe. Changes in rainfall patterns, intensity and extreme events are some of the impacts of climate change. Rainfall variability refers to the degree to which rainfall patterns varies over a region (spatial) or through time period (temporal). Temporal rainfall variability can be directly or indirectly linked to climate change. Such variability in rainfall increases the vulnerability of communities towards climate change. Increasing urbanization and unplanned developmental activities, the air quality is deteriorating. This paper mainly focuses on the rainfall variability due to increasing level of greenhouse gases. Rainfall data of 65 years (1951-2015) of Safdarjung station of Delhi was collected from Indian Meteorological Department and analyzed using Mann-Kendall test for time-series data analysis. Mann-Kendall test is a statistical tool helps in analysis of trend in the given data sets. The slope of the trend can be measured through Sen’s slope estimator. Data was analyzed monthly, seasonally and yearly across the period of 65 years. The monthly rainfall data for the said period do not follow any increasing or decreasing trend. Monsoon season shows no increasing trend but here was an increasing trend in the pre-monsoon season. Hence, the actual rainfall differs from the normal trend of the rainfall. Through this analysis, it can be projected that there will be an increase in pre-monsoon rainfall than the actual monsoon season. Pre-monsoon rainfall causes cooling effect and results in drier monsoon season. This will increase the vulnerability of communities towards climate change and also effect related developmental activities.

Keywords: greenhouse gases, Mann-Kendall test, rainfall variability, Sen's slope

Procedia PDF Downloads 102
2565 Recent Climate Variability and Crop Production in the Central Highlands of Ethiopia

Authors: Arragaw Alemayehu, Woldeamlak Bewket


The aim of this study was to understand the influence of current climate variability on crop production in the central highlands of Ethiopia. We used monthly rainfall and temperature data from 132 points each representing a pixel of 10×10 km. The data are reconstructions based on station records and meteorological satellite observations. Production data of the five major crops in the area were collected from the Central Statistical Agency for the period 2004-2013 and for the main cropping season, locally known as Meher. The production data are at the Enumeration Area (EA ) level and hence the best available dataset on crop production. The results show statistically significant decreasing trends in March–May (Belg) rainfall in the area. However, June – September (Kiremt) rainfall showed increasing trends in Efratana Gidim and Menz Gera Meder which the latter is statistically significant. Annual rainfall also showed positive trends in the area except Basona Werana where significant negative trends were observed. On the other hand, maximum and minimum temperatures showed warming trends in the study area. Correlation results have shown that crop production and area of cultivation have positive correlation with rainfall, and negative with temperature. When the trends in crop production are investigated, most crops showed negative trends and below average production was observed. Regression results have shown that rainfall was the most important determinant of crop production in the area. It is concluded that current climate variability has a significant influence on crop production in the area and any unfavorable change in the local climate in the future will have serious implications for household level food security. Efforts to adapt to the ongoing climate change should begin from tackling the current climate variability and take a climate risk management approach.

Keywords: central highlands, climate variability, crop production, Ethiopia, regression, trend

Procedia PDF Downloads 345
2564 Effect of Climate Variability on Honeybee's Production in Ondo State, Nigeria

Authors: Justin Orimisan Ijigbade


The study was conducted to assess the effect of climate variability on honeybee’s production in Ondo State, Nigeria. Multistage sampling technique was employed to collect the data from 60 beekeepers across six Local Government Areas in Ondo State. Data collected were subjected to descriptive statistics and multiple regression model analyses. The results showed that 93.33% of the respondents were male with 80% above 40 years of age. Majority of the respondents (96.67%) had formal education and 90% produced honey for commercial purpose. The result revealed that 90% of the respondents admitted that low temperature as a result of long hours/period of rainfall affected the foraging efficiency of the worker bees, 73.33% claimed that long period of low humidity resulted in low level of nectar flow, while 70% submitted that high temperature resulted in improper composition of workers, dunes and queen in the hive colony. The result of multiple regression showed that beekeepers’ experience, educational level, access to climate information, temperature and rainfall were the main factors affecting honey bees production in the study area. Therefore, beekeepers should be given more education on climate variability and its adaptive strategies towards ensuring better honeybees production in the study area.

Keywords: climate variability, honeybees production, humidity, rainfall and temperature

Procedia PDF Downloads 157
2563 Climate Variability and Its Impacts on Rice (Oryza sativa) Productivity in Dass Local Government Area of Bauchi State, Nigeria

Authors: Auwal Garba, Rabiu Maijama’a, Abdullahi Muhammad Jalam


Variability in climate has affected the agricultural production all over the globe. This concern has motivated important changes in the field of research during the last decade. Climate variability is believed to have declining effects towards rice production in Nigeria. This study examined climate variability and its impact on rice productivity in Dass Local Government Area, Bauchi State, by employing Linear Trend Model (LTM), analysis of variance (ANOVA) and regression analysis. Annual seasonal data of the climatic variables for temperature (min. and max), rainfall, and solar radiation from 1990 to 2015 were used. Results confirmed that 74.4% of the total variation in rice yield in the study area was explained by the changes in the independent variables. That is to say, temperature (minimum and maximum), rainfall, and solar radiation explained rice yield with 74.4% in the study area. Rising mean maximum temperature would lead to reduction in rice production while moderate increase in mean minimum temperature would be advantageous towards rice production, and the persistent rise in the mean maximum temperature, in the long run, will have more negatively affect rice production in the future. It is, therefore, important to promote agro-meteorological advisory services, which will be useful in farm planning and yield sustainability. Closer collaboration among the meteorologist and agricultural scientist is needed to increase the awareness about the existing database, crop weather models among others, with a view to reaping the full benefits of research on specific problems and sustainable yield management and also there should be a special initiative by the ADPs (State Agricultural Development Programme) towards promoting best agricultural practices that are resilient to climate variability in rice production and yield sustainability.

Keywords: climate variability, impact, productivity, rice

Procedia PDF Downloads 42
2562 Climate Change and Variability-Induced Resource Based Conflicts: The Case of the Issa, Ittu and Afar (Agro) Pastoralists of Eastern Ethiopia

Authors: Bamlaku Tadesse Mengistu


This article explores the link between climate change/variability and its adaptation/coping strategies with resource-based ethnic conflicts among the Afar, Issa-Somali, and Ittu-Oromo ethnic groups. The qualitative data were collected from community leaders, ordinary members of the communities, and administrative and political bodies at various levels through one-on-one interviews, focus group discussions and field observations. The quantitative data were also collected through a household survey from the randomly selected 128 households drawn from the three districts of Mieso-Mullu, Mieso, and Amibara districts. The study shows that there is a causal relationship between resource scarcity impacted by climate change/variability and ethnic conflicts. The study reveals that the increasing nature of resource scarcity and environmental problems, and also the changing nature of ethnic diversity will aggravate the resource-based inter-ethnic conflicts.

Keywords: Eastern Ethiopia, ethnic conflict, climate change, Afar, Issa, Ittu

Procedia PDF Downloads 83
2561 Variability of Climatic Elements in Nigeria Over Recent 100 Years

Authors: T. Salami, O. S. Idowu, N. J. Bello


Climatic variability is an essential issue when dealing with the issue of climate change. Variability of some climate parameter helps to determine how variable the climatic condition of a region will behave. The most important of these climatic variables which help to determine the climatic condition in an area are both the Temperature and Precipitation. This research deals with Longterm climatic variability in Nigeria. Variables examined in this analysis include near-surface temperature, near surface minimum temperature, maximum temperature, relative humidity, vapour pressure, precipitation, wet-day frequency and cloud cover using data ranging between 1901-2010. Analyses were carried out and the following methods were used: - Regression and EOF analysis. Results show that the annual average, minimum and maximum near-surface temperature all gradually increases from 1901 to 2010. And they are in the same case in a wet season and dry season. Minimum near-surface temperature, with its linear trends are significant for annual, wet season and dry season means. However, the diurnal temperature range decreases in the recent 100 years imply that the minimum near-surface temperature has increased more than the maximum. Both precipitation and wet day frequency decline from the analysis, demonstrating that Nigeria has become dryer than before by the way of rainfall. Temperature and precipitation variability has become very high during these periods especially in the Northern areas. Areas which had excessive rainfall were confronted with flooding and other related issues while area that had less precipitation were all confronted with drought. More practical issues will be presented.

Keywords: climate, variability, flooding, excessive rainfall

Procedia PDF Downloads 271
2560 Effect of Climate Change on Groundwater Recharge in a Sub-Humid Sub-Tropical Region of Eastern India

Authors: Suraj Jena, Rabindra Kumar Panda


The study region of the reported study was in Eastern India, having a sub-humid sub-tropical climate and sandy loam soil. The rainfall in this region has wide temporal and spatial variation. Due to lack of adequate surface water to meet the irrigation and household demands, groundwater is being over exploited in that region leading to continuous depletion of groundwater level. Therefore, there is an obvious urgency in reversing the depleting groundwater level through induced recharge, which becomes more critical under the climate change scenarios. The major goal of the reported study was to investigate the effects of climate change on groundwater recharge and subsequent adaptation strategies. Groundwater recharge was modelled using HELP3, a quasi-two-dimensional, deterministic, water-routing model along with global climate models (GCMs) and three global warming scenarios, to examine the changes in groundwater recharge rates for a 2030 climate under a variety of soil and vegetation covers. The relationship between the changing mean annual recharge and mean annual rainfall was evaluated for every combination of soil and vegetation using sensitivity analysis. The relationship was found to be statistically significant (p<0.05) with a coefficient of determination of 0.81. Vegetation dynamics and water-use affected by the increase in potential evapotranspiration for large climate variability scenario led to significant decrease in recharge from 49–658 mm to 18–179 mm respectively. Therefore, appropriate conjunctive use, irrigation schedule and enhanced recharge practices under the climate variability and land use/land cover change scenarios impacting the groundwater recharge needs to be understood properly for groundwater sustainability.

Keywords: Groundwater recharge, climate variability, Land use/cover, GCM

Procedia PDF Downloads 186
2559 Effects of Climate Change and Livelihood Diversification on Gendered Productivity Gap of Farmers in Northern Regions of Ghana

Authors: William Adzawla


In the midst of climate variability and change, the role of gender in ensuring food production remains vital. Therefore, this study analysed the gendered productivity among maize farmers, and the effects of climate change and variability as well as livelihood diversification on gendered productivity gap. This involved a total of 619 farmers selected through a multistage sampling procedure. The data was analysed using Oaxaca Blinder decomposition model. From the result, there is a significant productivity gap of 58.8% and 44.8% between male and female heads, and between male heads and female spouses, respectively. About 87.47% and 98.08% of the variations in gendered productivity were explained by resource endowment. While livelihood diversification significantly influenced gendered productivity through endowment and coefficient effect, climate variables significantly affect productivity gap through only coefficient effects. The study concluded that there is a substantial gendered productivity gap among farmers and this is particularly due to differences in endowment. Generally, there is a high potential of reducing gendered productivity gaps through the provision of equal diversification opportunities and reducing females’ vulnerability to climate change. Among the livelihood activities, off-farm activities such as agro-processing and shea butter processing should be promoted. Similarly, the adoption of on-farm adaptation strategies should be promoted among the farmers.

Keywords: climate change and variability, gender, livelihood diversification, oaxaca-blinder decomposition, productivity gap

Procedia PDF Downloads 72
2558 Evaluating Robustness of Conceptual Rainfall-runoff Models under Climate Variability in Northern Tunisia

Authors: H. Dakhlaoui, D. Ruelland, Y. Tramblay, Z. Bargaoui


To evaluate the impact of climate change on water resources at the catchment scale, not only future projections of climate are necessary but also robust rainfall-runoff models that are able to be fairly reliable under changing climate conditions. This study aims at assessing the robustness of three conceptual rainfall-runoff models (GR4j, HBV and IHACRES) on five basins in Northern Tunisia under long-term climate variability. Their robustness was evaluated according to a differential split sample test based on a climate classification of the observation period regarding simultaneously precipitation and temperature conditions. The studied catchments are situated in a region where climate change is likely to have significant impacts on runoff and they already suffer from scarcity of water resources. They cover the main hydrographical basins of Northern Tunisia (High Medjerda, Zouaraâ, Ichkeul and Cap bon), which produce the majority of surface water resources in Tunisia. The streamflow regime of the basins can be considered as natural since these basins are located upstream from storage-dams and in areas where withdrawals are negligible. A 30-year common period (1970‒2000) was considered to capture a large spread of hydro-climatic conditions. The calibration was based on the Kling-Gupta Efficiency (KGE) criterion, while the evaluation of model transferability is performed according to the Nash-Suttfliff efficiency criterion and volume error. The three hydrological models were shown to have similar behaviour under climate variability. Models prove a better ability to simulate the runoff pattern when transferred toward wetter periods compared to the case when transferred to drier periods. The limits of transferability are beyond -20% of precipitation and +1.5 °C of temperature in comparison with the calibration period. The deterioration of model robustness could in part be explained by the climate dependency of some parameters.

Keywords: rainfall-runoff modelling, hydro-climate variability, model robustness, uncertainty, Tunisia

Procedia PDF Downloads 221
2557 Linking Temporal Changes of Climate Factors with Staple Cereal Yields in Southern Burkina Faso

Authors: Pius Borona, Cheikh Mbow, Issa Ouedraogo


In the Sahel, climate variability has been associated with a complex web of direct and indirect impacts. This natural phenomenon has been an impediment to agro-pastoral communities who experience uncertainty while involving in farming activities which is also their key source of livelihood. In this scenario, the role of climate variability in influencing the performance, quantity and quality of staple cereals yields, vital for food and nutrition security has been a topic of importance. This response of crops and subsequent yield variability is also a subject of immense debate due to the complexity of crop development at different stages. This complexity is further compounded by influence of slowly changing non-climatic factors. With these challenges in mind, the present paper initially explores the occurrence of climate variability at an inter annual and inter decadal level in South Burkina Faso. This is evidenced by variation of the total annual rainfall and the number of rainy days among other climatic descriptors. Further, it is shown how district-scale cereal yields in the study area including maize, sorghum and millet casually associate variably to the inter-annual variation of selected climate variables. Statistical models show that the three cereals widely depict sensitivity to the length of the growing period and total dry days in the growing season. Maize yields on the other hand relate strongly to the rainfall amount variation (R2=51.8%) showing high moisture dependence during critical growth stages. Our conclusions emphasize on adoption of efficient water utilization platforms especially those that have evidently increased yields and strengthening of forecasts dissemination.

Keywords: climate variability, cereal yields, seasonality, rain fed farming, Burkina Faso, rainfall

Procedia PDF Downloads 113
2556 Long Term Variability of Temperature in Armenia in the Context of Climate Change

Authors: Hrachuhi Galstyan, Lucian Sfîcă, Pavel Ichim


The purpose of this study is to analyze the temporal and spatial variability of thermal conditions in the Republic of Armenia. The paper describes annual fluctuations in air temperature. Research has been focused on case study region of Armenia and surrounding areas, where long–term measurements and observations of weather conditions have been performed within the National Meteorological Service of Armenia and its surrounding areas. The study contains yearly air temperature data recorded between 1961-2012. Mann-Kendal test and the autocorrelation function were applied to detect the change trend of annual mean temperature, as well as other parametric and non-parametric tests searching to find the presence of some breaks in the long term evolution of temperature. The analysis of all records reveals a tendency mostly towards warmer years, with increased temperatures especially in valleys and inner basins. The maximum temperature increase is up to 1,5 °C. Negative results have not been observed in Armenia. The patterns of temperature change have been observed since the 1990’s over much of the Armenian territory. The climate in Armenia was influenced by global change in the last 2 decades, as results from the methods employed within the study.

Keywords: air temperature, long-term variability, trend, climate change

Procedia PDF Downloads 216
2555 The Potential Effect of Climate Changes on Food and Water Associated Infections

Authors: Mohammed A. Alhoot, Rathika A/P Nagarajan


Climate change and variability are affecting human health and diseases direct or indirectly through many mechanisms. Change in rain pattern, an increase of temperature and humidity are showing an increased trend in Malaysia. This will affect the biological, physical and chemical component of water through different pathways and will enhance the risk of waterborne diseases. Besides, the warm temperature and humid climate provide very suitable conditions for the growth of pathogenic bacteria. This study is intended to highlight the relationship between the climate changes and the incidence food and water associated infections. Incidences of food and water associated infection and climate data were collected from Malaysian Ministry of health and Malaysian Metrological Department respectively. Maximum and minimum temperature showed high correlation with incidence of typhoid, hepatitis A, dysentery, food poisoning (P value <0.05 significant with 2 tailed / 0.5<[r]). Heavy rainfall does not associated with any outbreaks. Climate change brings out new challenges in controlling food and water associated infections. Adaptation strategies should involve all key stakeholders with a strong regional cooperation to prevent and deal with cross-boundary health crises. Moreover, the role of health care personnel at local, state and national levels is important to ensure the success of these programmes. As has been shown herein, climate variability is an important element influencing the food and water associated epidemiology in Malaysia. The results of this study are crucial to implementing climate changes as a factor to reduce any future outbreaks.

Keywords: climate change, typhoid, hepatitis A, dysentery, food poisoning

Procedia PDF Downloads 237
2554 Impacts of Climate Change on Food Grain Yield and Its Variability across Seasons and Altitudes in Odisha

Authors: Dibakar Sahoo, Sridevi Gummadi


The focus of the study is to empirically analyse the climatic impacts on foodgrain yield and its variability across seasons and altitudes in Odisha, one of the most vulnerable states in India. The study uses Just-Pope Stochastic Production function by using two-step Feasible Generalized Least Square (FGLS): mean equation estimation and variance equation estimation. The study uses the panel data on foodgrain yield, rainfall and temperature for 13 districts during the period 1984-2013. The study considers four seasons: winter (December-February), summer (March-May), Rainy (June-September) and autumn (October-November). The districts under consideration have been categorized under three altitude regions such as low (< 70 masl), middle (153-305 masl) and high (>305 masl) altitudes. The results show that an increase in the standard deviations of monthly rainfall during rainy and autumn seasons have an adversely significant impact on the mean yield of foodgrains in Odisha. The summer temperature has beneficial effects by significantly increasing mean yield as the summer season is associated with harvesting stage of Rabi crops. The changing pattern of temperature has increasing effect on the yield variability of foodgrains during the summer season, whereas it has a decreasing effect on yield variability of foodgrains during the Rainy season. Moreover, the positive expected signs of trend variable in both mean and variance equation suggests that foodgrain yield and its variability increases with time. On the other hand, a change in mean levels of rainfall and temperature during different seasons has heterogeneous impacts either harmful or beneficial depending on the altitudes. These findings imply that adaptation strategies should be tailor-made to minimize the adverse impacts of climate change and variability for sustainable development across seasons and altitudes in Odisha agriculture.

Keywords: altitude, adaptation strategies, climate change, foodgrain

Procedia PDF Downloads 173
2553 Uncertainty in Near-Term Global Surface Warming Linked to Pacific Trade Wind Variability

Authors: M. Hadi Bordbar, Matthew England, Alex Sen Gupta, Agus Santoso, Andrea Taschetto, Thomas Martin, Wonsun Park, Mojib Latif


Climate models generally simulate long-term reductions in the Pacific Walker Circulation with increasing atmospheric greenhouse gases. However, over two recent decades (1992-2011) there was a strong intensification of the Pacific Trade Winds that is linked with a slowdown in global surface warming. Using large ensembles of multiple climate models forced by increasing atmospheric greenhouse gas concentrations and starting from different ocean and/or atmospheric initial conditions, we reveal very diverse 20-year trends in the tropical Pacific climate associated with a considerable uncertainty in the globally averaged surface air temperature (SAT) in each model ensemble. This result suggests low confidence in our ability to accurately predict SAT trends over 20-year timescale only from external forcing. We show, however, that the uncertainty can be reduced when the initial oceanic state is adequately known and well represented in the model. Our analyses suggest that internal variability in the Pacific trade winds can mask the anthropogenic signal over a 20-year time frame, and drive transitions between periods of accelerated global warming and temporary slowdown periods.

Keywords: trade winds, walker circulation, hiatus in the global surface warming, internal climate variability

Procedia PDF Downloads 179
2552 Impacts of Climate Change on Water Resources Management in the Mahi River Basin of India

Authors: Y. B. Sharma, K. B. Biswas


This research project examines a 5000 cal yr BP sediment core record to reveal the consequences of human impact and climate variability on the tropical dry forests of the Mahi river basin, western India. To date there has been little research to assess the impact of climate variability and human impact on the vegetation dynamics of this region. There has also been little work to link changes in vegetation cover to documented changes in the basin hydrology over the past 100 years – although it is assumed that the two are closely linked. The key objective of this research project therefore is to understand the driving mechanisms responsible for the abrupt changes in the Mahi river basin as detailed in historical documentation and its impact on water resource management. The Mahi river basin is located in western India (22° 11’-24° 35’ N 72° 46’-74° 52’ E). Mahi river arises in the Malwa Plateau, Madhya Pradesh near Moripara and flows through the uplands and alluvial plain of Rajasthan and Gujarat provinces before draining into the Gulf of Cambay. Palaeoecological procedures (sedimentology, geochemical analysis, C&N isotopes and fossil pollen evidences) have been applied on sedimentary sequences collected from lakes in the Mahi basin. These techniques then facilitate to reconstruct the soil erosion, nutrient cycling, vegetation changes and climatic variability over the last 5000 years. Historical documentation detailing changes in demography, climate and landscape use over the past 100 years in this region will also be collated to compare with the most recent palaeoecological records. The results of the research work provide a detailed record of vegetation change, soil erosion, changes in aridity, and rainfall patterns in the region over the past 5000 years. This research therefore aims to determine the drivers of change and natural variability in the basin. Such information is essential for its current and future management including restoration.

Keywords: human impact, climate variability, vegetation cover, hydrology, water resource management, Mahi river basin, sedimentology, geochemistry, fossil pollen, nutrient cycling, vegetation changes, palaeoecology, aridity, rainfall, drivers of change

Procedia PDF Downloads 298
2551 Vulnerability of Indian Agriculture to Climate Change: A Study of the Himalayan Region State

Authors: Rajendra Kumar Isaac, Monisha Isaac


Climate variability and changes are the emerging challenges for Indian agriculture with the growing population to ensure national food security. A study was conducted to assess the Climatic Change effects in medium to low altitude areas of the Himalayan region causing changes in land use and cereal crop productivity with the various climatic parameters. The rainfall and temperature changes from 1951 to 2013 were studied at four locations of varying altitudes, namely Hardwar, Rudra Prayag, Uttar Kashi and Tehri Garwal. It was observed that there is noticeable increment in temperature on all the four locations. It was surprisingly observed that the mean rainfall intensity of 30 minutes duration has increased at the rate of 0.1 mm/hours since 2000. The study shows that the combined effect of increasing temperature, rainfall, runoff and urbanization at the mid-Himalayan region is causing an increase in various climatic disasters and changes in agriculture patterns. A noticeable change in cropping patterns, crop productivity and land use change was observed. Appropriate adaptation and mitigation strategies are necessary to ensure that sustainable and climate-resilient agriculture. Appropriate information is necessary for farmers, as well as planners and decision makers for developing, disseminating and adopting climate-smart technologies.

Keywords: climate variability, agriculture, land use, mitigation strategies

Procedia PDF Downloads 192
2550 Statistical Analysis of Rainfall Change over the Blue Nile Basin

Authors: Hany Mustafa, Mahmoud Roushdi, Khaled Kheireldin


Rainfall variability is an important feature of semi-arid climates. Climate change is very likely to increase the frequency, magnitude, and variability of extreme weather events such as droughts, floods, and storms. The Blue Nile Basin is facing extreme climate change-related events such as floods and droughts and its possible impacts on ecosystem, livelihood, agriculture, livestock, and biodiversity are expected. Rainfall variability is a threat to food production in the Blue Nile Basin countries. This study investigates the long-term variations and trends of seasonal and annual precipitation over the Blue Nile Basin for 102-year period (1901-2002). Six statistical trend analysis of precipitation was performed with nonparametric Mann-Kendall test and Sen's slope estimator. On the other hands, four statistical absolute homogeneity tests: Standard Normal Homogeneity Test, Buishand Range test, Pettitt test and the Von Neumann ratio test were applied to test the homogeneity of the rainfall data, using XLSTAT software, which results of p-valueless than alpha=0.05, were significant. The percentages of significant trends obtained for each parameter in the different seasons are presented. The study recommends adaptation strategies to be streamlined to relevant policies, enhancing local farmers’ adaptive capacity for facing future climate change effects.

Keywords: Blue Nile basin, climate change, Mann-Kendall test, trend analysis

Procedia PDF Downloads 432
2549 Analyzing the Impact of Spatio-Temporal Climate Variations on the Rice Crop Calendar in Pakistan

Authors: Muhammad Imran, Iqra Basit, Mobushir Riaz Khan, Sajid Rasheed Ahmad


The present study investigates the space-time impact of climate change on the rice crop calendar in tropical Gujranwala, Pakistan. The climate change impact was quantified through the climatic variables, whereas the existing calendar of the rice crop was compared with the phonological stages of the crop, depicted through the time series of the Normalized Difference Vegetation Index (NDVI) derived from Landsat data for the decade 2005-2015. Local maxima were applied on the time series of NDVI to compute the rice phonological stages. Panel models with fixed and cross-section fixed effects were used to establish the relation between the climatic parameters and the time-series of NDVI across villages and across rice growing periods. Results show that the climatic parameters have significant impact on the rice crop calendar. Moreover, the fixed effect model is a significant improvement over cross-sectional fixed effect models (R-squared equal to 0.673 vs. 0.0338). We conclude that high inter-annual variability of climatic variables cause high variability of NDVI, and thus, a shift in the rice crop calendar. Moreover, inter-annual (temporal) variability of the rice crop calendar is high compared to the inter-village (spatial) variability. We suggest the local rice farmers to adapt this change in the rice crop calendar.

Keywords: Landsat NDVI, panel models, temperature, rainfall

Procedia PDF Downloads 125
2548 Effect of Climate Variability on Children Health Outcomes in Rural Uganda

Authors: Emily Injete Amondo, Alisher Mirzabaev, Emmanuel Rukundo


Children in rural farming households are often vulnerable to a multitude of risks, including health risks associated with climate change and variability. Cognizant of this, this study empirically traced the relationship between climate variability and nutritional health outcomes in rural children while identifying the cause-and-effect transmission mechanisms. We combined four waves of the rich Uganda National Panel Survey (UNPS), part of the World Bank Living Standards Measurement Studies (LSMS) for the period 2009-2014, with long-term and high-frequency rainfall and temperature datasets. Self-reported drought and flood shock variables were further used in separate regressions for triangulation purposes and robustness checks. Panel fixed effects regressions were applied in the empirical analysis, accounting for a variety of causal identification issues. The results showed significant negative outcomes for children’s anthropometric measurements due to the impacts of moderate and extreme droughts, extreme wet spells, and heatwaves. On the contrary, moderate wet spells were positively linked with nutritional measures. Agricultural production and child diarrhea were the main transmission channels, with heatwaves, droughts, and high rainfall variability negatively affecting crop output. The probability of diarrhea was positively related to increases in temperature and dry spells. Results further revealed that children in households who engaged in ex-ante or anticipatory risk-reducing strategies such as savings had better health outcomes as opposed to those engaged in ex-post coping such as involuntary change of diet. These results highlight the importance of adaptation in smoothing the harmful effects of climate variability on the health of rural households and children in Uganda.

Keywords: extreme weather events, undernutrition, diarrhea, agricultural production, gridded weather data

Procedia PDF Downloads 40
2547 Variability of Hydrological Modeling of the Blue Nile

Authors: Abeer Samy, Oliver C. Saavedra Valeriano, Abdelazim Negm


The Blue Nile Basin is the most important tributary of the Nile River. Egypt and Sudan are almost dependent on water originated from the Blue Nile. This multi-dependency creates conflicts among the three countries Egypt, Sudan, and Ethiopia making the management of these conflicts as an international issue. Good assessment of the water resources of the Blue Nile is an important to help in managing such conflicts. Hydrological models are good tool for such assessment. This paper presents a critical review of the nature and variability of the climate and hydrology of the Blue Nile Basin as a first step of using hydrological modeling to assess the water resources of the Blue Nile. Many several attempts are done to develop basin-scale hydrological modeling on the Blue Nile. Lumped and semi distributed models used averages of meteorological inputs and watershed characteristics in hydrological simulation, to analyze runoff for flood control and water resource management. Distributed models include the temporal and spatial variability of catchment conditions and meteorological inputs to allow better representation of the hydrological process. The main challenge of all used models was to assess the water resources of the basin is the shortage of the data needed for models calibration and validation. It is recommended to use distributed model for their higher accuracy to cope with the great variability and complexity of the Blue Nile basin and to collect sufficient data to have more sophisticated and accurate hydrological modeling.

Keywords: Blue Nile Basin, climate change, hydrological modeling, watershed

Procedia PDF Downloads 269
2546 Understanding the Impact of Climate Change on Farmer's Technical Efficiency in Mali

Authors: Christelle Tchoupé Makougoum


In the context of agriculture, differences across localities in term of climate change can create systematic variation among farmers technical efficiency. Failure to account for climate variability could lead to wrong conclusions about farmers’ technical efficiency and also it could bias the ranking of farmers according to their managerial performance. The literature on agricultural productivity has given little attention to this issue whereas it is necessary for establishing to what extent climate affects farmers efficiency. This article contributes to the preview literature by two ways. First, it proposed a new econometric model that accounting for the climate change influences on technical efficiency in the specific area of agriculture. Second it estimates the inefficiency due to climate change and the real managerial performance of Malian farmers. Using the Mali’s data from agricultural census and CRU TS3 climatic database we implemented an adjusted stochastic frontier methodology to account for the impact of environmental factors. The results yield three main findings. First, instability in temperatures and rainfall decreases technical efficiency on average. Second, the climate change modifies the classification of the farmers according to their efficiency scores. Thirdly it is noted that, although climate changes are partly responsible for the deviation from the border, the capacity of farmers to combine inputs into the optimal proportion is more to undermine. The study concluded that improving farmer efficiency should include fostering their resilience to climate change.

Keywords: agriculture, climate change, stochastic production function, technical efficiency

Procedia PDF Downloads 406
2545 Statistical Classification, Downscaling and Uncertainty Assessment for Global Climate Model Outputs

Authors: Queen Suraajini Rajendran, Sai Hung Cheung


Statistical down scaling models are required to connect the global climate model outputs and the local weather variables for climate change impact prediction. For reliable climate change impact studies, the uncertainty associated with the model including natural variability, uncertainty in the climate model(s), down scaling model, model inadequacy and in the predicted results should be quantified appropriately. In this work, a new approach is developed by the authors for statistical classification, statistical down scaling and uncertainty assessment and is applied to Singapore rainfall. It is a robust Bayesian uncertainty analysis methodology and tools based on coupling dependent modeling error with classification and statistical down scaling models in a way that the dependency among modeling errors will impact the results of both classification and statistical down scaling model calibration and uncertainty analysis for future prediction. Singapore data are considered here and the uncertainty and prediction results are obtained. From the results obtained, directions of research for improvement are briefly presented.

Keywords: statistical downscaling, global climate model, climate change, uncertainty

Procedia PDF Downloads 280
2544 Spatio-Temporal Variability and Trends in Frost-Free Season Parameters in Finland: Influence of Climate Teleconnections

Authors: Masoud Irannezhad, Sirpa Rasmus, Saghar Ahmadian, Deliang Chen, Bjorn Klove


Variability and changes in thermal conditions play a crucial role in functioning of human society, particularly over cold climate regions like Finland. Accordingly, the frost-free season (FFS) parameters in terms of start (FFSS), end (FFSE) and length (FFSL) have substantial effects not only on natural environment (e.g. flora and fauna), but also on human requirements (e.g. agriculture, forestry and energy generation). Applying the 0°C threshold of minimum temperature (Tmin), the FFS was defined as the period between the last spring frost as FFSS and the first fall frost as FFSE. For this study, gridded (10 x 10 km2) daily minimum temperature datasets throughout Finland during 1961-2011 was used to investigate recent spatio-temporal variations and trends in frost-free season (FFS) parameters and their relationships with the well-known large-scale climate teleconnections (CTs). The FFS in Finland naturally increases from north (~60 days) to south (~190 days), in association with earlier FFSS (~24 April) and later FFSE (~30 October). Statistically significant (p<0.05) trends in FFSL were all positive (increasing) ranged between 0 and 13.5 (days/decade) and mainly observed in the east, upper west, centre and upper north of Finland. Such lengthening trends in FFS were attributable to both earlier FFSS and later FFSE mostly over central and upper northern Finland, while only to later FFSE in eastern and upper western parts. Variations in both FFSL and FFSS were significantly associated with the Polar (POL) pattern over northern Finland, while with the East Atlantic (EA) pattern over eastern and upper western areas. However, the POL and Scandinavia (SCA) patterns were most influential CTs for FFSE variability over northern Finland.

Keywords: climate teleconnections, Finland, frost-free season, trend analysis

Procedia PDF Downloads 113
2543 Reverse Impact of Temperature as Climate Factor on Milk Production in ChaharMahal and Bakhtiari

Authors: V. Jafari, M. Jafari


When long-term changes in normal weather patterns happen in a certain area, it generally could be identified as climate change. Concentration of principal's greenhouse gases such as carbon dioxide, nitrous oxide, methane, ozone, and water vapor will cause climate change and perhaps climate variability. Main climate factors are temperature, precipitation, air pressure, and humidity. Extreme events may be the result of the changing of carbon dioxide concentration levels in the atmosphere which cause a change in temperature. Extreme events in some ways will affect the productivity of crop and dairy livestock. In this research, the correlation of milk production and temperature as the main climate factor in ChaharMahal and Bakhtiari province in Iran has been considered. The methodology employed for this study consists, collect reports and published national and provincial data, available recorded data on climate factors and analyzing collected data using statistical software. Milk production in ChaharMahal and Bakhtiari province is in the same pattern as national milk production in Iran. According to the current study results, there is a significant negative correlation between milk production in ChaharMahal and Bakhtiari provinces and temperature as the main climate change factor.

Keywords: Chaharmahal and Bakhtiari, climate change, impacts, Iran, milk production

Procedia PDF Downloads 79
2542 Indicator-Based Approach for Assessing Socio Economic Vulnerability of Dairy Farmers to Impacts of Climate Variability and Change in India

Authors: Aparna Radhakrishnan, Jancy Gupta, R. Dileepkumar


This paper aims at assessing the Socio Economic Vulnerability (SEV) of dairy farmers to Climate Variability and Change (CVC) in 3 states of Western Ghat region in India. For this purpose, a composite SEV index has been developed on the basis of functional relationships amongst sensitivity, exposure and adaptive capacity using 30 indicators related to dairy farming underlying the principles of Intergovernmental Panel on Climate Change and Fussel framework for nomenclature of vulnerable situation. Household level data were collected through Participatory Rural Appraisal and personal interviews of 540 dairy farmers of nine taluks, three each from a district selected from Kerala, Karnataka and Maharashtra, complemented by thirty years of gridded weather data. The data were normalized and then combined into three indices for sensitivity, exposure and adaptive capacity, which were then averaged with weights given using principal component analysis, to obtain the overall SEV index. Results indicated that the taluks of Western Ghats are vulnerable to CVC. The dairy farmers of Pulpally taluka were most vulnerable having the SEV score +1.24 and 42.66% farmers under high-level vulnerability category. Even though the taluks are geographically closer, there is wide variation in SEV components. Policies for incentivizing the ‘climate risk adaptation’ costs for small and marginal farmers and livelihood infrastructure for mitigating risks and promoting grass root level innovations are necessary to sustain dairy farming of the region.

Keywords: climate change, dairy, vulnerability, livelihoods, adaptation strategies

Procedia PDF Downloads 346
2541 Impacts of Present and Future Climate Variability on Forest Ecosystem in Mediterranean Region

Authors: Orkan Ozcan, Nebiye Musaoglu, Murat Turkes


Climate change is largely recognized as one of the real, pressing and significant global problems. The concept of ‘climate change vulnerability’ helps us to better comprehend the cause/effect relationships behind climate change and its impact on human societies, socioeconomic sectors, physiographical and ecological systems. In this study, multifactorial spatial modeling was applied to evaluate the vulnerability of a Mediterranean forest ecosystem to climate change. As a result, the geographical distribution of the final Environmental Vulnerability Areas (EVAs) of the forest ecosystem is based on the estimated final Environmental Vulnerability Index (EVI) values. This revealed that at current levels of environmental degradation, physical, geographical, policy enforcement and socioeconomic conditions, the area with a ‘very low’ vulnerability degree covered mainly the town, its surrounding settlements and the agricultural lands found mainly over the low and flat travertine plateau and the plains at the east and southeast of the district. The spatial magnitude of the EVAs over the forest ecosystem under the current environmental degradation was also determined. This revealed that the EVAs classed as ‘very low’ account for 21% of the total area of the forest ecosystem, those classed as ‘low’ account for 36%, those classed as ‘medium’ account for 20%, and those classed as ‘high’ account for 24%. Based on regionally averaged future climate assessments and projected future climate indicators, both the study site and the western Mediterranean sub-region of Turkey will probably become associated with a drier, hotter, more continental and more water-deficient climate. This analysis holds true for all future scenarios, with the exception of RCP4.5 for the period from 2015 to 2030. However, the present dry-sub humid climate dominating this sub-region and the study area shows a potential for change towards more dry climatology and for it to become a semiarid climate in the period between 2031 and 2050 according to the RCP8.5 high emission scenario. All the observed and estimated results and assessments summarized in the study show clearly that the densest forest ecosystem in the southern part of the study site, which is characterized by mainly Mediterranean coniferous and some mixed forest and the maquis vegetation, will very likely be influenced by medium and high degrees of vulnerability to future environmental degradation, climate change and variability.

Keywords: forest ecosystem, Mediterranean climate, RCP scenarios, vulnerability analysis

Procedia PDF Downloads 275