Search results for: buildings as material banks
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8596

Search results for: buildings as material banks

4366 The Effect of Problem-Based Mobile-Assisted Tasks on Spoken Intelligibility of English as a Foreign Language Learners

Authors: Loghman Ansarian, Teoh Mei Lin

Abstract:

In an attempt to increase oral proficiency of Iranian EFL learners, the researchers compared the effect of problem-based mobile-assisted language learning with the conventional language learning approach (Communicative Language Teaching) in Iran. The experimental group (n=37) went through PBL instruction and the control group (n=33) went through conventional instruction. The results of quantitative data analysis after 26 sessions of treatment revealed that PBL could positively affect participants' knowledge of grammar, vocabulary, spoken fluency, and pronunciation; however, in terms of task achievement, no significant effect was found. This study can have pedagogical implications for language teachers, and material developers.

Keywords: problem-based learning, spoken intelligibility, Iranian EFL context, cognitive learning

Procedia PDF Downloads 165
4365 Durability of Lightweight Concrete Material Made from Date Palma Seeds

Authors: Mohammed Almograbi

Abstract:

Libya is one of the largest producers of dates from date palm, generating about 60000 tonnes of date palm seeds (DPS) annually. This large amount of seeds led to studies into the possible use as aggregates in lightweight concrete for some special structures. The utilization of DPS as aggregate in concrete provides a good solution as alternative aggregate to the stone aggregate. It has been recognized that, DPS can be used as coarse aggregate in structural lightweight concrete industry. For any structure member, the durability is one of the most important considerations during its service life. This paper presents the durability properties of DPS concrete. These include the water permeability, water absorption, sorptivity and chloride penetration. The test results obtained were comparable to the conventional lightweight concrete.

Keywords: date palm seeds, lightweight concrete, durability, sustainability, permeability of concrete, water absorption of concrete, sorptivity of concrete

Procedia PDF Downloads 638
4364 Hardness Analysis of Samples of Friction Stir Welded Joints of (Al-Cu)

Authors: Upamanyu Majumder, Angshuman Das

Abstract:

Friction Stir Welding (FSW) is a Solid-State joining process. Unlike fusion welding techniques it does not involve operation above the melting point temperature of metals, but above the re-crystallization temperature. FSW also does not involve fusion of other material. FSW of ALUMINIUM has been commercialized and recent studies on joining dissimilar metals have been studied. Friction stir welding was introduced and patented in 1991 by The Welding Institute. For this paper, a total of nine samples each of copper and ALUMINIUM(Dissimilar metals) were welded using FSW process and Vickers Hardness were conducted on each of the samples.

Keywords: friction stir welding (FSW), recrystallization temperature, dissimilar metals, aluminium-copper, Vickers hardness test

Procedia PDF Downloads 342
4363 The Role of Branding for Success in the Georgian Tea Market

Authors: Maia Seturi, Tamari Todua

Abstract:

Economic growth is seen as the increase in the production capacity of a country. It enables a country to produce more and more material wealth and social benefits. Today, the success of any product on the market is closely related to the issue of branding. The brand is a source of information for a user/consumer, which helps to simplify the choice of goods and reduce consumer risk. The paper studies the role of branding in order to promote Georgian tea brands. The main focus of the research is directed to consumer attitudes regarding Georgian tea brands. The methodology of the paper is based on marketing research. The findings study revealed that the majority of consumers prefer foreign tea brands. The final part of the article presents the main recommendations.

Keywords: marketing research, customer behavior, brand, successful brand

Procedia PDF Downloads 123
4362 Friction and Wear, Including Mechanisms, Modeling,Characterization, Measurement and Testing (Bangladesh Case)

Authors: Gor Muradyan

Abstract:

The paper is about friction and wear, including mechanisms, modeling, characterization, measurement and testing case in Bangladesh. Bangladesh is a country under development, A lot of people live here, approximately 145 million. The territory of this country is very small. Therefore buildings are very close to each other. As the pipe lines are very old, and people get almost dirty water, there are a lot of ongoing projects under ADB. In those projects the contractors using HDD machines (Horizontal Directional Drilling ) and grundoburst. These machines are working underground. As ground in Bangladesh is very sludge, machine can't work relevant because of big friction in the soil. When drilling works are finished machine is pulling the pipe underground. Very often the pulling of the pipes becomes very complicated because of the friction. Therefore long section of the pipe laying can’t be done because of a big friction. In that case, additional problems rise, as well as additional work must be done. As we mentioned above it is not possible to do big section of the pipe laying because of big friction in the soil, Because of this it is coming out that contractors must do more joints, more pressure test. It is always connected with additional expenditure and losing time. This machine can pull in 75 mm to 500 mm pipes connected with the soil condition. Length is possible till 500m related how much friction it will had on the puller. As less as much it can pull. Another machine grundoburst is not working at this soil condition at all. The machine is working with air compressor. This machine are using for the smaller diameter pipes, 20 mm to 63 mm. Most of the cases these machines are being used for the installing of the house connection pipes, for making service connection. To make a friction less contractors using bigger pulling had then the pipe. It is taking down the friction, But the problem of this machine is that it can't work at sludge. Because of mentioned reasons the friction has a big mining during this kind of works. There are a lot of ways to reduce the friction. In this paper we'll introduce the ways that we have researched during our practice in Bangladesh.

Keywords: Bangladesh, friction and wear, HDD machines, reducing friction

Procedia PDF Downloads 299
4361 Fabrication of Highly Roughened Zirconia Surface by a Room Temperature Spray Coating

Authors: Hyeong-Jin Kim, Jong Kook Lee

Abstract:

Zirconia has biological, mechanical and optical properties, so, it used as a dental implant material in human body. But, it is difficult to form directly bonding with living tissues after the procedure and induces the falling away from implanted parts of the body. To improve this phenomenon, it is essential to increase the surface roughness of zirconia implants and induce a forming-ability of strong bonds. In this study, we performed a room temperature spray coating on zirconia specimen to obtain a highly roughened zirconia surface. To get optimal surface roughness, we controlled the distance between the nozzle and the substrate, coating times and powder condition. Bonding microstructure, surface roughness, and chemical composition of the coating layer were observed by SEM, XRD and roughness tester.

Keywords: implant, aerosoldeposition, zirconia, dental

Procedia PDF Downloads 202
4360 Raman Spectroscopy Analysis of MnTiO₃-TiO₂ Eutectic

Authors: Adrian Niewiadomski, Barbara Surma, Katarzyna Kolodziejak, Dorota A. Pawlak

Abstract:

Oxide-oxide eutectic is attracting increasing interest of scientific community because of their unique properties and numerous potential applications. Some of the most interesting examples of applications are metamaterials, glucose sensors, photoactive materials, thermoelectric materials, and photocatalysts. Their unique properties result from the fact that composite materials consist of two or more phases. As a result, these materials have additive and product properties. Additive properties originate from particular phases while product properties originate from the interaction between phases. MnTiO3-TiO2 eutectic is one of such materials. TiO2 is a well-known semiconductor, and it is used as a photocatalyst. Moreover, it may be used to produce solar cells, in a gas sensing devices and in electrochemistry. MnTiO3 is a semiconductor and antiferromagnetic. Therefore it has potential application in integrated circuits devices, and as a gas and humidity sensor, in non-linear optics and as a visible-light activated photocatalyst. The above facts indicate that eutectic MnTiO3-TiO2 constitutes an extremely promising material that should be studied. Despite that Raman spectroscopy is a powerful method to characterize materials, to our knowledge Raman studies of eutectics are very limited, and there are no studies of the MnTiO3-TiO2 eutectic. While to our knowledge the papers regarding this material are scarce. The MnTiO3-TiO2 eutectic, as well as TiO2 and MnTiO3 single crystals, were grown by the micro-pulling-down method at the Institute of Electronic Materials Technology in Warsaw, Poland. A nitrogen atmosphere was maintained during whole crystal growth process. The as-grown samples of MnTiO3-TiO2 eutectic, as well as TiO2 and MnTiO3 single crystals, are black and opaque. Samples were cut perpendicular to the growth direction. Cross sections were examined with scanning electron microscopy (SEM) and with Raman spectroscopy. The present studies showed that maintaining nitrogen atmosphere during crystal growth process may result in obtaining black TiO2 crystals. SEM and Raman experiments showed that studied eutectic consists of three distinct regions. Furthermore, two of these regions correspond with MnTiO3, while the third region corresponds with the TiO2-xNx phase. Raman studies pointed out that TiO2-xNx phase crystallizes in rutile structure. The studies show that Raman experiments may be successfully used to characterize eutectic materials. The MnTiO3-TiO2 eutectic was grown by the micro-pulling-down method. SEM and micro-Raman experiments were used to establish phase composition of studied eutectic. The studies revealed that the TiO2 phase had been doped with nitrogen. Therefore the TiO2 phase is, in fact, a solid solution with TiO2-xNx composition. The remaining two phases exhibit Raman lines of both rutile TiO2 and MnTiO3. This points out to some kind of coexistence of these phases in studied eutectic.

Keywords: compound materials, eutectic growth and characterization, Raman spectroscopy, rutile TiO₂

Procedia PDF Downloads 184
4359 Oriented Strandboard-GEOGYPTM Undelayment, a Novel Composite Flooring System

Authors: B. Noruziaan, A. Shvarzman, R. Leahy

Abstract:

An innovative flooring underlayment was produced and tested. The composite system is made of common OSB boards and a layer of eco-friendly non-cement gypsum based material (GeoGypTM). It was found that the shear bond between the two materials is sufficient to secure the composite interaction between the two. The very high compressive strength and relatively high tensile strength of the non-cement based component together with its high modulus of elasticity provides enough strength and stiffness for the composite product to cover wider spacing between the joists. The initial findings of this study indicate that with joist spacing as wide as 800 mm, the flooring system provides enough strength without compromising the serviceability requirements of the building codes.

Keywords: Composite, floor deck, gypsum based, lumber joist, non-cement, oriented strandboard, shear bond

Procedia PDF Downloads 410
4358 Semiconductor Properties of Natural Phosphate Application to Photodegradation of Basic Dyes in Single and Binary Systems

Authors: Y. Roumila, D. Meziani, R. Bagtache, K. Abdmeziem, M. Trari

Abstract:

Heterogeneous photocatalysis over semiconductors has proved its effectiveness in the treatment of wastewaters since it works under soft conditions. It has emerged as a promising technique, giving rise to less toxic effluents and offering the opportunity of using sunlight as a sustainable and renewable source of energy. Many compounds have been used as photocatalysts. Though synthesized ones are intensively used, they remain expensive, and their synthesis involves special conditions. We thus thought of implementing a natural material, a phosphate ore, due to its low cost and great availability. Our work is devoted to the removal of hazardous organic pollutants, which cause several environmental problems and health risks. Among them, dye pollutants occupy a large place. This work relates to the study of the photodegradation of methyl violet (MV) and rhodamine B (RhB), in single and binary systems, under UV light and sunlight irradiation. Methyl violet is a triarylmethane dye, while RhB is a heteropolyaromatic dye belonging to the Xanthene family. In the first part of this work, the natural compound was characterized using several physicochemical and photo-electrochemical (PEC) techniques: X-Ray diffraction, chemical, and thermal analyses scanning electron microscopy, UV-Vis diffuse reflectance measurements, and FTIR spectroscopy. The electrochemical and photoelectrochemical studies were performed with a Voltalab PGZ 301 potentiostat/galvanostat at room temperature. The structure of the phosphate material was well characterized. The photo-electrochemical (PEC) properties are crucial for drawing the energy band diagram, in order to suggest the formation of radicals and the reactions involved in the dyes photo-oxidation mechanism. The PEC characterization of the natural phosphate was investigated in neutral solution (Na₂SO₄, 0.5 M). The study revealed the semiconducting behavior of the phosphate rock. Indeed, the thermal evolution of the electrical conductivity was well fitted by an exponential type law, and the electrical conductivity increases with raising the temperature. The Mott–Schottky plot and current-potential J(V) curves recorded in the dark and under illumination clearly indicate n-type behavior. From the results of photocatalysis, in single solutions, the changes in MV and RhB absorbance in the function of time show that practically all of the MV was removed after 240 mn irradiation. For RhB, the complete degradation was achieved after 330 mn. This is due to its complex and resistant structure. In binary systems, it is only after 120 mn that RhB begins to be slowly removed, while about 60% of MV is already degraded. Once nearly all of the content of MV in the solution has disappeared (after about 250 mn), the remaining RhB is degraded rapidly. This behaviour is different from that observed in single solutions where both dyes are degraded since the first minutes of irradiation.

Keywords: environment, organic pollutant, phosphate ore, photodegradation

Procedia PDF Downloads 121
4357 Sustainable Production of Pharmaceutical Compounds Using Plant Cell Culture

Authors: David A. Ullisch, Yantree D. Sankar-Thomas, Stefan Wilke, Thomas Selge, Matthias Pump, Thomas Leibold, Kai Schütte, Gilbert Gorr

Abstract:

Plants have been considered as a source of natural substances for ages. Secondary metabolites from plants are utilized especially in medical applications but are more and more interesting as cosmetical ingredients and in the field of nutraceuticals. However, supply of compounds from natural harvest can be limited by numerous factors i.e. endangered species, low product content, climate impacts and cost intensive extraction. Especially in the pharmaceutical industry the ability to provide sufficient amounts of product and high quality are additional requirements which in some cases are difficult to fulfill by plant harvest. Whereas in many cases the complexity of secondary metabolites precludes chemical synthesis on a reasonable commercial basis, plant cells contain the biosynthetic pathway – a natural chemical factory – for a given compound. A promising approach for the sustainable production of natural products can be plant cell fermentation (PCF®). A thoroughly accomplished development process comprises the identification of a high producing cell line, optimization of growth and production conditions, the development of a robust and reliable production process and its scale-up. In order to address persistent, long lasting production, development of cryopreservation protocols and generation of working cell banks is another important requirement to be considered. So far the most prominent example using a PCF® process is the production of the anticancer compound paclitaxel. To demonstrate the power of plant suspension cultures here we present three case studies: 1) For more than 17 years Phyton produces paclitaxel at industrial scale i.e. up to 75,000 L in scale. With 60 g/kg dw this fully controlled process which is applied according to GMP results in outstanding high yields. 2) Thapsigargin is another anticancer compound which is currently isolated from seeds of Thapsia garganica. Thapsigargin is a powerful cytotoxin – a SERCA inhibitor – and the precursor for the derivative ADT, the key ingredient of the investigational prodrug Mipsagargin (G-202) which is in several clinical trials. Phyton successfully generated plant cell lines capable to express this compound. Here we present data about the screening for high producing cell lines. 3) The third case study covers ingenol-3-mebutate. This compound is found in the milky sap of the intact plants of the Euphorbiacae family at very low concentrations. Ingenol-3-mebutate is used in Picato® which is approved against actinic keratosis. Generation of cell lines expressing significant amounts of ingenol-3-mebutate is another example underlining the strength of plant cell culture. The authors gratefully acknowledge Inspyr Therapeutics for funding.

Keywords: Ingenol-3-mebutate, plant cell culture, sustainability, thapsigargin

Procedia PDF Downloads 235
4356 Geometrically Linear Symmetric Free Vibration Analysis of Sandwich Beam

Authors: Ibnorachid Zakaria, El Bikri Khalid, Benamar Rhali, Farah Abdoun

Abstract:

The aim of the present work is to study the linear free symmetric vibration of three-layer sandwich beam using the energy method. The zigzag model is used to describe the displacement field. The theoretical model is based on the top and bottom layers behave like Euler-Bernoulli beams while the core layer like a Timoshenko beam. Based on Hamilton’s principle, the governing equation of motion sandwich beam is obtained in order to calculate the linear frequency parameters for a clamped-clamped and simple supported-simple-supported beams. The effects of material properties and geometric parameters on the natural frequencies are also investigated.

Keywords: linear vibration, sandwich, shear deformation, Timoshenko zig-zag model

Procedia PDF Downloads 460
4355 Conceptual Understanding for the Adoption of Energy Assessment Methods in the United Arab Emirates Built Environment

Authors: Amna I. Shibeika, Batoul Y. Hittini, Tasneem B. Abd Bakri

Abstract:

Regulation and integration of public policy, economy, insurance industry, education, and construction stakeholders are the main contributors to achieve sustainable development. Building environmental assessment methods were introduced in the field to address issues such as global warming and conservation of natural resources. In the UAE, Estidama framework with its associated Pearl Building Rating System (PBRS) has been introduced in 2010 to address and spread sustainability practices within the country’s fast-growing built environment. Based on literature review of relevant studies investigating different project characteristics that influence sustainability outcomes, this paper presents a conceptual framework for understanding the adoption of PBRS in UAE projects. The framework also draws on Diffusion of Innovations theory to address the questions of how the assessment method is chosen in the first place and what is the impact of PBRS on the multi-disciplinary design and construction processes. The study highlights the mandatory nature of the adoption of PBRS for government buildings as well as imbedding Estidama principles within Abu Dhabi building codes as key factors for raising awareness about sustainable practices. Moreover, several project-related elements are addressed to understand their relationship with the adoption process, including project team collaboration; communication and coordination; levels of commitment and engagement; and the involvement of key actors as sustainability champions. This conceptualization of the adoption of PBRS in UAE projects contributes to the growing literature on the adoption of energy assessment tools and addresses the UAE vision is to be at the forefront of innovative sustainable development by 2021.

Keywords: adoption, building assessment, design management, innovation, sustainability

Procedia PDF Downloads 135
4354 Mechanical Properties of Carbon Fibre Reinforced Thermoplastic Composites Consisting of Recycled Carbon Fibres and Polyamide 6 Fibres

Authors: Mir Mohammad Badrul Hasan, Anwar Abdkader, Chokri Cherif

Abstract:

With the increasing demand and use of carbon fibre reinforced composites (CFRC), disposal of the carbon fibres (CF) and end of life composite parts is gaining tremendous importance on the issue especially of sustainability. Furthermore, a number of processes (e. g. pyrolysis, solvolysis, etc.) are available currently to obtain recycled CF (rCF) from end-of-life CFRC. Since the CF waste or rCF are neither allowed to be thermally degraded nor landfilled (EU Directive 1999/31/EC), profitable recycling and re-use concepts are urgently necessary. Currently, the market for materials based on rCF mainly consists of random mats (nonwoven) made from short fibres. The strengths of composites that can be achieved from injection-molded components and from nonwovens are between 200-404 MPa and are characterized by low performance and suitable for non-structural applications such as in aircraft and vehicle interiors. On the contrary, spinning rCF to yarn constructions offers good potential for higher CFRC material properties due to high fibre orientation and compaction of rCF. However, no investigation is reported till yet on the direct comparison of the mechanical properties of thermoplastic CFRC manufactured from virgin CF filament yarn and spun yarns from staple rCF. There is a lack of understanding on the level of performance of the composites that can be achieved from hybrid yarns consisting of rCF and PA6 fibres. In this drop back, extensive research works are being carried out at the Textile Machinery and High-Performance Material Technology (ITM) on the development of new thermoplastic CFRC from hybrid yarns consisting of rCF. For this purpose, a process chain is developed at the ITM starting from fibre preparation to hybrid yarns manufacturing consisting of staple rCF by mixing with thermoplastic fibres. The objective is to apply such hybrid yarns for the manufacturing of load bearing textile reinforced thermoplastic CFRCs. In this paper, the development of innovative multi-component core-sheath hybrid yarn structures consisting of staple rCF and polyamide 6 (PA 6) on a DREF-3000 friction spinning machine is reported. Furthermore, Unidirectional (UD) CFRCs are manufactured from the developed hybrid yarns, and the mechanical properties of the composites such as tensile and flexural properties are analyzed. The results show that the UD composite manufactured from the developed hybrid yarns consisting of staple rCF possesses approximately 80% of the tensile strength and E-module to those produced from virgin CF filament yarn. The results show a huge potential of the DREF-3000 friction spinning process to develop composites from rCF for high-performance applications.

Keywords: recycled carbon fibres, hybrid yarn, friction spinning, thermoplastic composite

Procedia PDF Downloads 246
4353 Effect of the Levitation Screen Sizes on Magnetic Parameters of Tracking System

Authors: Y. R. Adullayev, О. О. Karimzada

Abstract:

Analytical expressions for inductances, current, ampere-turns, excitation winding, maximum width, coordinates of the levitation screen (LS) are derived for the calculation of electromagnetic devices based on tracking systems with levitation elements (TS with LS). Taking into account the expression of the complex magnetic resistance of the screen, the dependence of the screen width on the heating temperature of the physical and technical characteristics of the screen material and the relationship of the geometric dimensions of the magnetic circuit is established. Analytic expressions for a number of functional dependencies characterizing complex parameter relationships in explicit form are obtained and analyzed.

Keywords: tracking systems, levitation screens, electromagnetic levitation, excitation windings, magnetic cores, defining converter, receiving converter, electromagnetic force, electrical and magnetic resistance

Procedia PDF Downloads 223
4352 Green Logistics Management and Performance for Thailand’s Logistic Enterprises

Authors: Kittipong Tissayakorn, Fumio Akagi, Yu Song

Abstract:

Logistics is the integrated management of all of the activities required to move products through the supply chain. For a typical product, this supply chain extends from a raw material source through the production and distribution system to the point of consumption and the associated reverse logistics. The logistical activities are comprised of freight transport, storage, inventory management, materials handling and all related information processing. This paper analyzes the green management system of logistics enterprise for Thailand and advances the concept of Green Logistics, which should be held by the public. In addition, it proposes that the government should strengthen its supervision and support for green logistics, and companies should construct self-disciplined green logistics management systems and corresponding processes, a reverse logistics management system and a modern green logistics information collection and management system.

Keywords: logistics, green logistics, management system, ecological economics

Procedia PDF Downloads 386
4351 Seismic Behaviour of RC Knee Joints in Closing and Opening Actions

Authors: S. Mogili, J. S. Kuang, N. Zhang

Abstract:

Knee joints, the beam column connections found at the roof level of a moment resisting frame buildings, are inherently different from conventional interior and exterior beam column connections in the way that forces from adjoining members are transferred into joint and then resisted by the joint. A knee connection has two distinct load resisting mechanisms, each for closing and opening actions acting simultaneously under reversed cyclic loading. In spite of many distinct differences in the behaviour of shear resistance in knee joints, there are no special design provisions in the major design codes available across the world due to lack of in-depth research on the knee connections. To understand the relative importance of opening and closing actions in design, it is imperative to study knee joints under varying shear stresses, especially at higher opening-to-closing shear stress ratios. Three knee joint specimens, under different input shear stresses, were designed to produce a varying ratio of input opening to closing shear stresses. The design was carried out in such a way that the ratio of flexural strength of beams with consideration of axial forces in opening to closing actions are maintained at 0.5, 0.7, and 1.0, thereby resulting in the required variation of opening to closing joint shear stress ratios among the specimens. The behaviour of these specimens was then carefully studied in terms of closing and opening capacities, hysteretic behaviour, and envelope curves to understand the differences in joint performance based on which an attempt to suggest design guidelines for knee joints is made emphasizing the relative importance of opening and closing actions. Specimens with relatively higher opening stresses were observed to be more vulnerable under the action of seismic loading.

Keywords: Knee-joints, large-scale testing, opening and closing shear stresses, seismic performance

Procedia PDF Downloads 210
4350 Preparation of Papers: Impacts of COVIDSAFE Practices and CO₂ Feedback Devices on Indoor Air Quality in Classrooms

Authors: Chun Yu, Tahlia M. Farrant, Max G. Marschall

Abstract:

Most of Australia’s school classrooms are equipped with operable windows and occupant-controlled air-conditioners that do not provide fresh air. This can result in insufficient ventilation and high indoor CO₂ levels, which comes at a detriment to occupant productivity and health. This paper reports on the results of an in-situ study capturing indoor CO₂ levels in classrooms at a school in Victoria, Australia. The study consisted of 3 measurement periods: First, CO₂ levels pre-pandemic were measured, finding that the readings exceeded the recommended ASHRAE threshold of 1000 ppm more than 50% of the time, with levels often rising as high as 5000 ppm. Then, after the staff had been informed of the poor indoor air quality and the Victorian government had put COVIDSAFE measures in place, a second data set was captured; the impact was significant, with now only about 30% of readings above the ASHRAE threshold, and values rarely exceeding 2500 ppm. Finally, devices were installed that gave the occupants visual feedback when CO₂ levels were high, thus prompting them to open the windows; this further improved the air quality, with now less than 20% of readings above the threshold and values rarely exceeding 1500 ppm. The study suggests that, while relying on occupants to operate windows can lead to poor indoor air quality due to insufficient ventilation, it is possible to considerably influence occupant behavior through education and feedback devices. While these interventions alone did not mitigate the problem of inadequate ventilation entirely, they were sufficient to keep CO₂ levels within a generally healthy range. Considering the large energy savings that are possible by foregoing mechanical ventilation, it is evident that natural ventilation is a feasible operation method for school buildings in temperate climates, as long as classrooms are equipped with CO₂ feedback devices.

Keywords: COVID, CO₂, education, feedback devices, health, indoor air quality, natural ventilation, occupant behaviour

Procedia PDF Downloads 96
4349 Production and Mechanical Characterization of Ballistic Thermoplastic Composite Materials

Authors: D. Korsacilar, C. Atas

Abstract:

In this study, first thermoplastic composite materials/plates that have high ballistic impact resistance were produced. For this purpose, the thermoplastic prepreg and the vacuum bagging technique were used to produce a composite material. Thermoplastic prepregs (resin-impregnated fiber) that are supplied ready to be used, namely high-density polyethylene (HDPE) was chosen as matrix and unidirectional glass fiber was used as reinforcement. In order to compare the fiber configuration effect on mechanical properties, unidirectional and biaxial prepregs were used. Then the microstructural properties of the composites were investigated with scanning electron microscopy (SEM) analysis. Impact properties of the composites were examined by Charpy impact test and tensile mechanical tests and then the effects of ultraviolet irradiation were investigated on mechanical performance.

Keywords: ballistic, composite, thermoplastic, prepreg

Procedia PDF Downloads 428
4348 Hydroxyapatite Based Porous Scaffold for Tooth Tissue Engineering

Authors: Pakize Neslihan Taslı, Alev Cumbul, Gul Merve Yalcın, Fikrettin Sahin

Abstract:

A key experimental trial in the regeneration of large oral and craniofacial defects is the neogenesis of osseous and ligamentous interfacial structures. Currently, oral regenerative medicine strategies are unpredictable for repair of tooth supporting tissues destroyed as a consequence of trauma, chronic infection or surgical resection. A different approach combining the gel-casting method with Hydroxy Apatite HA-based scaffold and different cell lineages as a hybrid system leads to successively mimic the early stage of tooth development, in vitro. HA is widely accepted as a bioactive material for guided bone and tooth regeneration. In this study, it was reported that, HA porous scaffold preparation, characterization and evaluation of structural and chemical properties. HA is the main factor that exists in tooth and it is in harmony with structural, biological, and mechanical characteristics. Here, this study shows mimicking immature tooth at the late bell stage design and construction of HA scaffolds for cell transplantation of human Adipose Stem Cells (hASCs), human Bone Marrow Stem Cells (hBMSCs) and Gingival Epitelial cells for the formation of human tooth dentin-pulp-enamel complexes in vitro. Scaffold characterization was demonstrated by SEM, FTIR and pore size and density measurements. The biological contraction of dental tissues against each other was demonstrated by mRNA gene expressions, histopatologic observations and protein release profile by ELISA tecnique. The tooth shaped constructs with a pore size ranging from 150 to 300 µm arranged by gathering right amounts of materials provide interconnected macro-porous structure. The newly formed tissue like structures that grow and integrate within the HA designed constructs forming tooth cementum like tissue, pulp and bone structures. These findings are important as they emphasize the potential biological effect of the hybrid scaffold system. In conclusion, this in vitro study clearly demonstrates that designed 3D scaffolds shaped as a immature tooth at the late bell stage were essential to form enamel-dentin-pulp interfaces with an appropriate cell and biodegradable material combination. The biomimetic architecture achieved here is providing a promising platform for dental tissue engineering.

Keywords: tooth regeneration, tissue engineering, adipose stem cells, hydroxyapatite tooth engineering, porous scaffold

Procedia PDF Downloads 221
4347 The Friction and Wear Behaviour of Ti2AlC MAX Phase

Authors: M. Hadji, A. Haddad, Y. Hadji

Abstract:

The effects of boronizing treatment on the friction coefficient and wear behavior of Ti2AlC were investigated. In order to modify the surface properties of Ti2AlC, boronizing treatment was carried out through powder pack cementation in the 1150-1350 °C temperature range. After boronizing treatment, one mixture layer, composed of TiB2 and SiC, forms on the surface of Ti2AlC. The growth of the coating is processed by inward diffusion of Boron and obeys a linear rule. The Boronizing treatment increases the hardness of Ti2AlC from 6 GPa to 13GPa. In the pin-on-disc test, it was found that the material undergoes a steady-state coefficient of friction of around 0.8 and 0.45 in case of Ti2AlC/Al2O3 tribocouple under 7N load for the non treated and the boronized samples, respectively. The wear resistance of Ti2AlC under Al2O3 ball sliding has been significantly improved, which indicated that the boronizing treatment is a promising surface modification way of Ti2AlC.

Keywords: MAX phase, wear, hardness, boronizing

Procedia PDF Downloads 299
4346 Rim Size Optimization Using Mathematical Modelling

Authors: M. Tan, N. N. Wan, N. Ramli, N. H. Hassan

Abstract:

Car drivers would always like to have custom wheel on their car for two reasons; to improve their car's aesthetic beauty and to improve their car handling. As the size of the rims or wheels played an important role in influencing the way of car handles around turns, this paper aims to present the optimality of rim size that drivers should have known while changing their rim. There are three factors that drivers should have considered while changing their rim: rim size, its weight and material of which they are made. Using mathematical analysis, this paper will focus on only one factor, which is rim size. Factors that are considered in calculating the optimum rim size are the vehicle rim radius, tire height and weight, and aspect ratio. This paper has found that there are limitations in percentage change in rim size from the original tire size. Failure to have the right offset size may cause problems in maneuvering the vehicle.

Keywords: mathematical analysis, optimum wheel size, percentage change, custom wheel

Procedia PDF Downloads 484
4345 Analyzing the Potential of Job Creation by Taking the First Step Towards Circular Economy: Case Study of Brazil

Authors: R. Conde

Abstract:

The Brazilian economic projections and social indicators show a future of crisis for the country. Solutions to avoid this crisis scenario are necessary. Several developed countries implement initiatives linked to sustainability, mainly related to the circular economy, to solve their crises quickly - green recovery. This article aims to assess social gains if Brazil followed the same recovery strategy. Furthermore, with the use of data presented and recognized in the international academic society, the number of jobs that can be created, if Brazil took the first steps towards a more circular economy, was found. Moreover, in addition to the gross value in the number of jobs created, this article also detailed the number of these jobs by type of activity (collection, processing, and manufacturing) and by type of material.

Keywords: circular economy, green recovery, job creation, social gains

Procedia PDF Downloads 137
4344 Total Productive Maintenance (TPM) as a Strategy for Competitiveness

Authors: Ignatio Madanhire, Charles Mbohwa

Abstract:

This research examines the effect of a human resource strategy and the overall equipment effectiveness as well as assessing how the combination of the two can increase a firm’s productivity. The human resource aspect is looked at in detail to assess motivation of operators through training to reduce wastage on the manufacturing shop floor. The waste was attributed to operators, maintenance personal, idle machines, idle manpower and break downs. This work seeks to investigate the concept of Total Productive Maintenance (TPM) in addressing these short comings in the manufacturing case study. The impact of TPM to increase production while, as well as increasing employee morale and job satisfaction is assessed. This can be resource material for practitioners who seek to improve overall equipment efficiency (OEE) to achieve higher level productivity and competitiveness.

Keywords: maintenance, TPM, efficiency, productivity, strategy

Procedia PDF Downloads 408
4343 Possibilities and Limits for the Development of Care in Primary Health Care in Brazil

Authors: Ivonete Teresinha Schulter Buss Heidemann, Michelle Kuntz Durand, Aline Megumi Arakawa-Belaunde, Sandra Mara Corrêa, Leandro Martins Costa Do Araujo, Kamila Soares Maciel

Abstract:

Primary Health Care is defined as the level of a system of services that enables the achievement of answers to health needs. This level of care produces services and actions of attention to the person in the life cycle and in their health conditions or diseases. Primary Health Care refers to a conception of care model and organization of the health system that in Brazil seeks to reorganize the principles of the Unified Health System. This system is based on the principle of health as a citizen's right and duty of the State. Primary health care has family health as a priority strategy for its organization according to the precepts of the Unified Health System, structured in the logic of new sectoral practices, associating clinical work and health promotion. Thus, this study seeks to know the possibilities and limits of the care developed by professionals working in Primary Health Care. It was conducted by a qualitative approach of the participant action type, based on Paulo Freire's Research Itinerary, which corresponds to three moments: Thematic Investigation; Encoding and Decoding; and, Critical Unveiling. The themes were investigated in a health unit with the development of a culture circle with 20 professionals, from a municipality in southern Brazil, in the first half of 2021. The participants revealed as possibilities the involvement, bonding and strengthening of the interpersonal relationships of the professionals who work in the context of primary care. Promoting welcoming in primary care has favoured care and teamwork, as well as improved access. They also highlighted that care planning, the use of technologies in the process of communication and the orientation of the population enhances the levels of problem-solving capacity and the organization of services. As limits, the lack of professional recognition and the scarce material and human resources were revealed, conditions that generate tensions for health care. The reduction in the number of professionals and the low salary are pointed out as elements that boost the motivation of the health team for the development of the work. The participants revealed that due to COVID-19, the flow of care had as a priority the pandemic situation, which affected health care in primary care, and prevention and health promotion actions were canceled. The study demonstrated that empowerment and professional involvement are fundamental to promoting comprehensive and problem-solving care. However, limits of the teams are observed when exercising their activities, these are related to the lack of human and material resources, and the expansion of public health policies is urgent.

Keywords: health promotion, primary health care, health professionals, welcoming.

Procedia PDF Downloads 83
4342 Ultraviolet Visible Spectroscopy Analysis on Transformer Oil by Correlating It with Various Oil Parameters

Authors: Rajnish Shrivastava, Y. R. Sood, Priti Pundir, Rahul Srivastava

Abstract:

Power transformer is one of the most important devices that are used in power station. Due to several fault impending upon it or due to ageing, etc its life gets lowered. So, it becomes necessary to have diagnosis of oil for fault analysis. Due to the chemical, electrical, thermal and mechanical stress the insulating material in the power transformer degraded. It is important to regularly assess the condition of oil and the remaining life of the power transformer. In this paper UV-VIS absorption graph area is correlated with moisture content, Flash point, IFT and Density of Transformer oil. Since UV-VIS absorption graph area varies accordingly with the variation in different transformer parameters. So by obtaining the correlation among different oil parameters for oil with respect to UV-VIS absorption area, decay contents of transformer oil can be predicted

Keywords: breakdown voltage (BDV), interfacial Tension (IFT), moisture content, ultra violet-visible rays spectroscopy (UV-VIS)

Procedia PDF Downloads 632
4341 Mapping Cultural Continuity and the Creation of a New Architectural Heritage in the 21st Century: The Case of Ksar Tafilelt, M’Zab Valley

Authors: Hadjer Messabih

Abstract:

The M’zab architecture has preserved its identity that was able to endure for centuries conserving practically the same way of life and the same building techniques since the 11th century. Even more, the newly built ksar Tafilelt is also designed to meet the local tradition. In 1996, a community led project was initiated to build a “new ksar” named Tafilelt based on a traditional form of community-led cooperative housing. It is a unique experience in the field of community housing that reproduces traditional architectural patterns while addressing contemporary ways of life with their expected modern comfort. This research is based on the hypothesis that the process of producing ksar Tafilelt is culturally responsive to a conservative community that was characterized by certain values which were transmitted to this ksar manifesting as cultural continuity. It aims at investigating what type of cultural continuity manifests itself in the co-production of ksar Tafilelt and the way the settlement and its houses are produced and inhabited, as well as the new emerging values and adaptive transition in social relations. The research methodology is based on a combination of questionnaires, in depth interviews, photography, and site visit to record and demonstrate how these buildings respond to peoples’ needs. Post Occupancy Evaluation (POE) is also employed in order to understand the lessons that can be learned from this project. Finally, this study proves that the cultural continuity that was transmitted from the Ibadi community is sill manifested in ksar Tafilelt, which provided strong religious bonds and a strong sense of community. The research findings have resulted in a number of lessons and principles that can be learnt from the project of ksar Tafilelt which can inform future practices of housing provision and design in Algeria and other countries.

Keywords: community-led cooperative housing, conservative community, cultural continuity, post occupancy evaluation

Procedia PDF Downloads 128
4340 Improvement of Deficient Soils in Nigeria Using Bagasse Ash - A Review

Authors: Musa Alhassan, Alhaji Mohammed Mustapha

Abstract:

Review of studies carried out on the use of bagasse ash in the improvement of deficient soils in Nigeria, with emphasis on lateritic and black cotton soils is presented. Although, the bagasse ash is mostly used as additive to the conventional soil stabilizer (cement and lime), the studies generally showed improvement of geotechnical properties of the soils either modified or stabilized with the ash. This showed the potentials of using this agricultural waste (bagasse ash) in the improvement of geotechnical properties of deficient soils. Thus suggesting that using this material at large scale level, in geotechnical engineering practice could help in the provision of stable and durable structures, reduce cost of soil improvement and also reduces environmental nuisance caused by the unused waste in Nigeria

Keywords: bagasse ash, black cotton soil, deficient soil, laterite, soil improvement

Procedia PDF Downloads 399
4339 Evaluation of Formability of AZ61 Magnesium Alloy at Elevated Temperatures

Authors: Ramezani M., Neitzert T.

Abstract:

This paper investigates mechanical properties and formability of the AZ61 magnesium alloy at high temperatures. Tensile tests were performed at elevated temperatures of up to 400ºC. The results showed that as temperature increases, yield strength and ultimate tensile strength decrease significantly, while the material experiences an increase in ductility (maximum elongation before break). A finite element model has been developed to further investigate the formability of the AZ61 alloy by deep drawing a square cup. Effects of different process parameters such as punch and die geometry, forming speed and temperature as well as blank-holder force on deep drawability of the AZ61 alloy were studied and optimum values for these parameters are achieved which can be used as a design guide for deep drawing of this alloy.

Keywords: AZ61, formability, magnesium, mechanical properties

Procedia PDF Downloads 570
4338 Vibration of Nonhomogeneous Timoshenko Nanobeam Resting on Winkler-Pasternak Foundation

Authors: Somnath Karmakar, S. Chakraverty

Abstract:

This work investigates the vibration of nonhomogeneous Timoshenko nanobeam resting on the Winkler-Pasternak foundation. Eringen’s nonlocal theory has been used to investigate small-scale effects. The Differential Quadrature method is used to obtain the frequency parameters with various classical boundary conditions. The nonhomogeneous beam model has been considered, where Young’s modulus and density of the beam material vary linearly and quadratically. Convergence of frequency parameters is also discussed. The influence of mechanical properties and scaling parameters on vibration frequencies are investigated for different boundary conditions.

Keywords: Timoshenko beam, Eringen's nonlocal theory, differential quadrature method, nonhomogeneous nanobeam

Procedia PDF Downloads 108
4337 Relating Interface Properties with Crack Propagation in Composite Laminates

Authors: Tao Qu, Chandra Prakash, Vikas Tomar

Abstract:

The interfaces between organic and inorganic phases in natural materials have been shown to be a key factor contributing to their high performance. This work analyzes crack propagation in a 2-ply laminate subjected to uniaxial tensile mode-I crack propagation loading that has laminate properties derived based on biological material constituents (marine exoskeleton- chitin and calcite). Interfaces in such laminates are explicitly modeled based on earlier molecular simulations performed by authors. Extended finite element method and cohesive zone modeling based simulations coupled with theoretical analysis are used to analyze crack propagation. Analyses explicitly quantify the effect that interface mechanical property variation has on the delamination as well as the transverse crack propagation in examined 2-ply laminates.

Keywords: chitin, composites, interfaces, fracture

Procedia PDF Downloads 368