Search results for: elastic and inelastic
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 868

Search results for: elastic and inelastic

478 Some Fundamental Physical Properties of BiGaO₃ Cubic Perovskite

Authors: B. Gueridi, T. Chihi, M. Fatmi, A. Faci

Abstract:

Some fundamental physical properties of BiGaO₃ were investigated under pressure and temperature effect using generalized gradient approximation and local density approximation approaches. The effect of orientation on Debye temperature and sound waves velocities were estimated from elastic constants. The value of the bulk modulus of BiGaO₃ is a sign of its high hardness because it is linked to an isotropic deformation. BiGaO₃ is a semiconductor and ductile material with covalent bonding (Ga–O), and the Bi-O bonding is ionic. The optical transitions were observed when electrons pass from the top of the valence band (O-2p) to the bottom of the conduction band (Ga-4p or Bi-6p). The thermodynamic parameters are determined in temperature and pressure ranging from 0 to 1800 K and 0 to 50 GPa.

Keywords: BiGaO₃ perovskite, optical absorption, first principle, band structure

Procedia PDF Downloads 83
477 Strengthening of Reinforced Concrete Columns Using Advanced Composite Materials to Resist Earthquakes

Authors: Mohamed Osama Hassaan

Abstract:

Recent earthquakes have demonstrated the vulnerability of older reinforced concrete buildings to fail under imposed seismic loads. Accordingly, the need to strengthen existing reinforced concrete structures, mainly columns, to resist high seismic loads has increased. Conventional strengthening techniques such as using steel plates, steel angles and concrete overlay are used to achieve the required increase in strength or ductility. However, techniques using advanced composite materials are established. The column's splice zone is the most critical zone that failed under seismic loads. There are three types of splice zone failure that can be observed under seismic action, namely, Failure of the flexural plastic hinge region, shear failure and failure due to short lap splice. A lapped splice transfers the force from one bar to another through the concrete surrounding both bars. At any point along the splice, force is transferred from one bar by a bond to the surrounding concrete and also by a bond to the other bar of the pair forming the splice. The integrity of the lap splice depends on the development of adequate bond length. The R.C. columns built in seismic regions are expected to undergo a large number of inelastic deformation cycles while maintaining the overall strength and stability of the structure. This can be ensured by proper confinement of the concrete core. The last type of failure is focused in this research. There are insufficient studies that address the problem of strengthening existing reinforced concrete columns at splice zone through confinement with “advanced composite materials". Accordingly, more investigation regarding the seismic behavior of strengthened reinforced concrete columns using the new generation of composite materials such as (Carbon fiber polymer), (Glass fiber polymer), (Armiad fiber polymer).

Keywords: strengthening, columns, advanced composite materials, earthquakes

Procedia PDF Downloads 50
476 Engineering Optimization of Flexible Energy Absorbers

Authors: Reza Hedayati, Meysam Jahanbakhshi

Abstract:

Elastic energy absorbers which consist of a ring-liked plate and springs can be a good choice for increasing the impact duration during an accident. In the current project, an energy absorber system is optimized using four optimizing methods Kuhn-Tucker, Sequential Linear Programming (SLP), Concurrent Subspace Design (CSD), and Pshenichny-Lim-Belegundu-Arora (PLBA). Time solution, convergence, Programming Length and accuracy of the results were considered to find the best solution algorithm. Results showed the superiority of PLBA over the other algorithms.

Keywords: Concurrent Subspace Design (CSD), Kuhn-Tucker, Pshenichny-Lim-Belegundu-Arora (PLBA), Sequential Linear Programming (SLP)

Procedia PDF Downloads 370
475 Briquetting of Metal Chips by Controlled Impact: Experimental Study

Authors: Todor Penchev, Dimitar Karastojanov, Ivan Altaparmakov

Abstract:

For briquetting of metal chips are used hydraulic and mechanical presses. The density of the briquettes in this case is about 60% - 70 % on the density of solid metal. In this work are presented the results of experimental studies for briquetting of metal chips, by using a new technology for impact briquetting. The used chips are by Armco iron, steel, cast iron, copper, aluminum and brass. It has been found that: (i) in a controlled impact the density of the briquettes can be increases up to 30%; (ii) at the same specific impact energy Es (J/sm3) the density of the briquettes increases with increasing of the impact velocity; (iii), realization of the repeated impact leads to decrease of chips density, which can be explained by distribution of elastic waves in the briquette.

Keywords: briquetting, chips briquetting, impact briquetting, controlled impact

Procedia PDF Downloads 375
474 Analysis of Flexural Behavior of Wood-Concrete Beams

Authors: M. Li, V. D. Thi, M. Khelifa, M. El Ganaoui

Abstract:

This study presents an overview of the work carried out by the use of wood waste as coarse aggregate in mortar. The paper describes experimental and numerical investigations carried on pervious concrete made of wood chips and also sheds lights on the mechanical properties of this new product. The properties of pervious wood-concrete such as strength, elastic modulus, and failure modes are compared and evaluated. The characterization procedure of the mechanical properties of wood waste ash are presented and discussed. The numerical and tested load–deflection response results are compared. It was observed that the numerical results are in good agreement with the experimental results.

Keywords: wood waste ash, characterization, mechanical properties, bending tests

Procedia PDF Downloads 287
473 Research on Static and Dynamic Behavior of New Combination of Aluminum Honeycomb Panel and Rod Single-Layer Latticed Shell

Authors: Xu Chen, Zhao Caiqi

Abstract:

In addition to the advantages of light weight, resistant corrosion and ease of processing, aluminum is also applied to the long-span spatial structures. However, the elastic modulus of aluminum is lower than that of the steel. This paper combines the high performance aluminum honeycomb panel with the aluminum latticed shell, forming a new panel-and-rod composite shell structure. Through comparative analysis between the static and dynamic performance, the conclusion that the structure of composite shell is noticeably superior to the structure combined before.

Keywords: combination of aluminum honeycomb panel, rod latticed shell, dynamic performence, response spectrum analysis, seismic properties

Procedia PDF Downloads 449
472 A Method to Predict the Thermo-Elastic Behavior of Laser-Integrated Machine Tools

Authors: C. Brecher, M. Fey, F. Du Bois-Reymond, S. Neus

Abstract:

Additive manufacturing has emerged into a fast-growing section within the manufacturing technologies. Established machine tool manufacturers, such as DMG MORI, recently presented machine tools combining milling and laser welding. By this, machine tools can realize a higher degree of flexibility and a shorter production time. Still there are challenges that have to be accounted for in terms of maintaining the necessary machining accuracy - especially due to thermal effects arising through the use of high power laser processing units. To study the thermal behavior of laser-integrated machine tools, it is essential to analyze and simulate the thermal behavior of machine components, individual and assembled. This information will help to design a geometrically stable machine tool under the influence of high power laser processes. This paper presents an approach to decrease the loss of machining precision due to thermal impacts. Real effects of laser machining processes are considered and thus enable an optimized design of the machine tool, respective its components, in the early design phase. Core element of this approach is a matched FEM model considering all relevant variables arising, e.g. laser power, angle of laser beam, reflective coefficients and heat transfer coefficient. Hence, a systematic approach to obtain this matched FEM model is essential. Indicating the thermal behavior of structural components as well as predicting the laser beam path, to determine the relevant beam intensity on the structural components, there are the two constituent aspects of the method. To match the model both aspects of the method have to be combined and verified empirically. In this context, an essential machine component of a five axis machine tool, the turn-swivel table, serves as the demonstration object for the verification process. Therefore, a turn-swivel table test bench as well as an experimental set-up to measure the beam propagation were developed and are described in the paper. In addition to the empirical investigation, a simulative approach of the described types of experimental examination is presented. Concluding, it is shown that the method and a good understanding of the two core aspects, the thermo-elastic machine behavior and the laser beam path, as well as their combination helps designers to minimize the loss of precision in the early stages of the design phase.

Keywords: additive manufacturing, laser beam machining, machine tool, thermal effects

Procedia PDF Downloads 243
471 Mechanical Properties of Biological Tissues

Authors: Young June Yoon

Abstract:

We will present four different topics in estimating the mechanical properties of biological tissues. First we elucidate the viscoelastic behavior of collagen molecules whose diameter is a couple of nanometers. By using the molecular dynamics simulation, we observed the viscoelastic behavior in different pulling velocity. Second, the protein layer, so called ‘sheath’ in enamel microstructure reduces the stress concentration in enamel minerals. We examined the result by using the finite element methods. Third, the anisotropic elastic constants of dentin are estimated by micromechanical analysis and estimated results are close to the experimentally measured data. Last, new formulation between the fabric tensor and the wave velocity is established for calcaneus by employing the poroelasticity. This formulation can be simply used for future experiments.

Keywords: tissues, mechanics, mechanical properties, wave propagation

Procedia PDF Downloads 348
470 CO2 Emission and Cost Optimization of Reinforced Concrete Frame Designed by Performance Based Design Approach

Authors: Jin Woo Hwang, Byung Kwan Oh, Yousok Kim, Hyo Seon Park

Abstract:

As greenhouse effect has been recognized as serious environmental problem of the world, interests in carbon dioxide (CO2) emission which comprises major part of greenhouse gas (GHG) emissions have been increased recently. Since construction industry takes a relatively large portion of total CO2 emissions of the world, extensive studies about reducing CO2 emissions in construction and operation of building have been carried out after the 2000s. Also, performance based design (PBD) methodology based on nonlinear analysis has been robustly developed after Northridge Earthquake in 1994 to assure and assess seismic performance of building more exactly because structural engineers recognized that prescriptive code based design approach cannot address inelastic earthquake responses directly and assure performance of building exactly. Although CO2 emissions and PBD approach are recent rising issues on construction industry and structural engineering, there were few or no researches considering these two issues simultaneously. Thus, the objective of this study is to minimize the CO2 emissions and cost of building designed by PBD approach in structural design stage considering structural materials. 4 story and 4 span reinforced concrete building optimally designed to minimize CO2 emissions and cost of building and to satisfy specific seismic performance (collapse prevention in maximum considered earthquake) of building satisfying prescriptive code regulations using non-dominated sorting genetic algorithm-II (NSGA-II). Optimized design result showed that minimized CO2 emissions and cost of building were acquired satisfying specific seismic performance. Therefore, the methodology proposed in this paper can be used to reduce both CO2 emissions and cost of building designed by PBD approach.

Keywords: CO2 emissions, performance based design, optimization, sustainable design

Procedia PDF Downloads 383
469 Discrete Element Modeling on Bearing Capacity Problems

Authors: N. Li, Y. M. Cheng

Abstract:

In this paper, the classical bearing capacity problem is re-considered from discrete element analysis. In the discrete element approach, the bearing capacity problem is considered from the elastic stage to plastic stage to rupture stage (large displacement). The bearing capacity failure mechanism of a strip footing on soil is investigated, and the influence of micro-parameters on the bearing capacity of soil is also observed. It is found that the distinct element method (DEM) gives very good visualized results, and basically coincides well with that derived by the classical methods.

Keywords: bearing capacity, distinct element method, failure mechanism, large displacement

Procedia PDF Downloads 345
468 Finite Element Analysis of Layered Composite Plate with Elastic Pin Under Uniaxial Load Using ANSYS

Authors: R. M. Shabbir Ahmed, Mohamed Haneef, A. R. Anwar Khan

Abstract:

Analysis of stresses plays important role in the optimization of structures. Prior stress estimation helps in better design of the products. Composites find wide usage in the industrial and home applications due to its strength to weight ratio. Especially in the air craft industry, the usage of composites is more due to its advantages over the conventional materials. Composites are mainly made of orthotropic materials having unequal strength in the different directions. Composite materials have the drawback of delamination and debonding due to the weaker bond materials compared to the parent materials. So proper analysis should be done to the composite joints before using it in the practical conditions. In the present work, a composite plate with elastic pin is considered for analysis using finite element software Ansys. Basically the geometry is built using Ansys software using top down approach with different Boolean operations. The modelled object is meshed with three dimensional layered element solid46 for composite plate and solid element (Solid45) for pin material. Various combinations are considered to find the strength of the composite joint under uniaxial loading conditions. Due to symmetry of the problem, only quarter geometry is built and results are presented for full model using Ansys expansion options. The results show effect of pin diameter on the joint strength. Here the deflection and load sharing of the pin are increasing and other parameters like overall stress, pin stress and contact pressure are reducing due to lesser load on the plate material. Further material effect shows, higher young modulus material has little deflection, but other parameters are increasing. Interference analysis shows increasing of overall stress, pin stress, contact stress along with pin bearing load. This increase should be understood properly for increasing the load carrying capacity of the joint. Generally every structure is preloaded to increase the compressive stress in the joint to increase the load carrying capacity. But the stress increase should be properly analysed for composite due to its delamination and debonding effects due to failure of the bond materials. When results for an isotropic combination is compared with composite joint, isotropic joint shows uniformity of the results with lesser values for all parameters. This is mainly due to applied layer angle combinations. All the results are represented with necessasary pictorial plots.

Keywords: bearing force, frictional force, finite element analysis, ANSYS

Procedia PDF Downloads 311
467 Novel Scratch Resistant Self-Healing Automotive Clearcoats Using Hyperbranched Polymers and POSS Nanostructures

Authors: H.Yari, M. Mohseni, Z. Ranjbar

Abstract:

In this work a typical automotive clearcoat is modified with a combination of hyperbranched polymer (HBP) and polyhedral oligomeric silsesquioxane (POSS) nanostructures to simultaneously enhance the scratch resistance and healing ability of the resulting films. Micro-scratch and healing data revealed that these goals were achieved at high loadings of modifiers. Enhanced scratch resistance was attributed to the improved elastic recovery of the clearcoats in presence of modifiers. In addition, improved healing performance due to the partial replacement of covalent cross-links with physical ones resulted from the unique globular highly branched structure of HBP and POSS macromolecules.

Keywords: automotive clearcoat, POSS building blocks scratch resistance, self-healing

Procedia PDF Downloads 368
466 Scalable UI Test Automation for Large-scale Web Applications

Authors: Kuniaki Kudo, Raviraj Solanki, Kaushal Patel, Yash Virani

Abstract:

This research mainly concerns optimizing UI test automation for large-scale web applications. The test target application is the HHAexchange homecare management WEB application that seamlessly connects providers, state Medicaid programs, managed care organizations (MCOs), and caregivers through one platform with large-scale functionalities. This study focuses on user interface automation testing for the WEB application. The quality assurance team must execute many manual users interface test cases in the development process to confirm no regression bugs. The team automated 346 test cases; the UI automation test execution time was over 17 hours. The business requirement was reducing the execution time to release high-quality products quickly, and the quality assurance automation team modernized the test automation framework to optimize the execution time. The base of the WEB UI automation test environment is Selenium, and the test code is written in Python. Adopting a compilation language to write test code leads to an inefficient flow when introducing scalability into a traditional test automation environment. In order to efficiently introduce scalability into Test Automation, a scripting language was adopted. The scalability implementation is mainly implemented with AWS's serverless technology, an elastic container service. The definition of scalability here is the ability to automatically set up computers to test automation and increase or decrease the number of computers running those tests. This means the scalable mechanism can help test cases run parallelly. Then test execution time is dramatically decreased. Also, introducing scalable test automation is for more than just reducing test execution time. There is a possibility that some challenging bugs are detected by introducing scalable test automation, such as race conditions, Etc. since test cases can be executed at same timing. If API and Unit tests are implemented, the test strategies can be adopted more efficiently for this scalability testing. However, in WEB applications, as a practical matter, API and Unit testing cannot cover 100% functional testing since they do not reach front-end codes. This study applied a scalable UI automation testing strategy to the large-scale homecare management system. It confirmed the optimization of the test case execution time and the detection of a challenging bug. This study first describes the detailed architecture of the scalable test automation environment, then describes the actual performance reduction time and an example of challenging issue detection.

Keywords: aws, elastic container service, scalability, serverless, ui automation test

Procedia PDF Downloads 68
465 Behavior of Composite Timber-Concrete Beam with CFRP Reinforcement

Authors: O. Vlcek

Abstract:

The paper deals with current issues in the research of advanced methods to increase the reliability of traditional timber structural elements. It analyses the issue of strengthening of bent timber beams, such as ceiling beams in old (historical) buildings with the additional concrete slab in combination with externally bonded fibre-reinforced polymer. The study evaluates deflection of a selected group of timber beams with concrete slab and additional CFRP reinforcement using different calculating methods and observes differences in results from different calculating methods. An elastic calculation method and evaluation with FEM analysis software were used.

Keywords: timber-concrete composite, strengthening, fibre-reinforced polymer, theoretical analysis

Procedia PDF Downloads 294
464 Experimental Study of Different Types of Concrete in Uniaxial Compression Test

Authors: Khashayar Jafari, Mostafa Jafarian Abyaneh, Vahab Toufigh

Abstract:

Polymer concrete (PC) is a distinct concrete with superior characteristics in comparison to ordinary cement concrete. It has become well-known for its applications in thin overlays, floors and precast components. In this investigation, the mechanical properties of PC with different epoxy resin contents, ordinary cement concrete (OCC) and lightweight concrete (LC) have been studied under uniaxial compression test. The study involves five types of concrete, with each type being tested four times. Their complete elastic-plastic behavior was compared with each other through the measurement of volumetric strain during the tests. According to the results, PC showed higher strength, ductility and energy absorption with respect to OCC and LC.

Keywords: polymer concrete, ordinary cement concrete, lightweight concrete, uniaxial compression test, volumetric strain

Procedia PDF Downloads 371
463 Strength Analysis of RCC Dams Subject to the Layer-by-Layer Construction Method

Authors: Archil Motsonelidze, Vitaly Dvalishvili

Abstract:

Existing roller compacted concrete (RCC) dams indicate that the layer-by-layer construction method gives considerable economies as compared with the conventional methods. RCC dams have also gained acceptance in the regions of high seismic activity. Earthquake resistance analysis of RCC gravity dams based on nonlinear finite element technique is presented. An elastic-plastic approach is used to describe the material of a dam while it is under static conditions (period of construction). Seismic force, as an acceleration equivalent to that produced by a real earthquake, is supposed to act when the dam is completed. The materials of the dam and foundation may be nonhomogeneous and anisotropic. The “dam-foundation” system is idealized as a plain strain problem.

Keywords: finite element method, layer-by-layer construction, RCC dams, strength analysis

Procedia PDF Downloads 530
462 Finite Element Analysis of a Dynamic Linear Crack Problem

Authors: Brian E. Usibe

Abstract:

This paper addresses the problem of a linear crack located in the middle of a homogeneous elastic media under normal tension-compression harmonic loading. The problem of deformation of the fractured media is solved using the direct finite element numerical procedure, including the analysis of the dynamic field variables of the problem. A finite element algorithm that satisfies the unilateral Signorini contact constraint is also presented for the solution of the contact interaction of the crack faces and how this accounts for the qualitative and quantitative changes in the solution when determining the dynamic fracture parameter.

Keywords: harmonic loading, linear crack, fracture parameter, wave number, FEA, contact interaction

Procedia PDF Downloads 11
461 An Estimation of Rice Output Supply Response in Sierra Leone: A Nerlovian Model Approach

Authors: Alhaji M. H. Conteh, Xiangbin Yan, Issa Fofana, Brima Gegbe, Tamba I. Isaac

Abstract:

Rice grain is Sierra Leone’s staple food and the nation imports over 120,000 metric tons annually due to a shortfall in its cultivation. Thus, the insufficient level of the crop's cultivation in Sierra Leone is caused by many problems and this led to the endlessly widening supply and demand for the crop within the country. Consequently, this has instigated the government to spend huge money on the importation of this grain that would have been otherwise cultivated domestically at a cheaper cost. Hence, this research attempts to explore the response of rice supply with respect to its demand in Sierra Leone within the period 1980-2010. The Nerlovian adjustment model to the Sierra Leone rice data set within the period 1980-2010 was used. The estimated trend equations revealed that time had significant effect on output, productivity (yield) and area (acreage) of rice grain within the period 1980-2010 and this occurred generally at the 1% level of significance. The results showed that, almost the entire growth in output had the tendency to increase in the area cultivated to the crop. The time trend variable that was included for government policy intervention showed an insignificant effect on all the variables considered in this research. Therefore, both the short-run and long-run price response was inelastic since all their values were less than one. From the findings above, immediate actions that will lead to productivity growth in rice cultivation are required. To achieve the above, the responsible agencies should provide extension service schemes to farmers as well as motivating them on the adoption of modern rice varieties and technology in their rice cultivation ventures.

Keywords: Nerlovian adjustment model, price elasticities, Sierra Leone, trend equations

Procedia PDF Downloads 208
460 Stability of a Self-Excited Machine Due to the Mechanical Coupling

Authors: M. Soltan Rezaee, M. R. Ghazavi, A. Najafi, W.-H. Liao

Abstract:

Generally, different rods in shaft systems can be misaligned based on the mechanical system usages. These rods can be linked together via U-coupling easily. The system is self-stimulated and may cause instabilities due to the inherent behavior of the coupling. In this study, each rod includes an elastic shaft with an angular stiffness and structural damping. Moreover, the mass of shafts is considered via attached solid disks. The impact of the system architecture and shaft mass on the instability of such mechanism are studied. Stability charts are plotted via a method based on Floquet theory. Eventually, the unstable points have been found and analyzed in detail. The results show that stabilizing the driveline is feasible by changing the system characteristics which include shaft mass and architecture.

Keywords: coupling, mechanical systems, oscillations, rotating shafts

Procedia PDF Downloads 155
459 Stress Analysis of Laminated Cylinders Subject to the Thermomechanical Loads

Authors: Şafak Aksoy, Ali Kurşun, Erhan Çetin, Mustafa Reşit Haboğlu

Abstract:

In this study, thermo elastic stress analysis is performed on a cylinder made of laminated isotropic materials under thermomechanical loads. Laminated cylinders have many applications such as aerospace, automotive and nuclear plant in the industry. These cylinders generally performed under thermomechanical loads. Stress and displacement distribution of the laminated cylinders are determined using by analytical method both thermal and mechanical loads. Based on the results, materials combination plays an important role on the stresses distribution along the radius. Variation of the stresses and displacements along the radius are presented as graphs. Calculations program are prepared using MATLAB® by authors.

Keywords: isotropic materials, laminated cylinders, thermoelastic stress, thermomechanical load

Procedia PDF Downloads 384
458 Temperature Profile Modelling in Flexible Pavement Design

Authors: Csaba Tóth, Éva Lakatos, László Pethő, Seoyoung Cho

Abstract:

The temperature effect on asphalt pavement structure is a crucial factor at the design stage. In this paper, by applying the German guidelines for temperature along the asphalt depth is estimated. The aim is to consider temperature profiles in different seasons in numerical modelling. The model is built with an elastic and isotropic solid element with 19 subdivisions of asphalt layers to reflect the temperature variation. Comparison with the simple three-layer pavement system (asphalt layers, base, and subgrade layers) will be followed to see the difference in result without temperature variation along with the depth. Finally, the fatigue life calculation was checked to prove the validity of the methodology of considering the temperature in the numerical modelling.

Keywords: temperature profile, flexible pavement modeling, finite element method, temperature modeling

Procedia PDF Downloads 244
457 Numerical Investigation of the Effects of Surfactant Concentrations on the Dynamics of Liquid-Liquid Interfaces

Authors: Bamikole J. Adeyemi, Prashant Jadhawar, Lateef Akanji

Abstract:

Theoretically, there exist two mathematical interfaces (fluid-solid and fluid-fluid) when a liquid film is present on solid surfaces. These interfaces overlap if the mineral surface is oil-wet or mixed wet, and therefore, the effects of disjoining pressure are significant on both boundaries. Hence, dewetting is a necessary process that could detach oil from the mineral surface. However, if the thickness of the thin water film directly in contact with the surface is large enough, disjoining pressure can be thought to be zero at the liquid-liquid interface. Recent studies show that the integration of fluid-fluid interactions with fluid-rock interactions is an important step towards a holistic approach to understanding smart water effects. Experiments have shown that the brine solution can alter the micro forces at oil-water interfaces, and these ion-specific interactions lead to oil emulsion formation. The natural emulsifiers present in crude oil behave as polyelectrolytes when the oil interfaces with low salinity water. Wettability alteration caused by low salinity waterflooding during Enhanced Oil Recovery (EOR) process results from the activities of divalent ions. However, polyelectrolytes are said to lose their viscoelastic property with increasing cation concentrations. In this work, the influence of cation concentrations on the dynamics of viscoelastic liquid-liquid interfaces is numerically investigated. The resultant ion concentrations at the crude oil/brine interfaces were estimated using a surface complexation model. Subsequently, the ion concentration parameter is integrated into a mathematical model to describe its effects on the dynamics of a viscoelastic interfacial thin film. The film growth, stability, and rupture were measured after different time steps for three types of fluids (Newtonian, purely elastic and viscoelastic fluids). The interfacial films respond to exposure time in a similar manner with an increasing growth rate, which resulted in the formation of more droplets with time. Increased surfactant accumulation at the interface results in a higher film growth rate which leads to instability and subsequent formation of more satellite droplets. Purely elastic and viscoelastic properties limit film growth rate and consequent film stability compared to the Newtonian fluid. Therefore, low salinity and reduced concentration of the potential determining ions in injection water will lead to improved interfacial viscoelasticity.

Keywords: liquid-liquid interfaces, surfactant concentrations, potential determining ions, residual oil mobilization

Procedia PDF Downloads 119
456 Optimization of Three-Layer Corrugated Metal Gasket by Using Finite Element Method

Authors: I Made Gatot Karohika, Shigeyuki Haruyama, Ken Kaminishi

Abstract:

In this study, we proposed a three-layer metal gasket with Al, Cu, and SUS304 as the material, respectively. A finite element method was employed to develop simulation solution and design of experiment (DOE). Taguchi method was used to analysis the effect of each parameter design and predicts optimal design of new 25A-size three layer corrugated metal gasket. The L18 orthogonal array of Taguchi method was applied to design experiment matrix for eight factors with three levels. Based on elastic mode and plastic mode, optimum design gasket is gasket with core metal SUS304, surface layer aluminum, p1 = 4.5 mm, p2 = 4.5 mm, p3 = 4 mm, Tg = 1.2 mm, R = 3.5 mm, h = 0.4 mm and Ts = 0.3 mm.

Keywords: contact width, contact stress, layer, metal gasket, corrugated, simulation

Procedia PDF Downloads 287
455 New Moment Rotation Model of Single Web Angle Connections

Authors: Zhengyi Kong, Seung-Eock Kim

Abstract:

Single angle connections, which are bolted to the beam web and the column flange, are studied to investigate moment-rotation behavior. Elastic–perfectly plastic material behavior is assumed. ABAQUS software is used to analyze the nonlinear behavior of a single angle connection. The same geometric and material conditions with Yanglin Gong’s test are used for verifying finite element models. Since Kishi and Chen’s Power model and Lee and Moon’s Log model are accurate only for a limited range, simpler and more accurate hyperbolic function models are proposed. The equation for calculating rotation at ultimate moment is first proposed.

Keywords: finite element method, moment and rotation, rotation at ultimate moment, single-web angle connections

Procedia PDF Downloads 401
454 The Flexural Behavior of Reinforced Concrete Beams Externally Strengthened with CFRP Composites Exposed for Different Environment Conditions

Authors: Rajai Al-Rousan

Abstract:

The repair and strengthening of concrete structures is a big challenge for the concrete industry for both engineers and contractors. Due to increasing economical constraints, the current trend is to repair/upgrade deteriorated and functionally obsolete structures rather than replacing them with new structures. CFRP has been used previously by air space industries regardless of the high costs. The decrease in the costs of the composite materials, as results of the technology improvement, has made CFRP an alternative to conventional materials for many applications. The primary objective of this research is to investigate the flexural behavior of reinforced concrete (RC) beams externally strengthened with CFRP composites exposed for three years for the following conditions: (a) room temperature, (b) cyclic ponding in 15% salt-water solution, (c) hot-water of 65oC, and (d) rapid freeze/thaw cycles. Results indicated that the after three years of various environmental conditions, the bond strength between the concrete beams and CFRP sheets was not affected. No signs of separation or debonding of CFRP sheets were observed before testing. Also, externally strengthening RC beams with CFRP sheets leads to a substantial increase in the ductility of concrete structures. This is a result of forcing the concrete to undergo inelastic deformation, resulting in compression failure of the structure after yielding of steel reinforcement. In addition, exposure to heat water tank for three years reduces the ultimate load by about 11%. This 11% reduction in the ultimate load equates to about 53%, 46% and 68% loss of the gain of the strength attributed to the CFRP of 2/3 Layer, 1 Layers and 2 Layers CFRP Sheets respectively. This mean that with decreasing of number of layers the environmental exposure had an efficient effect on concrete by protection concrete from environmental effect and adverse effect on the bond performance.

Keywords: flexural, behavior, CFRP, composites, environment, conditions

Procedia PDF Downloads 283
453 Numerical Investigation for Ductile Fracture of an Aluminium Alloy 6061 T-6: Assessment of Critical J-Integral

Authors: R. Bensaada, M. Almansba, M. Ould Ouali, R. Ferhoum, N. E. Hannachi

Abstract:

The aim of this work is to simulate the ductile fracture of SEN specimens in aluminium alloy. The assessment of fracture toughness is performed with the calculation of Jc (the critical value of J-Integral) through the resistance curves. The study is done using finite element code calculation ABAQUSTM including an elastic plastic with damage model of material’s behaviour. The procedure involves specimens of four different thicknesses and four ligament sizes for every thickness. The material of study is an aluminium alloy 6061-T6 for which the necessary parameters to complete the study are given. We found the same results for the same specimen’s thickness and for different ligament sizes when the fracture criterion is evaluated.

Keywords: j-integral, critical-j, damage, fracture toughness

Procedia PDF Downloads 339
452 Investigation of Overstrength of Dual System by Non-Linear Static and Dynamic Analyses

Authors: Nina Øystad-Larsen, Miran Cemalovic, Amir M. Kaynia

Abstract:

The nonlinear static and dynamic analysis procedures presented in EN 1998-1 for the structural response of a RC wall-frame building are assessed. The structure is designed according to the guidelines for high ductility (DCH) in 1998-1. The finite element packages SeismoStruct and OpenSees are utilized and evaluated. The structural response remains nearly in the elastic range even though the building was designed for high ductility. The overstrength is a result of oversized and heavily reinforced members, with emphasis on the lower storey walls. Nonlinear response history analysis in the software packages give virtually identical results for displacements.

Keywords: behaviour factor, dual system, OpenSEES, overstrength, seismostruct

Procedia PDF Downloads 386
451 Ab Initio Study of Hexahalometallate Single Crystals K₂XBr₆ (X=Se, Pt)

Authors: M. Fatmi, B. Gueridi, Z. Zerrougui

Abstract:

Some physical properties of hexahalometallate K₂XBr₆(X=Se, Pt) were computed in the zinc blend structure using generalized gradient approximation. The cell constant of K₂SeBr₆ and K₂PtBr₆ is consistent with the experiment value quoted in the literature, where the error is 0.95 % and 1 %. K₂SeBr₆ and K₂PtBr₆ present covalent bonding, high anisotropy and are ductile. The elastic constants of K₂SeBr₆ and K₂PtBr₆ are significantly smaller due to their larger reticular distances and lower Colombian forces, and then they are soft and damage tolerant. The interatomic separation is greater in K₂SeBr₆ than in K₂PtBr₆; hence the Colombian interaction in K₂PtBr₆ is greater than that of K2SeBr₆. The internal coordinate of the Br atom in K₂PtBr₆ is lower than that of the same atom in K2SeBr₆, and this can be explained by the fact that it is inversely proportional to the atom radius of Se and Pt. There are two major plasmonic processes, with intensities of 3.7 and 1.35, located around 53.5 nm and 72.8 nm for K₂SeBr₆ and K₂PtBr₆.

Keywords: hexahalometallate, band structure, morphology, absorption, band gap, absorber

Procedia PDF Downloads 67
450 Effect of Nano-SiO2 Solution on the Strength Characteristics of Kaolinite

Authors: Reza Ziaie Moayed, Hamidreza Rahmani

Abstract:

Today, with developments in science and technology, there is an excessive potential for the use of nanomaterials in various fields of geotechnical project such as soil stabilization. This study investigates the effect of Nano-SiO2 solution on the unconfined compression strength and Young's elastic modulus of Kaolinite. For this purpose, nano-SiO2 was mixed with kaolinite in five different contents: 1, 2, 3, 4 and 5% by weight of the dry soil and a series of the unconfined compression test with curing time of one-day was selected as laboratory test. Analyses of the tests results show that stabilization of kaolinite with Nano-SiO2 solution can improve effectively the unconfined compression strength of modified soil up to 1.43 times compared to  the pure soil.

Keywords: kaolinite, Nano-SiO2, stabilization, unconfined compression test, Young's modulus

Procedia PDF Downloads 366
449 Stress Field Induced By an Interfacial Edge Dislocation in a Multi-Layered Medium

Authors: Aditya Khanna, Andrei Kotousov

Abstract:

A novel method is presented for obtaining the stress field induced by an edge dislocation in a multilayered composite. To demonstrate the applications of the obtained solution, we consider the problem of an interfacial crack in a periodically layered bimaterial medium. The crack is modeled as a continuous distribution of edge dislocations and the Distributed Dislocation Technique (DDT) is utilized to obtain numerical results for the energy release rate (ERR). The numerical results correspond well with previously published results and the comparison serves as a validation of the obtained dislocation solution.

Keywords: distributed dislocation technique, edge dislocation, elastic field, interfacial crack, multi-layered composite

Procedia PDF Downloads 417