Search results for: biocompatibility tests
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4717

Search results for: biocompatibility tests

4327 Application of the Experimental Planning Design to the Notched Precracked Tensile Fracture of Composite

Authors: N. Mahmoudi, B. Guedim

Abstract:

Composite materials have important assets compared to traditional materials. They bring many functional advantages: lightness, mechanical resistance and chemical, etc. In the present study we examine the effect of a circular central notch and a precrack on the tensile fracture of two woven composite materials. The tensile tests were applied to a standardized specimen, notched and a precracked (orientation of the crack 0°, 45°, and 90°). These tensile tests were elaborated according to an experimental planning design of the type 23.31 requiring 24 experiments with three repetitions. By the analysis of regression, we obtained a mathematical model describing the maximum load according to the influential parameters (hole diameter, precrack length, angle of a precrack orientation). The specimens precracked at 90° have a better behavior than those having a precrack at 45° and still better than those having of the precracks oriented at 0°. In addition the maximum load is inversely proportional to the notch size.

Keywords: polymer matrix, glasses, fracture, precracks

Procedia PDF Downloads 342
4326 Study of the Suitability for the Use of Gravel in the Regions around Araz River in Karabakh as a Concrete Aggregate

Authors: S. B. Shahmarova, F. N. Iskandarli, J. T. Zeynalov, F. N. Mammadov, M. M. Mirzayev, F. Y. Bayramov

Abstract:

The physical, mechanical, and chemical properties of aggregates play an important role in the production of ready-mixed concrete. Furthermore, the alkali-silicate reaction of aggregates is one of the essential factors in construction projects for the durability and longer service life of buildings and construction structures to be built. It is necessary to use the aggregates from the liberated regions of Karabakh and East Zangazur in the preparation of concretes to be produced for reconstruction and renovation projects in those regions. In this regard, the study of the physical and mechanical properties of aggregates in the regions around the Araz River (Fuzuli, Jabrayil, and Zangilan) became a significant issue. So, gravel samples were taken from seven different sources located in the regions around Araz River, where the quarries are planned to be built. The chemical oxide composition of the samples was determined, water absorption and specific gravity tests, chloride, alkali-silicate reaction tests, aggregate crushing strength test, Los Angeles, and frost resistance (into the solution of MgSO₄ and Na₂SO₄) tests were performed, and the results were evaluated in accordance with the relevant standards. As a result, it was determined that the aggregates in the regions around the Araz River (Fuzuli, Jabrayil, and Zangilan) conform to the relative standards and can be used effectively in the production of various concretes to be used for the projects in Karabakh.

Keywords: aggregates of the regions around Araz River (Fuzuli, Jabrayil, and Zangilan), physical and mechanical properties, alkali-silicate reaction, Karabakh, Azerbaijan

Procedia PDF Downloads 93
4325 Effect of the Velocity Resistance Training on Muscular Fitness and Functional Performance in Older Women

Authors: Jairo Alejandro Fernandez Ortega

Abstract:

Objective: Regarding effects of training velocity on strength in the functional condition of older adults controversy exists. The purpose of this study was to examine the effects of a twelve-week strength training program (PE) performed at high speed (GAV) versus a traditionally executed program (GBV), on functional performance, maximum strength and muscle power in a group of older adult women. Methodology: 86 women aged between 60-81 years participated voluntarily in the study and were assigned randomly to the GAV (three series at 40% 1RM at maximum speed, with maximum losses of 10% speed) or to the GBV (three series with three sets at 70% of 1RM). Both groups performed three weekly trainings. The maximum strength of upper and lower limbs (1RM), prehensile strength, walking speed, maximum power, mean propulsive velocity (MPV) and functional performance (senior fitness test) were evaluated before and after the PE. Results: Significant improvements were observed (p < 0.05) in all the tests in the two groups after the twelve weeks of training. However, the results of GAV were significantly (P < 0.05) higher than those of the GBV, in the tests of agility and dynamic equilibrium, stationary walking, sitting and standing, walking speed over 4 and 6 meters, MPV and peak power. In the tests of maximum strength and prehensile force, the differences were not significant. Conclusion: Strength training performed at high speeds seems to have a better effect on functional performance and muscle power than strength training performed at low speed.

Keywords: power training, resistance exercise, aging, strength, physical performance, high-velocity, resistance training

Procedia PDF Downloads 114
4324 Corrosion Characterization of ZA-27 Metal Matrix Composites

Authors: H. V. Jayaprakash, P. V. Krupakara

Abstract:

This paper deals with the high corrosion resistance developed by the metal matrix composites when compared with that of matrix alloy by open circuit potential test. Matrix selected is ZA-27 and reinforcement selected is red mud particulates, which is a ceramic material. The composites are prepared using liquid melt metallurgy technique using vortex method. Preheated but uncoated red mud particulates are added to the melt. Metal matrix composites containing 2, 4 and 6 weight percentage of red mud are casted. Matrix was also casted in the same way for comparison. Specimen are fabricated according to ASTM standards. The corrodents used for the tests were 0.025, 0.05 and 0.1 molar sodium hydroxide solutions. They are subjected to Open Circuit Potential studies and weight loss corrosion tests. Corrosion rate was found to be decreased with increase in exposure time in both experiments. Effect of exposure time and presence of increased percentage of reinforcement red mud is discussed in detail.

Keywords: composites, vortex, particulates, red mud

Procedia PDF Downloads 449
4323 Determining G-γ Degradation Curve in Cohesive Soils by Dilatometer and in situ Seismic Tests

Authors: Ivandic Kreso, Spiranec Miljenko, Kavur Boris, Strelec Stjepan

Abstract:

This article discusses the possibility of using dilatometer tests (DMT) together with in situ seismic tests (MASW) in order to get the shape of G-g degradation curve in cohesive soils (clay, silty clay, silt, clayey silt and sandy silt). MASW test provides the small soil stiffness (Go from vs) at very small strains and DMT provides the stiffness of the soil at ‘work strains’ (MDMT). At different test locations, dilatometer shear stiffness of the soil has been determined by the theory of elasticity. Dilatometer shear stiffness has been compared with the theoretical G-g degradation curve in order to determine the typical range of shear deformation for different types of cohesive soil. The analysis also includes factors that influence the shape of the degradation curve (G-g) and dilatometer modulus (MDMT), such as the overconsolidation ratio (OCR), plasticity index (IP) and the vertical effective stress in the soil (svo'). Parametric study in this article defines the range of shear strain gDMT and GDMT/Go relation depending on the classification of a cohesive soil (clay, silty clay, clayey silt, silt and sandy silt), function of density (loose, medium dense and dense) and the stiffness of the soil (soft, medium hard and hard). The article illustrates the potential of using MASW and DMT to obtain G-g degradation curve in cohesive soils.

Keywords: dilatometer testing, MASW testing, shear wave, soil stiffness, stiffness reduction, shear strain

Procedia PDF Downloads 316
4322 Impact of Fly Ash-Based Geopolymer Modification on the High-Temperature Properties of Bitumen

Authors: Burak Yigit Katanalp, Murat Tastan, Perviz Ahmedzade, çIgdem Canbay Turkyilmaz, Emrah Turkyilmaz

Abstract:

This study evaluated the mechanical and rheological performance of fly ash-based geopolymer at high temperatures. A series of laboratory tests were conducted on neat bitumen and three modified bitumen samples, which incorporated fly ash-based geopolymer at various percentages. Low-calcium fly ash was used as the alumina-silica source. The dynamic shear rheometer and rotational viscometer were employed to determine high-temperature properties, while conventional tests such as penetration and softening point were used to evaluate the physical properties of bitumen. The short-term aging resistance of the samples was assessed using the rolling thin film oven. The results show that geopolymer has a compromising effect on bitumen properties, with improved stiffness, enhanced mechanical strength, and increased thermal susceptibility of the asphalt binder.

Keywords: bitumen, geopolymer, modification, dynamic mechanical analysis

Procedia PDF Downloads 88
4321 Assessment of Exhaust Emissions and Fuel Consumption from Means of Transport in Agriculture

Authors: Jerzy Merkisz, Piotr Lijewski, Pawel Fuc, Maciej Siedlecki, Andrzej Ziolkowski, Sylwester Weymann

Abstract:

The paper discusses the problem of load transport using farm tractors and road tractor units. This type of carriage of goods is often done with farm vehicles. The tests were performed with the PEMS equipment (Portable Emission Measurement System) under actual traffic conditions. The vehicles carried a load of 20000 kg. This research method is one of the most desired because it provides reliable information on the actual vehicle emissions and fuel consumption (carbon balance method). For the tests, a route was selected that simulated a trip from a small town to a food-processing facility located in a city. The analysis of the obtained results gave a clear answer as to what vehicles need to be used for the carriage of this type of cargo in terms of exhaust emissions and fuel consumption.

Keywords: emission, transport, fuel consumption, PEMS

Procedia PDF Downloads 529
4320 Perforation Analysis of the Aluminum Alloy Sheets Subjected to High Rate of Loading and Heated Using Thermal Chamber: Experimental and Numerical Approach

Authors: A. Bendarma, T. Jankowiak, A. Rusinek, T. Lodygowski, M. Klósak, S. Bouslikhane

Abstract:

The analysis of the mechanical characteristics and dynamic behavior of aluminum alloy sheet due to perforation tests based on the experimental tests coupled with the numerical simulation is presented. The impact problems (penetration and perforation) of the metallic plates have been of interest for a long time. Experimental, analytical as well as numerical studies have been carried out to analyze in details the perforation process. Based on these approaches, the ballistic properties of the material have been studied. The initial and residual velocities laser sensor is used during experiments to obtain the ballistic curve and the ballistic limit. The energy balance is also reported together with the energy absorbed by the aluminum including the ballistic curve and ballistic limit. The high speed camera helps to estimate the failure time and to calculate the impact force. A wide range of initial impact velocities from 40 up to 180 m/s has been covered during the tests. The mass of the conical nose shaped projectile is 28 g, its diameter is 12 mm, and the thickness of the aluminum sheet is equal to 1.0 mm. The ABAQUS/Explicit finite element code has been used to simulate the perforation processes. The comparison of the ballistic curve was obtained numerically and was verified experimentally, and the failure patterns are presented using the optimal mesh densities which provide the stability of the results. A good agreement of the numerical and experimental results is observed.

Keywords: aluminum alloy, ballistic behavior, failure criterion, numerical simulation

Procedia PDF Downloads 312
4319 Laboratory Investigation of the Pavement Condition in Lebanon: Implementation of Reclaimed Asphalt Pavement in the Base Course and Asphalt Layer

Authors: Marinelle El-Khoury, Lina Bouhaya, Nivine Abbas, Hassan Sleiman

Abstract:

The road network in the north of Lebanon is a prime example of the lack of pavement design and execution in Lebanon.  These roads show major distresses and hence, should be tested and evaluated. The aim of this research is to investigate and determine the deficiencies in road surface design in Lebanon, and to propose an environmentally friendly asphalt mix design. This paper consists of several parts: (i) evaluating pavement performance and structural behavior, (ii) identifying the distresses using visual examination followed by laboratory tests, (iii) deciding the optimal solution where rehabilitation or reconstruction is required and finally, (iv) identifying a sustainable method, which uses recycled material in the proposed mix. The asphalt formula contains Reclaimed Asphalt Pavement (RAP) in the base course layer and in the asphalt layer. Visual inspection of the roads in Tripoli shows that these roads face a high level of distress severity. Consequently, the pavement should be reconstructed rather than simply rehabilitated. Coring was done to determine the pavement layer thickness. The results were compared to the American Association of State Highway and Transportation Officials (AASHTO) design methodology and showed that the existing asphalt thickness is lower than the required asphalt thickness. Prior to the pavement reconstruction, the road materials were tested according to the American Society for Testing and Materials (ASTM) specification to identify whether the materials are suitable. Accordingly, the ASTM tests that were performed on the base course are Sieve analysis, Atterberg limits, modified proctor, Los Angeles, and California Bearing Ratio (CBR) tests. Results show a CBR value higher than 70%. Hence, these aggregates could be used as a base course layer. The asphalt layer was also tested and the results of the Marshall flow and stability tests meet the ASTM specifications. In the last section, an environmentally friendly mix was proposed. An optimal RAP percentage of 30%, which produced a well graded base course and asphalt mix, was determined through a series of trials.

Keywords: asphalt mix, reclaimed asphalt pavement, California bearing ratio, sustainability

Procedia PDF Downloads 130
4318 Welding Technology Developments for Stringer-Skin Joints with Al-Li Alloys

Authors: Egoitz Aldanondo, Ekaitz Arruti, Amaia Iturrioz, Ivan Huarte, Fidel Zubiri

Abstract:

Manufacturing aeronautic structures joining extruded profiles or stringers to sheets or skins of aluminium is a typical manufacturing procedure in aeronautic structures. Although riveting is the conventional manufacturing technology to produce such joints, the Friction Stir Welding (FSW) and Laser Beam Welding (LBW) technologies have also demonstrated their potential for this kind of applications. Therefore, FSW and LBW technologies have the potential to continue their development as manufacturing processes for aeronautic structures showing benefits such as time-saving, light-weighting and overall cost reduction. In addition to that, new aluminium-lithium based alloy developments represent great opportunities for advanced aeronautic structure manufacturing with potential benefits such as lightweight construction or improved corrosion resistance. This work presents the main approaches by FSW and LBW to develop those technologies to produce stiffened panel structures such as fuselage by stringer-skin joints and using innovative aluminium-lithium alloys. Initial welding tests were performed in AA2198-T3S aluminium alloys for LBW technology and with AA2198-T851 for FSW. Later tests for both FSW and LBW have been carried out using AA2099-T83 alloy extrusions as stringers and AA2060-T8E30 as skin materials. The weld quality and properties have been examined by metallographic analysis and mechanical testing, including shear tensile tests and pull-out tests. The analysis of the results have shown the relationships between processing conditions, micro-macrostructural properties and the mechanical strength of the welded joints. The effects produced in the different alloys investigated have been observed and particular weld formation mechanics have been studied for each material and welding technology. Therefore, relationships between welding conditions and the obtained weld properties for each material combination and welding technology will be discussed in this presentation.

Keywords: AA2060-T8E30, AA2099-T83, AA2198-T3S, AA2198-T851, friction stir welding, laser beam welding

Procedia PDF Downloads 199
4317 Green Approach towards Synthesis of Chitosan Nanoparticles for in vitro Release of Quercetin

Authors: Dipali Nagaonkar, Mahendra Rai

Abstract:

Chitosan, a carbohydrate polymer at nanoscale level has gained considerable momentum in drug delivery applications due to its inherent biocompatibility and non-toxicity. However, conventional synthetic strategies for chitosan nanoparticles mainly rely upon physicochemical techniques, which often yield chitosan microparticles. Hence, there is an emergent need for development of controlled synthetic protocols for chitosan nanoparticles within the nanometer range. In this context, we report the green synthesis of size controlled chitosan nanoparticles by using Pongamia pinnata (L.) leaf extract. Nanoparticle tracking analysis confirmed formation of nanoparticles with mean particle size of 85 nm. The stability of chitosan nanoparticles was investigated by zetasizer analysis, which revealed positive surface charged nanoparticles with zeta potential 20.1 mV. The green synthesized chitosan nanoparticles were further explored for encapsulation and controlled release of antioxidant biomolecule, quercetin. The resulting drug loaded chitosan nanoparticles showed drug entrapment efficiency of 93.50% with drug-loading capacity of 42.44%. The cumulative in vitro drug release up to 15 hrs was achieved suggesting towards efficacy of green synthesized chitosan nanoparticles for drug delivery applications.

Keywords: Chitosan nanoparticles, green synthesis, Pongamia pinnata, quercetin

Procedia PDF Downloads 576
4316 Prevalence of Hemorrhagic Septicemia in Dromedary Camel (Camelus Dromedarius) for Some Selected Farms in Benadir Region, Somalia

Authors: Abdirahman Barre, Abdihamid Salad Hassan, Iftin Abdi Mohamud, Abdirahman Mohamed Mohamud, Ahmed Adan Mohamed, Mukhtaar Mohamed Idow

Abstract:

Pasteurellosis (Hemorrhagic septicemia) is a common respiratory disease of camel that is an acutely fatal disease caused by Pasteurella multocida type A or several serotypes of Mannheimia hemolytic, which also affect other animals. The disease had shown to spread between animals, across herds and to humans. Meaning that the disease is Zoonosis. The study aimed at establishment of sero-prevalence of Pasteurellosis in some selected Districts of camel rearing in the Benadir Region. It was a cross-sectional study, where the study population was purposively chosen to consist of animals taken within three sub-Districts of Benadir Region, namely Sub-District (Daynile Township), Sub-District (Yaaqshid) Sub-District (kaxda). This was because they normally handle many camels in a day, thus making it easy for the investigator to access the required number conveniently; it was also assumed that data collected from these for-slaughter camels was representative of the situation in the sub-District/county. A total of one hundred and sixty camels were tested using four serological tests: Rose Bengal Plate Test (RBPT),) and Complex Fixation Test (CFT). The serological tests were purposively chosen to increase the chances of picking positive cases and also to compare their sensitivities with respect to camel serum since they were originally meant for use on bovine serum. Blood samples (15 ml) were collected for serum harvesting from the jugular veins of the animals as they were waiting to be examined. Rose Bengal plate test and CFT were run at a laboratory within the Department of Veterinary Medicine, University of Horsed, 21 October campus; serum samples having been transported in a cool box. On average, out of an overall total of 300 serum samples tested, 180 samples were selected as sample procedures and were given eleven (11) positive results, amounting to a prevalence of 6.67%. For the three Districts, respective prevalence (averaged from the two (2) serological tests run) were: 7% (3/50) for Yaqshiid; 8% (3/60) for Deyniile and 10% (3/70) for Kaxda. When sensitivities of the two (2) serological tests were compared, there was no significant difference between them with respect to the picking of positive cases (p=0.05). The study has demonstrated presence of Pasterolosis in camels in Benadir Region and the authors are recommending the usage of RBPT and CFT as screening tests, since they are cheap, quick, and easy to carry out. Any of the other three involving tests can then be used if one wants to establish respective titers. Therefore, further detailed investigation needs to be conducted so as to understand specific etiological agents causing pasteurollosis in camel and can be instituted to optimize the benefit obtained from the camel sector.

Keywords: hemorrhagic septicemia, camel, prevalence, Benadir region, Somalia

Procedia PDF Downloads 72
4315 Testing of Protective Coatings on Automotive Steel, a Correlation Between Salt Spray, Electrochemical Impedance Spectroscopy, and Linear Polarization Resistance Test

Authors: Dhanashree Aole, V. Hariharan, Swati Surushe

Abstract:

Corrosion can cause serious and expensive damage to the automobile components. Various proven techniques for controlling and preventing corrosion depend on the specific material to be protected. Electrochemical Impedance Spectroscopy (EIS) and salt spray tests are commonly used to assess the corrosion degradation mechanism of coatings on metallic surfaces. While, the only test which monitors the corrosion rate in real time is known as Linear Polarisation Resistance (LPR). In this study, electrochemical tests (EIS & LPR) and spray test are reviewed to assess the corrosion resistance and durability of different coatings. The main objective of this study is to correlate the test results obtained using linear polarization resistance (LPR) and Electrochemical Impedance Spectroscopy (EIS) with the results obtained using standard salt spray test. Another objective of this work is to evaluate the performance of various coating systems- CED, Epoxy, Powder coating, Autophoretic, and Zn-trivalent coating for vehicle underbody application. The corrosion resistance coating are assessed. From this study, a promising correlation between different corrosion testing techniques is noted. The most profound observation is that electrochemical tests gives quick estimation of corrosion resistance and can detect the degradation of coatings well before visible signs of damage appear. Furthermore, the corrosion resistances and salt spray life of the coatings investigated were found to be according to the order as follows- CED> powder coating > Autophoretic > epoxy coating > Zn- Trivalent plating.

Keywords: Linear Polarization Resistance (LPR), Electrochemical Impedance Spectroscopy (EIS), salt spray test, sacrificial and barrier coatings

Procedia PDF Downloads 526
4314 Exchange Rate, Market Size and Human Capital Nexus Foreign Direct Investment: A Bound Testing Approach for Pakistan

Authors: Naveed Iqbal Chaudhry, Mian Saqib Mehmood, Asif Mehmood

Abstract:

This study investigates the motivators of foreign direct investment (FDI) which will provide a panacea tool and ground breaking results related to it in case of Pakistan. The study considers exchange rate, market size and human capital as the motivators for attracting FDI. In this regard, time series data on annual basis has been collected for the period 1985–2010 and an Augmented Dickey–Fuller (ADF) and Phillips–Perron (PP) unit root tests are utilized to determine the stationarity of the variables. A bound testing approach to co-integration was applied because the variables included in the model are at I(1) – first level stationary. The empirical findings of this study confirm the long run relationship among the variables. However, market size and human capital have strong positive and significant impact, in short and long-run, for attracting FDI but exchange rate shows negative impact in this regard. The significant negative coefficient of the ECM indicates that it converges towards equilibrium. CUSUM and CUSUMSQ tests plots are with in the lines of critical value, which indicates the stability of the estimated parameters. However, this model can be used by Pakistan in policy and decision making. For achieving higher economic growth and economies of scale, the country should concentrate on the ingredients of this study so that it could attract more FDI as compared to the other countries.

Keywords: ARDL, CUSUM and CUSUMSQ tests, ECM, exchange rate, FDI, human capital, market size, Pakistan

Procedia PDF Downloads 392
4313 Wear Resistance in Dry and Lubricated Conditions of Hard-anodized EN AW-4006 Aluminum Alloy

Authors: C. Soffritti, A. Fortini, E. Baroni, M. Merlin, G. L. Garagnani

Abstract:

Aluminum alloys are widely used in many engineering applications due to their advantages such ashigh electrical and thermal conductivities, low density, high strength to weight ratio, and good corrosion resistance. However, their low hardness and poor tribological properties still limit their use in industrial fields requiring sliding contacts. Hard anodizing is one of the most common solution for overcoming issues concerning the insufficient friction resistance of aluminum alloys. In this work, the tribological behavior ofhard-anodized AW-4006 aluminum alloys in dry and lubricated conditions was evaluated. Three different hard-anodizing treatments were selected: a conventional one (HA) and two innovative golden hard-anodizing treatments (named G and GP, respectively), which involve the sealing of the porosity of anodic aluminum oxides (AAO) with silver ions at different temperatures. Before wear tests, all AAO layers were characterized by scanning electron microscopy (VPSEM/EDS), X-ray diffractometry, roughness (Ra and Rz), microhardness (HV0.01), nanoindentation, and scratch tests. Wear tests were carried out according to the ASTM G99-17 standard using a ball-on-disc tribometer. The tests were performed in triplicate under a 2 Hz constant frequency oscillatory motion, a maximum linear speed of 0.1 m/s, normal loads of 5, 10, and 15 N, and a sliding distance of 200 m. A 100Cr6 steel ball10 mm in diameter was used as counterpart material. All tests were conducted at room temperature, in dry and lubricated conditions. Considering the more recent regulations about the environmental hazard, four bio-lubricants were considered after assessing their chemical composition (in terms of Unsaturation Number, UN) and viscosity: olive, peanut, sunflower, and soybean oils. The friction coefficient was provided by the equipment. The wear rate of anodized surfaces was evaluated by measuring the cross-section area of the wear track with a non-contact 3D profilometer. Each area value, obtained as an average of four measurements of cross-section areas along the track, was used to determine the wear volume. The worn surfaces were analyzed by VPSEM/EDS. Finally, in agreement with DoE methodology, a statistical analysis was carried out to identify the most influencing factors on the friction coefficients and wear rates. In all conditions, results show that the friction coefficient increased with raising the normal load. Considering the wear tests in dry sliding conditions, irrespective of the type of anodizing treatments, metal transfer between the mating materials was observed over the anodic aluminum oxides. During sliding at higher loads, the detachment of the metallic film also caused the delamination of some regions of the wear track. For the wear tests in lubricated conditions, the natural oils with high percentages of oleic acid (i.e., olive and peanut oils) maintained high friction coefficients and low wear rates. Irrespective of the type of oil, smallmicrocraks were visible over the AAO layers. Based on the statistical analysis, the type of anodizing treatment and magnitude of applied load were the main factors of influence on the friction coefficient and wear rate values. Nevertheless, an interaction between bio-lubricants and load magnitude could occur during the tests.

Keywords: hard anodizing treatment, silver ions, bio-lubricants, sliding wear, statistical analysis

Procedia PDF Downloads 150
4312 A Comprehensive Procedure of Spatial Panel Modelling with R, A Study of Agricultural Productivity Growth of the 38 East Java’s Regencies/Municipalities

Authors: Rahma Fitriani, Zerlita Fahdha Pusdiktasari, Herman Cahyo Diartho

Abstract:

Spatial panel model is commonly used to specify more complicated behavior of economic agent distributed in space at an individual-spatial unit level. There are several spatial panel models which can be adapted based on certain assumptions. A package called splm in R has several functions, ranging from the estimation procedure, specification tests, and model selection tests. In the absence of prior assumptions, a comprehensive procedure which utilizes the available functions in splm must be formed, which is the objective of this study. In this way, the best specification and model can be fitted based on data. The implementation of the procedure works well. It specifies SARAR-FE as the best model for agricultural productivity growth of the 38 East Java’s Regencies/Municipalities.

Keywords: spatial panel, specification, splm, agricultural productivity growth

Procedia PDF Downloads 171
4311 Experimental Study of Flag Flutter in Uniform Flow

Authors: A. Sadeghi, M. Sedghi, M. R. Emami Azadi, R. Gharraei Khosroshahi

Abstract:

Flags are objects with very low bending stiffness and under wind forces start to vibrate and finally to flutter. Even in lower velocities of wind their flutter can be seen. In this research physical property of fabric is determined by performing tensile tests. Then with performing laboratory experiments in wind tunnel, determination of initial flapping speed and also study of displacement amplitude at leech and calculation of their frequency would be targeted. Laboratory tests are performed in a wind tunnel and with different velocities of wind flow for specimens with different dimensions. The results show that extension of specimens' width increase flutter initiation velocity and increase of specimen length decreases it. Also by increasing wind velocity displacement amplitude at leech of specimens are decreased. This displacement has a straight relation with specimens' length and width.

Keywords: flag, flutter, wind velocity, flutter amplitudes, wind tunnel

Procedia PDF Downloads 435
4310 Experimental Characterization of the Shear Behavior of Fiber Reinforced Concrete Beam Elements in Chips

Authors: Djamal Atlaoui, Youcef Bouafia

Abstract:

This work deals with the experimental study of the mechanical behavior, by shear tests (fracture shear), elements of concrete beams reinforced with fibers in chips. These fibers come from the machining waste of the steel parts. The shear tests are carried out on prismatic specimens of dimensions 10 x 20 x 120 cm3. The fibers are characterized by mechanical resistance and tearing. The optimal composition of the concrete was determined by the workability test. Two fiber contents are selected for this study (W = 0.6% and W = 0.8%) and a BT control concrete (W = 0%) of the same composition as the matrix is developed to serve as a reference with a sand-to-gravel ratio (S/G) of concrete matrix equal to 1. The comparison of the different results obtained shows that the chips fibers confer a significant ductility to the material after cracking of the concrete. Also, the fibers used limit diagonal cracks in shear and improve strength and rigidity.

Keywords: characterization, chips fibers, cracking mode, ductility, undulation, shear

Procedia PDF Downloads 133
4309 Survey of the Relationship between Functional Movement Screening Tests and Anthropometric Dimensions in Healthy People, 2018

Authors: Akram Sadat Jafari Roodbandi, Parisa Kahani, Fatollah Rahimi Bafrani, Ali Dehghan, Nava Seyedi, Vafa Feyzi, Zohreh Forozanfar

Abstract:

Introduction: Movement function is considered as the ability to produce and maintain balance, stability, and movement throughout the movement chain. Having a score of 14 and above on 7 sub-tests in the functional movement screening (FMS) test shows agility and optimal movement performance. On the other hand, the person's body is an important factor in physical fitness and optimal movement performance. The aim of this study was to identify effective anthropometric dimensions in increasing motor function. Methods: This study was a descriptive-analytical and cross-sectional study using simple random sampling. FMS test and 25 anthropometric dimensions and subcutaneous in five body regions measured in 139 healthy students of Bam University of Medical Sciences. Data analysis was performed using SPSS software and univariate tests and linear regressions at a significance level of 0.05. Results: 139 students were enrolled in the study, 51.1% (71 subjects) and the rest were female. The mean and standard deviation of age, weight, height, and arm subcutaneous fat were 21.5 ± 1.45, 12.6 ± 64.3, 168.7 ± 9.8, 15.3 ± 7, respectively. 17 subjects (12.2%) of the participants in the study have a score of less than 14, and the rest were above 14. Using regression analysis, it was found that exercise and arm subcutaneous fat are predictive variables associated with obtaining a high score in the FMS test. Conclusion: Exercise and weight loss are effective factors for increasing the movement performance of individuals, and this factor is independent of the size of other physical dimensions.

Keywords: functional movement, screening test, anthropometry, ergonomics

Procedia PDF Downloads 148
4308 ACTN3 Genotype Association with Motoric Performance of Roma Children

Authors: J. Bernasovska, I. Boronova, J. Poracova, M. Mydlarova Blascakova, V. Szabadosova, P. Ruzbarsky, E. Petrejcikova, I. Bernasovsky

Abstract:

The paper presents the results of the molecular genetics analysis in sports research, with special emphasis to use genetic information in diagnosing of motoric predispositions in Roma boys from East Slovakia. The ability and move are the basic characteristics of all living organisms. The phenotypes are influenced by a combination of genetic and environmental factors. Genetic tests differ in principle from the traditional motoric tests, because the DNA of an individual does not change during life. The aim of the presented study was to examine motion abilities and to determine the frequency of ACTN3 (R577X) gene in Roma children. Genotype data were obtained from 138 Roma and 155 Slovak boys from 7 to 15 years old. Children were investigated on physical performance level in association with their genotype. Biological material for genetic analyses comprised samples of buccal swabs. Genotypes were determined using Real Time High resolution melting PCR method (Rotor-Gene 6000 Corbett and Light Cycler 480 Roche). The software allows creating reports of any analysis, where information of the specific analysis, normalized and differential graphs and many information of the samples are shown. Roma children of analyzed group legged to non-Romany children at the same age in all the compared tests. The % distribution of R and X alleles in Roma children was different from controls. The frequency of XX genotype was 9.26%, RX 46.33% and RR was 44.41%. The frequency of XX genotype was 9.26% which is comparable to a frequency of an Indian population. Data were analyzed with the ANOVA test.

Keywords: ACTN3 gene, R577X polymorphism, Roma children, sport performance, Slovakia

Procedia PDF Downloads 334
4307 Characterization of N+C, Ti+N and Ti+C Ion Implantation into Ti6Al4V Alloy

Authors: Xingguo Feng, Hui Zhou, Kaifeng Zhang, Zhao Jiang, Hanjun Hu, Jun Zheng, Hong Hao

Abstract:

TiN and TiC films have been prepared on Ti6Al4V alloy substrates by plasma-based ion implantation. The effect of N+C and Ti+N hybrid ion implantation at 50 kV, and Ti+C hybrid ion implantation at 20 kV, 35 kV and 50 kV extraction voltages on mechanical properties at a dose of 2×10¹⁷ ions / cm² was studied. The chemical states and microstructures of the implanted samples were investigated using X-ray photoelectron (XPS), and X-ray diffraction (XRD), together with the mechanical and tribological properties of the samples were characterized using nano-indentation and ball-on-disk tribometer. It was found that the modified layer by Ti+C implanted at 50 kV was composed of mainly TiC and Ti-O bond and the layer of Ti+N implanted at 50 kV was observed to be TiN and Ti-O bond. Hardness tests have shown that the hardness values for N+C, Ti+N, and Ti+C hybrid ion implantation samples were much higher than the un-implanted ones. The results of wear tests showed that both Ti+C and Ti+N ion implanted samples had much better wear resistance compared un-implanted sample. The wear rate of Ti+C implanted at 50 kV sample was 6.7×10⁻⁵mm³ / N.m, which was decreased over one order than unimplanted samples.

Keywords: plasma ion implantation, x-ray photoelectron (XPS), hardness, wear

Procedia PDF Downloads 410
4306 Evaporative Air Coolers Optimization for Energy Consumption Reduction and Energy Efficiency Ratio Increment

Authors: Leila Torkaman, Nasser Ghassembaglou

Abstract:

Significant quota of Municipal Electrical Energy consumption is related to Decentralized Air Conditioning which is mostly provided by evaporative coolers. So the aim is to optimize design of air conditioners to increase their efficiencies. To achieve this goal, results of practical standardized tests for 40 evaporative coolers in different types collected and simultaneously results for same coolers based on one of EER (Energy Efficiency Ratio) modeling styles are figured out. By comparing experimental results of different coolers standardized tests with modeling results, preciseness of used model is assessed and after comparing gained preciseness with international standards based on EER for cooling capacity, aeration and also electrical energy consumption, energy label from A (most effective) to G (less effective) is classified. finally needed methods to optimize energy consumption and cooler's classification are provided.

Keywords: cooler, EER, energy label, optimization

Procedia PDF Downloads 344
4305 Vibration Transmission across Junctions of Walls and Floors in an Apartment Building: An Experimental Investigation

Authors: Hugo Sampaio Libero, Max de Castro Magalhaes

Abstract:

The perception of sound radiated from a building floor is greatly influenced by the rooms in which it is immersed and by the position of both listener and source. The main question that remains unanswered is related to the influence of the source position on the sound power radiated by a complex wall-floor system in buildings. This research is concerned with the investigation of vibration transmission across walls and floors in buildings. It is primarily based on the determination of vibration reduction index via experimental tests. Knowledge of this parameter may help in predicting noise and vibration propagation in building components. First, the physical mechanisms involving vibration transmission across structural junctions are described. An experimental setup is performed to aid this investigation. The experimental tests have shown that the vibration generation in the walls and floors is directed related to their size and boundary conditions. It is also shown that the vibration source position can affect the overall vibration spectrum significantly. Second, the characteristics of the noise spectra inside the rooms due to an impact source (tapping machine) are also presented. Conclusions are drawn for the general trend of vibration and noise spectrum of the structural components and rooms, respectively. In summary, the aim of this paper is to investigate the vibro-acoustical behavior of building floors and walls under floor impact excitation. The impact excitation was at distinct positions on the slab. The analysis has highlighted the main physical characteristics of the vibration transmission mechanism.

Keywords: vibration transmission, vibration reduction index, impact excitation, experimental tests

Procedia PDF Downloads 93
4304 Experimental Investigation of the Out-of-Plane Dynamic Behavior of Adhesively Bonded Composite Joints at High Strain Rates

Authors: Sonia Sassi, Mostapha Tarfaoui, Hamza Ben Yahia

Abstract:

In this investigation, an experimental technique in which the dynamic response, damage kinetic and heat dissipation are measured simultaneously during high strain rates on adhesively bonded joints materials. The material used in this study is widely used in the design of structures for military applications. It was composed of a 45° Bi-axial fiber-glass mat of 0.286 mm thickness in a Polyester resin matrix. In adhesive bonding, a NORPOL Polyvinylester of 1 mm thickness was used to assemble the composite substrate. The experimental setup consists of a compression Split Hopkinson Pressure Bar (SHPB), a high-speed infrared camera and a high-speed Fastcam rapid camera. For the dynamic compression tests, 13 mm x 13 mm x 9 mm samples for out-of-plane tests were considered from 372 to 1030 s-1. Specimen surface is controlled and monitored in situ and in real time using the high-speed camera which acquires the damage progressive in specimens and with the infrared camera which provides thermal images in time sequence. Preliminary compressive stress-strain vs. strain rates data obtained show that the dynamic material strength increases with increasing strain rates. Damage investigations have revealed that the failure mainly occurred in the adhesive/adherent interface because of the brittle nature of the polymeric adhesive. Results have shown the dependency of the dynamic parameters on strain rates. Significant temperature rise was observed in dynamic compression tests. Experimental results show that the temperature change depending on the strain rate and the damage mode and their maximum exceed 100 °C. The dependence of these results on strain rate indicates that there exists a strong correlation between damage rate sensitivity and heat dissipation, which might be useful when developing damage models under dynamic loading tacking into account the effect of the energy balance of adhesively bonded joints.

Keywords: adhesive bonded joints, Hopkinson bars, out-of-plane tests, dynamic compression properties, damage mechanisms, heat dissipation

Procedia PDF Downloads 212
4303 Diamond-Like Carbon-Based Structures as Functional Layers on Shape-Memory Alloy for Orthopedic Applications

Authors: Piotr Jablonski, Krzysztof Mars, Wiktor Niemiec, Agnieszka Kyziol, Marek Hebda, Halina Krawiec, Karol Kyziol

Abstract:

NiTi alloys, possessing unique mechanical properties such as pseudoelasticity and shape memory effect (SME), are suitable for many applications, including implanthology and biomedical devices. Additionally, these alloys have similar values of elastic modulus to those of human bones, what is very important in orthopedics. Unfortunately, the environment of physiological fluids in vivo causes unfavorable release of Ni ions, which in turn may lead to metalosis as well as allergic reactions and toxic effects in the body. For these reasons, the surface properties of NiTi alloys should be improved to increase corrosion resistance, taking into account biological properties, i.e. excellent biocompatibility. The prospective in this respect are layers based on DLC (Diamond-Like Carbon) structures, which are an attractive solution for many applications in implanthology. These coatings (DLC), usually obtained by PVD (Physical Vapour Deposition) and PA CVD (Plasma Activated Chemical Vapour Deposition) methods, can be also modified by doping with other elements like silicon, nitrogen, oxygen, fluorine, titanium and silver. These methods, in combination with a suitably designed structure of the layers, allow the possibility co-decide about physicochemical and biological properties of modified surfaces. Mentioned techniques provide specific physicochemical properties of substrates surface in a single technological process. In this work, the following types of layers based on DLC structures (incl. Si-DLC or Si/N-DLC) were proposed as prospective and attractive approach in surface functionalization of shape memory alloy. Nitinol substrates were modified in plasma conditions, using RF CVD (Radio Frequency Chemical Vapour Deposition). The influence of plasma treatment on the useful properties of modified substrates after deposition DLC layers doped with silica and/or nitrogen atoms, as well as only pre-treated in O2 NH3 plasma atmosphere in a RF reactor was determined. The microstructure and topography of the modified surfaces were characterized using scanning electron microscopy (SEM) and atomic force microscopy (AFM). Furthermore, the atomic structure of coatings was characterized by IR and Raman spectroscopy. The research also included the evaluation of surface wettability, surface energy as well as the characteristics of selected mechanical and biological properties of the layers. In addition, the corrosion properties of alloys after and before modification in the physiological saline were also investigated. In order to determine the corrosion resistance of NiTi in the Ringer solution, the potentiodynamic polarization curves (LSV – Linear Sweep Voltamperometry) were plotted. Furthermore, the evolution of corrosion potential versus immersion time of TiNi alloy in Ringer solution was performed. Based on all carried out research, the usefullness of proposed modifications of nitinol for medical applications was assessed. It was shown, inter alia, that the obtained Si-DLC layers on the surface of NiTi alloy exhibit a characteristic complex microstructure, increased surface development, which is an important aspect in improving the osteointegration of an implant. Furthermore, the modified alloy exhibits biocompatibility, the transfer of the metal (Ni, Ti) to Ringer’s solution is clearly limited.

Keywords: bioactive coatings, corrosion resistance, doped DLC structure, NiTi alloy, RF CVD

Procedia PDF Downloads 235
4302 Enhanced Magnetic Hyperthermic Efficiency of Ferrite Based Nanoparticles

Authors: J. P. Borah, R. D. Raland

Abstract:

Hyperthermia is one of many techniques used destroys cancerous cell. It uses the physical methods to heat certain organ or tissue delivering an adequate temperature in an appropriate period of time, to the entire tumor volume for achieving optimal therapeutic results. Magnetic Metal ferrites nanoparticles (MFe₂O₄ where M = Mn, Zn, Ni, Co, Mg, etc.) are one of the most potential candidates for hyperthermia due to their tunability, biocompatibility, chemical stability and notable ability to mediate high rate of heat induction. However, to obtain the desirable properties for these applications, it is important to optimize their chemical composition, structure and magnetic properties. These properties are mainly sensitive to cation distribution of tetrahedral and octahedral sites. Among the ferrites, zinc ferrite (ZnFe₂O₄) and Manganese ferrite ((MnFe₂O₄) is one of a strong candidate for hyperthermia application because Mn and zinc have a non-magnetic cation and therefore the magnetic property is determined only by the cation distribution of iron, which provides a better platform to manipulate or tailor the properties. In this talk, influence of doping and surfactant towards cation re-distribution leading to an enhancement of magnetic properties of ferrite nanoparticles will be demonstrated. The efficiency of heat generation in association with the enhanced magnetic property is also well discussed in this talk.

Keywords: magnetic nanoparticle, hyperthermia, x-ray diffraction, TEM study

Procedia PDF Downloads 164
4301 Large Eddy Simulation of Hydrogen Deflagration in Open Space and Vented Enclosure

Authors: T. Nozu, K. Hibi, T. Nishiie

Abstract:

This paper discusses the applicability of the numerical model for a damage prediction method of the accidental hydrogen explosion occurring in a hydrogen facility. The numerical model was based on an unstructured finite volume method (FVM) code “NuFD/FrontFlowRed”. For simulating unsteady turbulent combustion of leaked hydrogen gas, a combination of Large Eddy Simulation (LES) and a combustion model were used. The combustion model was based on a two scalar flamelet approach, where a G-equation model and a conserved scalar model expressed a propagation of premixed flame surface and a diffusion combustion process, respectively. For validation of this numerical model, we have simulated the previous two types of hydrogen explosion tests. One is open-space explosion test, and the source was a prismatic 5.27 m3 volume with 30% of hydrogen-air mixture. A reinforced concrete wall was set 4 m away from the front surface of the source. The source was ignited at the bottom center by a spark. The other is vented enclosure explosion test, and the chamber was 4.6 m × 4.6 m × 3.0 m with a vent opening on one side. Vent area of 5.4 m2 was used. Test was performed with ignition at the center of the wall opposite the vent. Hydrogen-air mixtures with hydrogen concentrations close to 18% vol. were used in the tests. The results from the numerical simulations are compared with the previous experimental data for the accuracy of the numerical model, and we have verified that the simulated overpressures and flame time-of-arrival data were in good agreement with the results of the previous two explosion tests.

Keywords: deflagration, large eddy simulation, turbulent combustion, vented enclosure

Procedia PDF Downloads 244
4300 Seismic Retrofit of Rectangular Columns Using Fiber Reinforced Polymers

Authors: E. L. Elghazy, A. M. Sanad, M. G. Ghoneim

Abstract:

Over the past two decades research has shown that fiber reinforced polymers can be efficiently, economically and safely used for strengthening and rehabilitation of reinforced concrete (RC) structures. Designing FRP confined concrete columns requires reliable analytical tools that predict the level of performance and ductility enhancement. A numerical procedure is developed aiming at determining the type and thickness of FRP jacket needed to achieve a certain level of ductility enhancement. The procedure starts with defining the stress strain curve, which is used to obtain moment curvature relationship then displacement ductility ratio of reinforced concrete cross-sections subjected to bending moment and axial force. Three sets of published experimental tests were used to validate the numerical procedure. Comparisons between predicted results obtained by using the proposed procedure and actual results of experimental tests proved the reliability of the proposed procedure.

Keywords: columns, confinement, ductility, FRP, numerical

Procedia PDF Downloads 448
4299 Permanent Magnet Machine Can Be a Vibration Sensor for Itself

Authors: M. Barański

Abstract:

The article presents a new vibration diagnostic method designed to (PM) machines with permanent magnets. Those devices are commonly used in small wind and water systems or vehicles drives. The author’s method is very innovative and unique. Specific structural properties of PM machines are used in this method - electromotive force (EMF) generated due to vibrations. There was analysed number of publications which describe vibration diagnostic methods and tests of electrical PM machines and there was no method found to determine the technical condition of such machine basing on their own signals. In this article, the method genesis, the similarity of machines with permanent magnet to vibration sensor and simulation and laboratory tests results will be discussed. The method of determination the technical condition of electrical machine with permanent magnets basing on its own signals is the subject of patent application No P.405669, and it is the main thesis of author’s doctoral dissertation.

Keywords: vibrations, generator, permanent magnet, traction drive, electrical vehicle

Procedia PDF Downloads 366
4298 Structural Safety of Biocomposites under Cracking: A Fracture Analytical Approach using the Gғ-Concept

Authors: Brandtner-Hafner Martin

Abstract:

Biocomposites have established themselves as a sustainable material class in the industry. Their advantages include lower density, lower price, and easier recycling compared to conventional materials. Now there are a variety of ways to measure their technical performance. One possibility is mechanical tests, which are widely used and standardized. However, these provide only very limited insights into damage capacity, which is particularly problematic under cracking conditions. To overcome such shortcomings, experimental tests were performed applying the fracture energetically GF-concept to study the structural safety of the interface under crack opening (mode-I loading). Two different types of biocomposites based on extruded henequen-fibers (NFRP) and wood-particles (WPC) in an HDPE matrix were evaluated. The results show that the fracture energy values obtained are higher than those given in the literature. This suggests that alternatives to previous linear elastic testing methods are needed to perform authentic safety evaluations of green plastics.

Keywords: biocomposites, structural safety, Gғ-concept, fracture analysis

Procedia PDF Downloads 159