Search results for: antifungal properties
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9157

Search results for: antifungal properties

5017 Flexural Test of Diversing Foam Core Sandwich Composites

Authors: Santhana Krishnan R, Preetha C

Abstract:

Sandwich construction with strong and stiffness facing and light weight cores is increasingly cores being used in structures where the predominant loads are flexural. The objective of this study is to improve the flexural performances of foam core sandwich composite via structural core modifications considering the ease of application. The performances of single core perforated and divided core perforated sandwich composites are compared with each other. The future demands of sandwich composites in recent years on aeronautics and marine industries are being increasing in their research needs and these materials has their superior properties for upgrading engineering products.

Keywords: sandwich composites, perforated cores, flexural test, single and divided core perforated

Procedia PDF Downloads 161
5016 Influence of CO₂ on the Curing of Permeable Concrete

Authors: A. M. Merino-Lechuga, A. González-Caro, D. Suescum-Morales, E. Fernández-Ledesma, J. R. Jiménez, J. M. Fernández-Rodriguez

Abstract:

Since the mid-19th century, the boom in the economy and industry has grown exponentially. This has led to an increase in pollution due to rising Greenhouse Gas (GHG) emissions and the accumulation of waste, leading to an increasingly imminent future scarcity of raw materials and natural resources. Carbon dioxide (CO₂) is one of the primary greenhouse gases, accounting for up to 55% of Greenhouse Gas (GHG) emissions. The manufacturing of construction materials generates approximately 73% of CO₂ emissions, with Portland cement production contributing to 41% of this figure. Hence, there is scientific and social alarm regarding the carbon footprint of construction materials and their influence on climate change. Carbonation of concrete is a natural process whereby CO₂ from the environment penetrates the material, primarily through pores and microcracks. Once inside, carbon dioxide reacts with calcium hydroxide (Ca(OH)2) and/or CSH, yielding calcium carbonates (CaCO3) and silica gel. Consequently, construction materials act as carbon sinks. This research investigated the effect of accelerated carbonation on the physical, mechanical, and chemical properties of two types of non-structural vibrated concrete pavers (conventional and draining) made from natural aggregates and two types of recycled aggregates from construction and demolition waste (CDW). Natural aggregates were replaced by recycled aggregates using a volumetric substitution method, and the CO₂ capture capacity was calculated. Two curing environments were utilized: a carbonation chamber with 5% CO₂ and a standard climatic chamber with atmospheric CO₂ concentration. Additionally, the effect of curing times of 1, 3, 7, 14, and 28 days on concrete properties was analyzed. Accelerated carbonation in-creased the apparent dry density, reduced water-accessible porosity, improved compressive strength, and decreased setting time to achieve greater mechanical strength. The maximum CO₂ capture ratio was achieved with the use of recycled concrete aggregate (52.52 kg/t) in the draining paver. Accelerated carbonation conditions led to a 525% increase in carbon capture compared to curing under atmospheric conditions. Accelerated carbonation of cement-based products containing recycled aggregates from construction and demolition waste is a promising technology for CO₂ capture and utilization, offering a means to mitigate the effects of climate change and promote the new paradigm of circular economy.

Keywords: accelerated carbonation, CO₂ curing, CO₂ uptake and construction and demolition waste., circular economy

Procedia PDF Downloads 66
5015 Protective Role of Curcumin against Ionising Radiation of Gamma Ray

Authors: Turban Kar, Maitree Bhattacharyya

Abstract:

Curcumin, a dietary antioxidant has been identified as a wonder molecule to possess therapeutic properties protecting the cellular macromolecules from oxidative damage. In our experimental study, we have explored the effectiveness of curcumin in protecting the structural paradigm of Human Serum Albumin (HSA) when exposed to gamma irradiation. HSA, being an important transport protein of the circulatory system, is involved in binding of variety of metabolites, drugs, dyes and fatty acids due to the presence of hydrophobic pockets inside the structure. HSA is also actively involved in the transportation of drugs and metabolites to their targets, because of its long half-life and regulation of osmotic blood pressure. Gamma rays, in its increasing concentration, results in structural alteration of the protein and superoxide radical generation. Curcumin, on the other hand, mitigates the damage, which has been evidenced in the following experiments. Our study explores the possibility for protection by curcumin during the molecular and conformational changes of HSA when exposed to gamma irradiation. We used a combination of spectroscopic methods to probe the conformational ensemble of the irradiated HSA and finally evaluated the extent of restoration by curcumin. SDS - PAGE indicated the formation of cross linked aggregates as a consequence of increasing exposure of gamma radiation. CD and FTIR spectroscopy inferred significant decrease in alpha helix content of HSA from 57% to 15% with increasing radiation doses. Steady state and time resolved fluorescence studies complemented the spectroscopic measurements when lifetime decay was significantly reduced from 6.35 ns to 0.37 ns. Hydrophobic and bityrosine study showed the effectiveness of curcumin for protection against radiation induced free radical generation. Moreover, bityrosine and hydrophobic profiling of gamma irradiated HSA in presence and absence of curcumin provided light on the formation of ROS species generation and the protective (magical) role of curcumin. The molecular mechanism of curcumin protection to HSA from gamma irradiation is yet unknown, though a possible explanation has been proposed in this work using Thioflavin T assay. It was elucidated, that when HSA is irradiated at low dose of gamma radiation in presence of curcumin, it is capable of retaining the native characteristic properties to a greater extent indicating stabilization of molecular structure. Thus, curcumin may be utilized as a therapeutic strategy to protect cellular proteins.

Keywords: Bityrosine content, conformational change, curcumin, gamma radiation, human serum albumin

Procedia PDF Downloads 157
5014 Functionally Modified Melt-Electrospun Thermoplastic Polyurethane (TPU) Mats for Wound-Dressing Applications

Authors: Christoph Hacker, Zeynep Karahaliloglu, Gunnar Seide, Emir Baki Denkbas, Thomas Gries

Abstract:

A wound dressing material is designed to facilitate wound healing and minimize scarring. An ideal wound dressing material should protect the wound from any contaminations of exogeneous microorganism. In addition, the dressing material should provide a moist environment through extraction of body fluid from the wound area. Recently, wound dressing electrospun nanofibrous membranes are produced by electrospinning from a polymer solution or a polymer melt. These materials have a great potential as dressing materials for wound healing because of superior properties such as high surface-to-volume ratio, high porosity with excellent pore interconnectivity. Melt electrospinning is an attractive tissue engineering scaffold manufacturing process which eliminated the health risk posed by organic solvents used in electrospinning process and reduced the production costs. In this study, antibacterial wound dressing materials were prepared from TPU (Elastollan 1185A) by a melt-electrospinning technique. The electrospinning parameters for an efficient melt-electrospinning process of TPU were optimized. The surface of the fibers was modified with poly(ethylene glycol) (PEG) by radio-frequency glow discharge plasma deposition method and with silver nanoparticles (nAg) to improve their wettability and antimicrobial properties. TPU melt-electrospun mats were characterized using SEM, DSC, TGA and XPS. The cell viability and proliferation on modified melt-electrospun TPU mats were evaluated using a mouse fibroblast cell line (L929). Antibacterial effects of theirs against both Staphylococcus aureus strain and Escherichia coli were investigated by disk-diffusion method. TPU was successfully processed into a porous, fibrous network of beadless fibers in the micrometer range (4.896±0.94 µm) with a voltage of 50 kV, a working distance of 6 cm, a temperature of the thermocouple and hot coil of 225–230ºC, and a flow rate of 0.1 mL/h. The antibacterial test indicated that PEG-modified nAg-loaded TPU melt-electrospun structure had excellent antibacterial effects and cell study results demonstrated that nAg-loaded TPU mats had no cytotoxic effect on the fibroblast cells. In this work, the surface of a melt-electrospun TPU mats was modified via PEG monomer and then nAg. Results showed melt-electrospun TPU mats modified with PEG and nAg have a great potential for use as an antibacterial wound dressing material and thus, requires further investigation.

Keywords: melt electrospinning, nanofiber, silver nanoparticles, wound dressing

Procedia PDF Downloads 462
5013 Functionalized Spherical Aluminosilicates in Biomedically Grade Composites

Authors: Damian Stanislaw Nakonieczny, Grazyna Simha Martynkova, Marianna Hundakova, G. Kratosová, Karla Cech Barabaszova

Abstract:

The main aim of the research was to functionalize the surface of spherical aluminum silicates in the form of so-called cenospheres. Cenospheres are light ceramic particles with a density between 0.45 and 0.85 kgm-3 hat can be obtained as a result of separation from fly ash from coal combustion. However, their occurrence is limited to about 1% by weight of dry ash mainly derived from anthracite. Hence they are very rare and desirable material. Cenospheres are characterized by complete chemical inertness. Mohs hardness in range of 6 and completely smooth surface. Main idea was to prepare the surface by chemical etching, among others hydrofluoric acid (HF) and hydrogen peroxide, caro acid, silanization using (3-aminopropyl) triethoxysilane (APTES) and tetraethyl orthosilicate (TEOS) to obtain the maximum development and functionalization of the surface to improve chemical and mechanical connection with biomedically used polymers, i.e., polyacrylic methacrylate (PMMA) and polyetheretherketone (PEEK). These polymers are used medically mainly as a material for fixed and removable dental prostheses and PEEK spinal implants. The problem with their use is the decrease in mechanical properties over time and bacterial infections fungal during implantation and use of dentures. Hence, the use of a ceramic filler that will significantly improve the mechanical properties, improve the fluidity of the polymer during shape formation, and in the future, will be able to support bacteriostatic substances such as silver and zinc ions seem promising. In order to evaluate our laboratory work, several instrumental studies were performed: chemical composition and morphology with scanning electron microscopy with Energy-Dispersive X-Ray Probe (SEM/EDX), determination of characteristic functional groups of Fourier Transform Infrared Spectroscopy (FTIR), phase composition of X-ray Diffraction (XRD) and thermal analysis of Thermo Gravimetric Analysis/differentia thermal analysis (TGA/DTA), as well as assessment of isotherm of adsorption with Brunauer-Emmett-Teller (BET) surface development. The surface was evaluated for the future application of additional bacteria and static fungus layers. Based on the experimental work, it was found that orated methods can be suitable for the functionalization of the surface of cenosphere ceramics, and in the future it can be suitable as a bacteriostatic filler for biomedical polymers, i.e., PEEK or PMMA.

Keywords: bioceramics, composites, functionalization, surface development

Procedia PDF Downloads 121
5012 Design of a Chaotic Trajectory Generator Algorithm for Mobile Robots

Authors: J. J. Cetina-Denis, R. M. López-Gutiérrez, R. Ramírez-Ramírez, C. Cruz-Hernández

Abstract:

This work addresses the problem of designing an algorithm capable of generating chaotic trajectories for mobile robots. Particularly, the chaotic behavior is induced in the linear and angular velocities of a Khepera III differential mobile robot by infusing them with the states of the H´enon chaotic map. A possible application, using the properties of chaotic systems, is patrolling a work area. In this work, numerical and experimental results are reported and analyzed. In addition, two quantitative numerical tests are applied in order to measure how chaotic the generated trajectories really are.

Keywords: chaos, chaotic trajectories, differential mobile robot, Henon map, Khepera III robot, patrolling applications

Procedia PDF Downloads 310
5011 Development of a Porous Porcelain Frape with Thermochromic Visualization

Authors: Jose Gois

Abstract:

The paper presents the development of a porous porcelain frappe with thermochromic visualization for port wines, having as a partner the Institute of Vinhos do Douro and Porto. This ceramic frappe is intended to promote the cooling and maintenance of the temperature of port wines through porous ceramic materials, consisting of a porcelain composite with sawdust addition, so as to contain, on the one hand, the similar cooling properties of the terracotta and, on the other, the resistance of materials such as porcelain. The application of the thermochromic element makes it possible to see if the wine is at optimal service temperatures, allowing users to drink the wine in the ideal conditions and contributing to more efficient maintenance of the service.

Keywords: design, frappe, porcelain, porous, thermochromic

Procedia PDF Downloads 137
5010 3D Modeling of Tunis Soft Soil Settlement Reinforced with Plastic Wastes

Authors: Aya Rezgui, Lasaad Ajam, Belgacem Jalleli

Abstract:

The Tunis soft soils present a difficult challenge as construction sites and for Geotechnical works. Currently, different techniques are used to improve such soil properties taking into account the environmental considerations. One of the recent methods is involving plastic wastes as a reinforcing materials. The present study pertains to the development of a numerical model for predicting the behavior of Tunis Soft soil (TSS) improved with recycled Monobloc chair wastes.3D numerical models for unreinforced TSS and reinforced TSS aims to evaluate settlement reduction and the values of consolidation times in oedometer conditions.

Keywords: Tunis soft soil, settlement, plastic wastes, finte -difference, FLAC3D modeling

Procedia PDF Downloads 137
5009 Root Causes of Child Labour in Hargeisa, Somaliland

Authors: Abdikarim Yusuf

Abstract:

This study uses data from Somalia to analyse child labour using a descriptive and qualitative method. The study set out to identify root causes of child labour in Hargeisa and its implications for children. The study shows that poverty, droughts, family separation, and loss of properties are primary drivers of child labour in Hargeisa. The study found that children work in very difficult jobs such as car wash, casual work, and shoe shining for boys while girls work as housemaids, selling tea, Khat and sometimes are at risk of exploitation such as sexual abuse, rape and harassment. The majority of the parents responded that they don’t know any policy, act or law that protects children. Men showed greater awareness than the women respondents in recognizing child labour as a child rights violation.

Keywords: abuse, child, violence, protection

Procedia PDF Downloads 154
5008 Characterization of the Viscoelastic Behavior of Polymeric Composites

Authors: Abir Abdessalem, Sahbi Tamboura, J. Fitoussi, Hachmi Ben Daly, Abbas Tcharkhtchi

Abstract:

Dynamic mechanical analysis (DMA) is one of the most used experimental techniques to investigate the temperature and frequency dependence of the mechanical behavior of viscoelastic materials. The measured data are generally shifted by the application of the principle of the time– temperature superposition (TTS) to obtain the viscoelastic system’s master curve. The aim of this work is to show the methodology to define the horizontal shift factor to be applied to the storage modulus measured in order to indicate the validity of (TTS) principle for this material system. This principle was successfully used to determine the long-term properties of the Sheet Moulding Compound (SMC) composites.

Keywords: composite material, dynamic mechanical analysis, SMC composites, viscoelastic behavior, modeling

Procedia PDF Downloads 235
5007 Applying the Quad Model to Estimate the Implicit Self-Esteem of Patients with Depressive Disorders: Comparing the Psychometric Properties with the Implicit Association Test Effect

Authors: Yi-Tung Lin

Abstract:

Researchers commonly assess implicit self-esteem with the Implicit Association Test (IAT). The IAT’s measure, often referred to as the IAT effect, indicates the strengths of automatic preferences for the self relative to others, which is often considered an index of implicit self-esteem. However, based on the Dual-process theory, the IAT does not rely entirely on the automatic process; it is also influenced by a controlled process. The present study, therefore, analyzed the IAT data with the Quad model, separating four processes on the IAT performance: the likelihood that automatic association is activated by the stimulus in the trial (AC); that a correct response is discriminated in the trial (D); that the automatic bias is overcome in favor of a deliberate response (OB); and that when the association is not activated, and the individual fails to discriminate a correct answer, there is a guessing or response bias drives the response (G). The AC and G processes are automatic, while the D and OB processes are controlled. The AC parameter is considered as the strength of the association activated by the stimulus, which reflects what implicit measures of social cognition aim to assess. The stronger the automatic association between self and positive valence, the more likely it will be activated by a relevant stimulus. Therefore, the AC parameter was used as the index of implicit self-esteem in the present study. Meanwhile, the relationship between implicit self-esteem and depression is not fully investigated. In the cognitive theory of depression, it is assumed that the negative self-schema is crucial in depression. Based on this point of view, implicit self-esteem would be negatively associated with depression. However, the results among empirical studies are inconsistent. The aims of the present study were to examine the psychometric properties of the AC (i.e., test-retest reliability and its correlations with explicit self-esteem and depression) and compare it with that of the IAT effect. The present study had 105 patients with depressive disorders completing the Rosenberg Self-Esteem Scale, Beck Depression Inventory-II and the IAT on the pretest. After at least 3 weeks, the participants completed the second IAT. The data were analyzed by the latent-trait multinomial processing tree model (latent-trait MPT) with the TreeBUGS package in R. The result showed that the latent-trait MPT had a satisfactory model fit. The effect size of test-retest reliability of the AC and the IAT effect were medium (r = .43, p < .0001) and small (r = .29, p < .01) respectively. Only the AC showed a significant correlation with explicit self-esteem (r = .19, p < .05). Neither of the two indexes was correlated with depression. Collectively, the AC parameter was a satisfactory index of implicit self-esteem compared with the IAT effect. Also, the present study supported the results that implicit self-esteem was not correlated with depression.

Keywords: cognitive modeling, implicit association test, implicit self-esteem, quad model

Procedia PDF Downloads 128
5006 Markov-Chain-Based Optimal Filtering and Smoothing

Authors: Garry A. Einicke, Langford B. White

Abstract:

This paper describes an optimum filter and smoother for recovering a Markov process message from noisy measurements. The developments follow from an equivalence between a state space model and a hidden Markov chain. The ensuing filter and smoother employ transition probability matrices and approximate probability distribution vectors. The properties of the optimum solutions are retained, namely, the estimates are unbiased and minimize the variance of the output estimation error, provided that the assumed parameter set are correct. Methods for estimating unknown parameters from noisy measurements are discussed. Signal recovery examples are described in which performance benefits are demonstrated at an increased calculation cost.

Keywords: optimal filtering, smoothing, Markov chains

Procedia PDF Downloads 317
5005 Nonlinear Optical Properties for Three Level Atoms at Resonance and Off-Resonance with Laser Coupled Beams

Authors: Suad M. Abuzariba, Eman O. Mafaa

Abstract:

For three level atom interacts with a laser beam, the effect of changing resonance and off-resonance frequencies has been studied. Furthermore, a clear distortion has been seen in both the real and imaginary parts of the electric susceptibility with increasing the frequency of the coupled laser beams so that reaching the off-resonance interaction. With increasing the Rabi frequency of the laser pulse that in resonance with the lower transition the distortion will produce a new peak in the electric susceptibility parts, in both the real and imaginary ones.

Keywords: electric susceptibility, resonance frequency off-resonance frequency, three level atom, laser

Procedia PDF Downloads 312
5004 Effect of Aging Treatment on Tensile Properties of AZ91D Mg Alloy

Authors: Ju Hyun Won, Seok Hong Min, Tae Kwon Ha

Abstract:

Phase equilibria of AZ91D Mg alloys for nonflammable use, containing Ca and Y, were carried out by using FactSage® and FTLite database, which revealed that solid solution treatment, could be performed at temperatures from 400 to 450 °C. Solid solution treatment of AZ91D Mg alloy without Ca and Y was successfully conducted at 420 °C and supersaturated microstructure with all beta phase resolved into matrix was obtained. In the case of AZ91D Mg alloy with some Ca and Y, however, a little amount of intermetallic particles were observed after solid solution treatment. After solid solution treatment, each alloy was annealed at temperatures of 180 and 200 °C for time intervals from 1 min to 48 hrs and hardness of each condition was measured by micro-Vickers method. Peak aging conditions were deduced as at the temperature of 200 °C for 10 hrs.

Keywords: Mg alloy, AZ91D, nonflammable alloy, phase equilibrium, peak aging

Procedia PDF Downloads 431
5003 Commutativity of Fractional Order Linear Time-Varying Systems

Authors: Salisu Ibrahim

Abstract:

The paper studies the commutativity associated with fractional order linear time-varying systems (LTVSs), which is an important area of study in control systems engineering. In this paper, we explore the properties of these systems and their ability to commute. We proposed the necessary and sufficient condition for commutativity for fractional order LTVSs. Through a simulation and mathematical analysis, we demonstrate that these systems exhibit commutativity under certain conditions. Our findings have implications for the design and control of fractional order systems in practical applications, science, and engineering. An example is given to show the effectiveness of the proposed method which is been computed by Mathematica and validated by the use of MATLAB (Simulink).

Keywords: fractional differential equation, physical systems, equivalent circuit, analog control

Procedia PDF Downloads 115
5002 Green and Cost-Effective Biofabrication of Copper Oxide Nanoparticles: Exploring Antimicrobial and Anticancer Applications

Authors: Yemane Tadesse Gebreslassie, Fisseha Guesh Gebremeskel

Abstract:

Nanotechnology has made remarkable advancements in recent years, revolutionizing various scientific fields, industries, and research institutions through the utilization of metal and metal oxide nanoparticles. Among these nanoparticles, copper oxide nanoparticles (CuO NPs) have garnered significant attention due to their versatile properties and wide-range applications, particularly, as effective antimicrobial and anticancer agents. CuO NPs can be synthesized using different methods, including physical, chemical, and biological approaches. However, conventional chemical and physical approaches are expensive, resource-intensive, and involve the use of hazardous chemicals, which can pose risks to human health and the environment. In contrast, biological synthesis provides a sustainable and cost-effective alternative by eliminating chemical pollutants and allowing for the production of CuO NPs of tailored sizes and shapes. This comprehensive review focused on the green synthesis of CuO NPs using various biological resources, such as plants, microorganisms, and other biological derivatives. Current knowledge and recent trends in green synthesis methods for CuO NPs are discussed, with a specific emphasis on their biomedical applications, particularly in combating cancer and microbial infections. This review highlights the significant potential of CuO NPs in addressing these diseases. By capitalizing on the advantages of biological synthesis, such as environmental safety and the ability to customize nanoparticle characteristics, CuO NPs have emerged as promising therapeutic agents for a wide range of conditions. This review presents compelling findings, demonstrating the remarkable achievements of biologically synthesized CuO NPs as therapeutic agents. Their unique properties and mechanisms enable effective combating against cancer cells and various harmful microbial infections. CuO NPs exhibit potent anticancer activity through diverse mechanisms, including induction of apoptosis, inhibition of angiogenesis, and modulation of signaling pathways. Additionally, their antimicrobial activity manifests through various mechanisms, such as disrupting microbial membranes, generating reactive oxygen species, and interfering with microbial enzymes. This review offers valuable insights into the substantial potential of biologically synthesized CuO NPs as an alternative approach for future therapeutic interventions against cancer and microbial infections.

Keywords: biological synthesis, copper oxide nanoparticles, microbial infection, nanotechnology

Procedia PDF Downloads 64
5001 Soil Improvement through Utilization of Calcifying Bhargavaea cecembensis N1 in an Affordable Whey Culture Medium

Authors: Fatemeh Elmi, Zahra Etemadifar

Abstract:

Improvement of soil mechanical properties is crucial before its use in construction, as the low mechanical strength and unstable structure of soil in many parts of the world can lead to the destruction of engineering infrastructure, resulting in financial and human losses. Although, conventional methods, such as chemical injection, are often utilized to enhance soil strength and stiffness, they are generally expensive, require heavy machinery, and cause significant environmental effects due to chemical usage, and also disrupt urban infrastructure. Moreover, they are not suitable for treating large volume of soil. Recently, an alternative method to improve various soil properties, including strength, hardness, and permeability, has received much attention: the application of biological methods. One of the most widely used is biocementation, which is based on the microbial precipitation of calcium carbonte crystalls using ureolytic bacteria However, there are still limitations to its large-scale use that need to be resolved before it can be commercialized. These issues have not received enough attention in prior research. One limitation of MICP (microbially induced calcium carbonate precipitation) is that microorganisms cannot operate effectively in harsh and variable environments, unlike the controlled conditions of a laboratory. Another limitation of applying this technique on a large scale is the high cost of producing a substantial amount of bacterial culture and reagents required for soil treatment. Therefore, the purpose of the present study was to investigate soil improvement using the biocementation activity of poly-extremophile, calcium carbonate crystal- producing bacterial strain, Bhargavaea cecembensis N1, in whey as an inexpensive medium. This strain was isolated and molecularly identified from sandy soils in our previous research, and its 16S rRNA gene sequences was deposited in the NCBI Gene Bank with an accession number MK420385. This strain exhibited a high level of urease activity (8.16 U/ml) and produced a large amount of calcium carbonate (4.1 mg/ ml). It was able to improve the soil by increasing the compressive strength up to 205 kPa and reducing permeability by 36%, with 20% of the improvement attributable of calcium carbonate production. This was achieved using this strain in a whey culture medium. This strain can be an eco-friendly and economical alternative to conventional methods in soil stabilization, and other MICP related applications.

Keywords: biocementation, Bhargavaea cecembensis, soil improvement, whey culture medium

Procedia PDF Downloads 56
5000 Investigation of Amorphous Silicon A-Si Thin Films Deposited on Silicon Substrate by Raman Spectroscopy

Authors: Amirouche Hammouda, Nacer Boucherou, Aicha Ziouche, Hayet Boudjellal

Abstract:

Silicon has excellent physical and electrical properties for optoelectronics industry. It is a promising material with many advantages. On Raman characterization of thin films deposited on crystalline silicon substrate, the signal Raman of amorphous silicon is often disturbed by the Raman signal of the crystalline silicon substrate. In this paper, we propose to characterize thin layers of amorphous silicon deposited on crystalline silicon substrates. The results obtained have shown the possibility to bring out the Raman spectrum of deposited layers by optimizing experimental parameters.

Keywords: raman scattering, amorphous silicon, crystalline silicon, thin films

Procedia PDF Downloads 76
4999 Effect of Span 60, Labrasol, and Cholesterol on Labisia pumila Loaded Niosomes Quality

Authors: H. Binti Ya’akob, C. Siew Chin, A. Abd Aziz, I. Ware, M. Fauzi Abd Jalil, N. Rashidah Ahmed, R. Sabtu

Abstract:

Labisia pumila (LP) plant extract has the potential to be applied in cosmeceutical products due to its anti-photoaging properties. The main purpose of this study was to improve transdermal delivery of LP by encapsulating LP in niosomes. Niosomes loaded LPs were prepared by coacervation phase separation method using non-ionic surfactant (Span 60), labrasol, and cholesterol. The optimum formula obtained were Span 60, labrasol and cholesterol at the mole ratio of 6:1:4. At the optimum formulation, the niosome obtained significantly improved the quality of transdermal penetration of LP compared to free LP.

Keywords: Labisia pumila, niosomes, transdermal, quality

Procedia PDF Downloads 316
4998 Commutativity of Fractional Order Linear Time-Varying System

Authors: Salisu Ibrahim

Abstract:

The paper studies the commutativity associated with fractional order linear time-varying systems (LTVSs), which is an important area of study in control systems engineering. In this paper, we explore the properties of these systems and their ability to commute. We proposed the necessary and sufficient condition for commutativity for fractional order LTVSs. Through a simulation and mathematical analysis, we demonstrate that these systems exhibit commutativity under certain conditions. Our findings have implications for the design and control of fractional order systems in practical applications, science, and engineering. An example is given to show the effectiveness of the proposed method which is been computed by Mathematica and validated by the use of Matlab (Simulink).

Keywords: fractional differential equation, physical systems, equivalent circuit, and analog control

Procedia PDF Downloads 78
4997 The Determinants and Effects of R&D Outsourcing in Korean Manufacturing Firm

Authors: Sangyun Han, Minki Kim

Abstract:

R&D outsourcing is a strategy for acquiring the competitiveness of firms as an open innovation strategy. As increasing total R&D investment of firms, the ratio of amount of R&D outsourcing in it is also increased in Korea. In this paper, we investigate the determinants and effects of R&D outsourcing of firms. Through analyzing the determinants of R&D outsourcing and effect on firm’s performance, we can find some academic and politic issues. Firstly, in the point of academic view, distinguishing the determinants of R&D outsourcing is linked why the firms do open innovation. It can be answered resource based view, core competence theory, and etc. Secondly, we can get some S&T politic implication for transferring the public intellectual properties to private area. Especially, for supporting the more SMEs or ventures, government can get the basement and the reason why and how to make the policies.

Keywords: determinants, effects, R&D, outsourcing

Procedia PDF Downloads 508
4996 Sol–Gel Derived Durable Antireflective Multilayered TiO2/SiO2 Coating for Solar Glass

Authors: Najme lari, Shahrokh Ahangarani, Ali Shanaghi

Abstract:

In this paper, multilayer TiO2-SiO2 containing PDMS coatings were produced. Also, the effect of triton as a porosity maker on single and multilayer silica and titania coatings was investigated. The results showed stability of optical triton containing coatings disappears with time. Because of the presence of triton in solution improve the wetting properties of PDMS sols and helps lead to instability by water absorption. However; without triton, antireflective multilayer coatings with high transmittance 98% and excellent durability were prepared by sol–gel process using poly dimethyl siloxane as additive. This coating can be used as well as in solar applications.

Keywords: sol-gel, thin film, anti-reflective, titania-silica, PDMS, triton

Procedia PDF Downloads 410
4995 From Convexity in Graphs to Polynomial Rings

Authors: Ladznar S. Laja, Rosalio G. Artes, Jr.

Abstract:

This paper introduced a graph polynomial relating convexity concepts. A graph polynomial is a polynomial representing a graph given some parameters. On the other hand, a subgraph H of a graph G is said to be convex in G if for every pair of vertices in H, every shortest path with these end-vertices lies entirely in H. We define the convex subgraph polynomial of a graph G to be the generating function of the sequence of the numbers of convex subgraphs of G of cardinalities ranging from zero to the order of G. This graph polynomial is monic since G itself is convex. The convex index which counts the number of convex subgraphs of G of all orders is just the evaluation of this polynomial at 1. Relationships relating algebraic properties of convex subgraphs polynomial with graph theoretic concepts are established.

Keywords: convex subgraph, convex index, generating function, polynomial ring

Procedia PDF Downloads 217
4994 Unconventional Calculus Spreadsheet Functions

Authors: Chahid K. Ghaddar

Abstract:

The spreadsheet engine is exploited via a non-conventional mechanism to enable novel worksheet solver functions for computational calculus. The solver functions bypass inherent restrictions on built-in math and user defined functions by taking variable formulas as a new type of argument while retaining purity and recursion properties. The enabling mechanism permits integration of numerical algorithms into worksheet functions for solving virtually any computational problem that can be modelled by formulas and variables. Several examples are presented for computing integrals, derivatives, and systems of deferential-algebraic equations. Incorporation of the worksheet solver functions with the ubiquitous spreadsheet extend the utility of the latter as a powerful tool for computational mathematics.

Keywords: calculus, differential algebraic equations, solvers, spreadsheet

Procedia PDF Downloads 367
4993 Preparation and Evaluation of Poly(Ethylene Glycol)-B-Poly(Caprolactone) Diblock Copolymers with Zwitterionic End Group for Thermo-Responsive Properties

Authors: Bo Keun Lee, Doo Yeon Kwon, Ji Hoon Park, Gun Hee Lee, Ji Hye Baek, Heung Jae Chun, Young Joo Koh, Moon Suk Kim

Abstract:

Thermo-responsive materials are viscoelastic materials that undergo a sol-to-gel phase transition at a specific temperature and many materials have been developed. MPEG-b-PCL (MPC) as a thermo-responsive material contained hydrophilic and hydrophobic segments and it formed an ordered crystalline structure of hydrophobic PCL segments in aqueous solutions. The ordered crystalline structure packed tightly or aggregated and finally induced an aggregated gel through intra- and inter-molecular interactions as a function of temperature. Thus, we introduced anionic and cationic groups into the end positions of the PCL chain to alter the hydrophobicity of the PCL segment. Introducing anionic and cationic groups into the PCL end position altered their solubility by changing the crystallinity and hydrophobicity of the PCL block domains. These results indicated that the properties of the end group in the hydrophobic PCL blockand the balance between hydrophobicity and hydrophilicity affect thermo-responsivebehavior of the copolymers in aqueous solutions. Thus, we concluded that determinant of the temperature-dependent thermo-responsive behavior of MPC depend on the ionic end group in the PCL block. So, we introduced zwitterionic end groups to investigate the thermo-responsive behavior of MPC. Methoxypoly(ethylene oxide) and ε-caprolactone (CL) were randomly copolymerized that introduced varying hydrophobic PCL lengths and an MPC featuring a zwitterionic sulfobetaine (MPC-ZW) at the chain end of the PCL segment. The MPC and MPC-ZW copolymers were obtained formed sol-state at room temperature when prepared as 20-wt% aqueous solutions. The solubility of MPC decreased when the PCL block was increased from molecular weight. The solubilization time of MPC-2.4k was around 20 min and MPC-2.8k, MPC-3.0k increased to 30 min and 1 h, respectively. MPC-3.6k was not solubilized. In case of MPC-ZW 3.6k, However, the zwitterion-modified MPC copolymers were solubilized in 3–5 min. This result indicates that the zwitterionic end group of the MPC-ZW diblock copolymer increased the aqueous solubility of the diblock copolymer even when the length of the hydrophobic PCL segment was increased. MPC and MPC-ZW diblock copolymers that featuring zwitterionic end groups were synthesized successfully. The sol-to-gel phase-transition was formed that specific temperature depend on the length of the PCL hydrophobic segments introduced and on the zwitterion groups attached to the MPC chain end. This result indicated that the zwitterionic end groups reduced the hydrophobicity in the PCL block and changed the solubilization. The MPC-ZW diblock copolymer can be utilized as a potential injectable drug and cell carrier.

Keywords: thermo-responsive material, zwitterionic, hydrophobic, crystallization, phase transition

Procedia PDF Downloads 508
4992 Simulations of NACA 65-415 and NACA 64-206 Airfoils Using Computational Fluid Dynamics

Authors: David Nagy

Abstract:

This paper exemplifies the influence of the purpose of an aircraft on the aerodynamic properties of its airfoil. In particular, the research takes into consideration two types of aircraft, namely cargo aircraft and military high-speed aircraft and compares their airfoil characteristics using their NACA airfoils as well as computational fluid dynamics. The results show that airfoils of aircraft designed for cargo have a heavier focus on maintaining a large lift force whereas speed-oriented airplanes focus on minimizing the drag force.

Keywords: aerodynamic simulation, aircraft, airfoil, computational fluid dynamics, lift to drag ratio, NACA 64-206, NACA 65-415

Procedia PDF Downloads 391
4991 On the Analysis of Pseudorandom Partial Quotient Sequences Generated from Continued Fractions

Authors: T. Padma, Jayashree S. Pillai

Abstract:

Random entities are an essential component in any cryptographic application. The suitability of a number theory based novel pseudorandom sequence called Pseudorandom Partial Quotient Sequence (PPQS) generated from the continued fraction expansion of irrational numbers, in cryptographic applications, is analyzed in this paper. An approach to build the algorithm around a hard mathematical problem has been considered. The PQ sequence is tested for randomness and its suitability as a cryptographic key by performing randomness analysis, key sensitivity and key space analysis, precision analysis and evaluating the correlation properties is established.

Keywords: pseudorandom sequences, key sensitivity, correlation, security analysis, randomness analysis, sensitivity analysis

Procedia PDF Downloads 594
4990 Trans and Queer Expressions of Religion in Brazil: How Music and Mission Work Can Be Used As a Tool of Refusal

Authors: Cahlia A. Plett

Abstract:

Ventura Profana (Unholy Venture) is an Afro-Indigenous Brazilian performance artist, missionary, and advocate for trans or “travestí” issues in Brazil. In this paper, author will discuss how Profana acts as a pastor in aims of constructing possibilities of escape through scripture, congregation and performance art. In confronting religious “recolonization”, which refers to modern Judeo-Christian religions and their re-colonizing properties within Latin American countries, author argue that Profana’s research and art offer an opportunity to both use and decolonize religious-colonial projects through expressions of the self and spirituality based in queer Black, Brown and Indigenous futurities.

Keywords: Religious Studies, Music, Queer studies, Decolonial

Procedia PDF Downloads 51
4989 Assessment of Bisphenol A and 17 α-Ethinyl Estradiol Bioavailability in Soils Treated with Biosolids

Authors: I. Ahumada, L. Ascar, C. Pedraza, J. Montecino

Abstract:

It has been found that the addition of biosolids to soil is beneficial to soil health, enriching soil with essential nutrient elements. Although this sludge has properties that allow for the improvement of the physical features and productivity of agricultural and forest soils and the recovery of degraded soils, they also contain trace elements, organic trace and pathogens that can cause damage to the environment. The application of these biosolids to land without the total reclamation and the treated wastewater can transfer these compounds into terrestrial and aquatic environments, giving rise to potential accumulation in plants. The general aim of this study was to evaluate the bioavailability of bisphenol A (BPA), and 17 α-ethynyl estradiol (EE2) in a soil-biosolid system using wheat (Triticum aestivum) plant assays and a predictive extraction method using a solution of hydroxypropyl-β-cyclodextrin (HPCD) to determine if it is a reliable surrogate for this bioassay. Two soils were obtained from the central region of Chile (Lo Prado and Chicauma). Biosolids were obtained from a regional wastewater treatment plant. The soils were amended with biosolids at 90 Mg ha-1. Soils treated with biosolids, spiked with 10 mgkg-1 of the EE2 and 15 mgkg-1 and 30 mgkg-1of BPA were also included. The BPA, and EE2 concentration were determined in biosolids, soils and plant samples through ultrasound assisted extraction, solid phase extraction (SPE) and gas chromatography coupled to mass spectrometry determination (GC/MS). The bioavailable fraction found of each one of soils cultivated with wheat plants was compared with results obtained through a cyclodextrin biosimulator method. The total concentration found in biosolid from a treatment plant was 0.150 ± 0.064 mgkg-1 and 12.8±2.9 mgkg-1 of EE2 and BPA respectively. BPA and EE2 bioavailability is affected by the organic matter content and the physical and chemical properties of the soil. The bioavailability response of both compounds in the two soils varied with the EE2 and BPA concentration. It was observed in the case of EE2, the bioavailability in wheat plant crops contained higher concentrations in the roots than in the shoots. The concentration of EE2 increased with increasing biosolids rate. On the other hand, for BPA, a higher concentration was found in the shoot than the roots of the plants. The predictive capability the HPCD extraction was assessed using a simple linear correlation test, for both compounds in wheat plants. The correlation coefficients for the EE2 obtained from the HPCD extraction with those obtained from the wheat plants were r= 0.99 and p-value ≤ 0.05. On the other hand, in the case of BPA a correlation was not found. Therefore, the methodology was validated with respect to wheat plants bioassays, only in the EE2 case. Acknowledgments: The authors thank FONDECYT 1150502.

Keywords: emerging compounds, bioavailability, biosolids, endocrine disruptors

Procedia PDF Downloads 149
4988 Properties of Poly(Amide-Imide) with Low Residual Stress for Electronic Material

Authors: Kwangin Kim, Taewon Yoo, Haksoo Han

Abstract:

Polyimide is a superior polymer in the electronics industry, and we conducted a study to synthesize poly(amide-imide) at low temperatures. Poly(amide-imide) was synthesized at low-temperature curing to offer a thermal stable membrane with low residual stress and good processability. As a result, the low crack polymer with good processability could be used to various applications such as semiconductors, integrated circuits, coating materials, membranes, and display. The synthesis of poly(amide-imide) at low temperatures was confirmed by Fourier transform infrared spectroscopy (FT-IR). Thermal stabilities of the polymer was confirmed by thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC).

Keywords: poly(amide-imide), residual stress, thermal stability

Procedia PDF Downloads 421