Search results for: equilibrium parameters
5512 On Disaggregation and Consolidation of Imperfect Quality Shipments in an Extended EPQ Model
Authors: Hung-Chi Chang
Abstract:
For an extended EPQ model with random yield, the existent study revealed that both the disaggregating and consolidating shipment policies for the imperfect quality items are independent of holding cost, and recommended a model with economic benefit by comparing the least total cost for each of the three models investigated. To better capture the real situation, we generalize the existent study to include different holding costs for perfect and imperfect quality items. Through analysis, we show that the above shipment policies are dependent on holding costs. Furthermore, we derive a simple decision rule solely based on the thresholds of problem parameters to select a superior model. The results are illustrated analytically and numerically.Keywords: consolidating shipments, disaggregating shipments, EPQ, imperfect quality, inventory
Procedia PDF Downloads 3775511 Intelligent Diagnostic System of the Onboard Measuring Devices
Authors: Kyaw Zin Htut
Abstract:
In this article, the synthesis of the efficiency of intelligent diagnostic system in the aircraft measuring devices is described. The technology developments of the diagnostic system are considered based on the model errors of the gyro instruments, which are used to measure the parameters of the aircraft. The synthesis of the diagnostic intelligent system is considered on the example of the problem of assessment and forecasting errors of the gyroscope devices on the onboard aircraft. The result of the system is to detect of faults of the aircraft measuring devices as well as the analysis of the measuring equipment to improve the efficiency of its work.Keywords: diagnostic, dynamic system, errors of gyro instruments, model errors, assessment, prognosis
Procedia PDF Downloads 4015510 Comparative Analysis of Real and Virtual Garment Fit
Authors: Kristina Ancutiene
Abstract:
The goal of this research is to perform comparative analysis between the virtual fit of the woman's dress and the fit on a real person. The dress fitting was done using mechanical and structural parameters of the 100 % linen fabric and using Modaris_3D_Fit software (CAD Lectra). The dress was also sawn after which garment fit differences of real and virtual dress was researched. Four respondents whose figures were similar were used to evaluate the ease and strain deformations of the real and virtual dress. The scores that were given by the respondents wearing the real dress were compared to the ease and strain results that were given by the software. The main result was that respondents feel similar to the virtual stretch deformations but their ease feeling is not always matching the virtual ones. The results may be influenced by psychological factors and different understanding about purpose of garment.Keywords: virtual garment, 3D CAD, garment fit, mechanical properties
Procedia PDF Downloads 3525509 Particle Swarm Optimisation of a Terminal Synergetic Controllers for a DC-DC Converter
Authors: H. Abderrezek, M. N. Harmas
Abstract:
DC-DC converters are widely used as reliable power source for many industrial and military applications, computers and electronic devices. Several control methods were developed for DC-DC converters control mostly with asymptotic convergence. Synergetic control (SC) is a proven robust control approach and will be used here in a so-called terminal scheme to achieve finite time convergence. Lyapunov synthesis is adopted to assure controlled system stability. Furthermore particle swarm optimization (PSO) algorithm, based on an integral time absolute of error (ITAE) criterion will be used to optimize controller parameters. Simulation of terminal synergetic control of a DC-DC converter is carried out for different operating conditions and results are compared to classic synergetic control performance, that which demonstrate the effectiveness and feasibility of the proposed control method.Keywords: DC-DC converter, PSO, finite time, terminal, synergetic control
Procedia PDF Downloads 5045508 Dark Gravity Confronted with Supernovae, Baryonic Oscillations and Cosmic Microwave Background Data
Authors: Frederic Henry-Couannier
Abstract:
Dark Gravity is a natural extension of general relativity in presence of a flat non dynamical background. Matter and radiation fields from its dark sector, as soon as their gravity dominates over our side fields gravity, produce a constant acceleration law of the scale factor. After a brief reminder of the Dark Gravity theory foundations, the confrontation with the main cosmological probes is carried out. We show that, amazingly, the sudden transition between the usual matter dominated decelerated expansion law a(t) ∝ t²/³ and this accelerated expansion law a(t) ∝ t² predicted by the theory should be able to fit the main cosmological probes (SN, BAO, CMB and age of the oldest stars data) but also direct H₀ measurements with two free parameters only: H₀ and the transition redshift.Keywords: anti-gravity, negative energies, time reversal, field discontinuities, dark energy theory
Procedia PDF Downloads 625507 Electrochemical Synthesis and Morphostructural Study of the Cuprite Thin Film
Authors: M. El Hajji, A. Hallaoui, L. Bazzi, A. Benlhachemi, Lh. Bazzi, M. Hilali, O. Jbara, A. Tara, B. Bakiz
Abstract:
The cathodic electro deposition of the cuprite Cu2O by chrono potentiometry is performed on two types of electrodes "titanium and stainless steel", in a basic medium containing the precursor of copper. The plot produced vs SCE, shows the formation of a brown layer on the electrode surface. The chrono potentiometric recording made between - 0.2 and - 1 mA/cm2, has allowed us to have a deposit having different morphologies and structural orientation obtained as a function of the variation of many parameters. The morphology, the size of crystals, and the phase of the deposits produced were studied by conventional techniques of analysis of the solid, particularly the X-ray diffraction (XRD), scanning electron microscopy analysis (SEM) and quantitative chemical analysis (EDS). The results will be presented and discussed, they show that the majority of deposits are pure and uniform.Keywords: cathodic electrodeposition, cuprite Cu2O, XRD, SEM, EDS analysis
Procedia PDF Downloads 4215506 Mechanical Properties of Kenaf Reinforced Composite with Different Fiber Orientation
Authors: Y. C. Ching, K. H. Chong
Abstract:
The increasing of environmental awareness has led to grow interest in the expansion of materials with eco-friendly attributes. In this study, a 3 ply sandwich layer of kenaf fiber reinforced unsaturated polyester with various fiber orientations was developed. The effect of the fiber orientation on mechanical and thermal stability properties of polyester was studied. Unsaturated polyester as a face sheets and kenaf fibers as a core was fabricated with combination of hand lay-up process and cold compression method. Tested result parameters like tensile, flexural, impact strength, melting point, and crystallization point were compared and recorded based on different fiber orientation. The failure mechanism and property changes associated with directional change of fiber to polyester composite were discussed.Keywords: kenaf fiber, polyester, tensile, thermal stability
Procedia PDF Downloads 3625505 Comparative Assessment of ABS and Disk Brake Systems
Authors: Saleh Mobasseri, Mohammad Mobasseri
Abstract:
The article refers to the history of the rise of brake system and described it’s importance in passenger’s lives. The disc brake system performance and ABS are also compared with each other by the kinetic and kinematic analysis of the braking system,and evaluate the impact of each parameters is checked on the vehicle stopping distance. Anti−lock braking system (ABS) is one of the most important features that affect on vehicle safety and for this reason much efforts have been made to improve this system. The objectives of the anti−lock system (ABS) are as follows: Preventing the wheels from locking, achieving maximum technical momentum in terms of braking,stability,reducing stopping distances. In this paper,we study the comparative of ABS brake and disc brake.Keywords: anti−lock braking System (ABS), stopping distances, booster, car stability, force exerted on the brake pedal
Procedia PDF Downloads 3995504 3D-Printing of Waveguide Terminations: Effect of Material Shape and Structuring on Their Characteristics
Authors: Lana Damaj, Vincent Laur, Azar Maalouf, Alexis Chevalier
Abstract:
Matched termination is an important part of the passive waveguide components. It is typically used at the end of a waveguide transmission line to prevent reflections and improve signal quality. Waveguide terminations (loads) are commonly used in microwave and RF applications. In traditional microwave architectures, usually, waveguide termination consists of a standard rectangular waveguide made by a lossy resistive material, and ended by shorting metallic plate. These types of terminations are used, to dissipate the energy as heat. However, these terminations may increase the size and the weight of the overall system. New alternative solution consists in developing terminations based on 3D-printing of materials. Designing such terminations is very challenging since it should meet the requirements imposed by the system. These requirements include many parameters such as the absorption, the power handling capability in addition to the cost, the size and the weight that have to be minimized. 3D-printing is a shaping process that enables the production of complex geometries. It allows to find best compromise between requirements. In this paper, a comparison study has been made between different existing and new shapes of waveguide terminations. Indeed, 3D printing of absorbers makes it possible to study not only standard shapes (wedge, pyramid, tongue) but also more complex topologies such as exponential ones. These shapes have been designed and simulated using CST MWS®. The loads have been printed using the carbon-filled PolyLactic Acid, conductive PLA from ProtoPasta. Since the terminations has been characterized in the X-band (from 8GHz to 12GHz), the rectangular waveguide standard WR-90 has been selected. The classical wedge shape has been used as a reference. First, all loads have been simulated with the same length and two parameters have been compared: the absorption level (level of |S11|) and the dissipated power density. This study shows that the concave exponential pyramidal shape has the better absorption level and the convex exponential pyramidal shape has the better dissipated power density level. These two loads have been printed in order to measure their properties. A good agreement between the simulated and measured reflection coefficient has been obtained. Furthermore, a study of material structuring based on the honeycomb hexagonal structure has been investigated in order to vary the effective properties. In the final paper, the detailed methodology and the simulated and measured results will be presented in order to show how 3D-printing can allow controlling mass, weight, absorption level and power behaviour.Keywords: additive manufacturing, electromagnetic composite materials, microwave measurements, passive components, power handling capacity (PHC), 3D-printing
Procedia PDF Downloads 245503 Design Approach to Incorporate Unique Performance Characteristics of Special Concrete
Authors: Devendra Kumar Pandey, Debabrata Chakraborty
Abstract:
The advancement in various concrete ingredients like plasticizers, additives and fibers, etc. has enabled concrete technologists to develop many viable varieties of special concretes in recent decades. Such various varieties of concrete have significant enhancement in green as well as hardened properties of concrete. A prudent selection of appropriate type of concrete can resolve many design and application issues in construction projects. This paper focuses on usage of self-compacting concrete, high early strength concrete, structural lightweight concrete, fiber reinforced concrete, high performance concrete and ultra-high strength concrete in the structures. The modified properties of strength at various ages, flowability, porosity, equilibrium density, flexural strength, elasticity, permeability etc. need to be carefully studied and incorporated into the design of the structures. The paper demonstrates various mixture combinations and the concrete properties that can be leveraged. The selection of such products based on the end use of structures has been proposed in order to efficiently utilize the modified characteristics of these concrete varieties. The study involves mapping the characteristics with benefits and savings for the structure from design perspective. Self-compacting concrete in the structure is characterized by high shuttering loads, better finish, and feasibility of closer reinforcement spacing. The structural design procedures can be modified to specify higher formwork strength, height of vertical members, cover reduction and increased ductility. The transverse reinforcement can be spaced at closer intervals compared to regular structural concrete. It allows structural lightweight concrete structures to be designed for reduced dead load, increased insulation properties. Member dimensions and steel requirement can be reduced proportionate to about 25 to 35 percent reduction in the dead load due to self-weight of concrete. Steel fiber reinforced concrete can be used to design grade slabs without primary reinforcement because of 70 to 100 percent higher tensile strength. The design procedures incorporate reduction in thickness and joint spacing. High performance concrete employs increase in the life of the structures by improvement in paste characteristics and durability by incorporating supplementary cementitious materials. Often, these are also designed for slower heat generation in the initial phase of hydration. The structural designer can incorporate the slow development of strength in the design and specify 56 or 90 days strength requirement. For designing high rise building structures, creep and elasticity properties of such concrete also need to be considered. Lastly, certain structures require a performance under loading conditions much earlier than final maturity of concrete. High early strength concrete has been designed to cater to a variety of usages at various ages as early as 8 to 12 hours. Therefore, an understanding of concrete performance specifications for special concrete is a definite door towards a superior structural design approach.Keywords: high performance concrete, special concrete, structural design, structural lightweight concrete
Procedia PDF Downloads 3065502 Two Layer Photo-Thermal Deflection Model to Investigate the Electronic Properties in BGaAs/GaAs Alloys
Authors: S. Ilahi, M. Baira, F. Saidi, N. Yacoubi, L. Auvray, H. Maaref
Abstract:
Photo-thermal deflection technique (PTD) is used to study the nonradiative recombination process in BGaAs/GaAs alloy with boron composition of 3% and 8% grown by metal organic chemical vapor deposition (MOCVD). A two layer theoretical model has been developed taking into account both thermal and electronic contribution in the photothermal signal allowing to extract the electronic parameters namely electronic diffusivity, surface and interface recombination. It is found that the increase of boron composition alters the BGaAs epilayers transport properties.Keywords: photothermal defelction technique, two layer model, BGaAs/GaAs alloys, boron composition
Procedia PDF Downloads 3035501 Effect of Current Density, Temperature and Pressure on Proton Exchange Membrane Electrolyser Stack
Authors: Na Li, Samuel Simon Araya, Søren Knudsen Kær
Abstract:
This study investigates the effects of operating parameters of different current density, temperature and pressure on the performance of a proton exchange membrane (PEM) water electrolysis stack. A 7-cell PEM water electrolysis stack was assembled and tested under different operation modules. The voltage change and polarization curves under different test conditions, namely current density, temperature and pressure, were recorded. Results show that higher temperature has positive effect on overall stack performance, where temperature of 80 ℃ improved the cell performance greatly. However, the cathode pressure and current density has little effect on stack performance.Keywords: PEM electrolysis stack, current density, temperature, pressure
Procedia PDF Downloads 2045500 Influence of Harmonics on Medium Voltage Distribution System: A Case Study for Residential Area
Authors: O. Arikan, C. Kocatepe, G. Ucar, Y. Hacialiefendioglu
Abstract:
In this paper, influence of harmonics on medium voltage distribution system of Bogazici Electricity Distribution Inc. (BEDAS) which takes place at Istanbul/Turkey is investigated. A ring network consisting of residential loads is taken into account for this study. Real system parameters and measurement results are used for simulations. Also, probable working conditions of the system are analyzed for %50, %75 and %100 loading of transformers with similar harmonic contents. Results of the study are exhibited the influence of nonlinear loads on %THDV, P.F. and technical losses of the medium voltage distribution system.Keywords: distribution system, harmonic, technical losses, power factor, total harmonic distortion, residential load, medium voltage
Procedia PDF Downloads 5755499 Cessna Citation X Business Aircraft Stability Analysis Using Linear Fractional Representation LFRs Model
Authors: Yamina Boughari, Ruxandra Mihaela Botez, Florian Theel, Georges Ghazi
Abstract:
Clearance of flight control laws of a civil aircraft is a long and expensive process in the Aerospace industry. Thousands of flight combinations in terms of speeds, altitudes, gross weights, centers of gravity and angles of attack have to be investigated, and proved to be safe. Nonetheless, in this method, a worst flight condition can be easily missed, and its missing would lead to a critical situation. Definitively, it would be impossible to analyze a model because of the infinite number of cases contained within its flight envelope, that might require more time, and therefore more design cost. Therefore, in industry, the technique of the flight envelope mesh is commonly used. For each point of the flight envelope, the simulation of the associated model ensures the satisfaction or not of specifications. In order to perform fast, comprehensive and effective analysis, other varying parameters models were developed by incorporating variations, or uncertainties in the nominal models, known as Linear Fractional Representation LFR models; these LFR models were able to describe the aircraft dynamics by taking into account uncertainties over the flight envelope. In this paper, the LFRs models are developed using the speeds and altitudes as varying parameters; The LFR models were built using several flying conditions expressed in terms of speeds and altitudes. The use of such a method has gained a great interest by the aeronautical companies that have seen a promising future in the modeling, and particularly in the design and certification of control laws. In this research paper, we will focus on the Cessna Citation X open loop stability analysis. The data are provided by a Research Aircraft Flight Simulator of Level D, that corresponds to the highest level flight dynamics certification; this simulator was developed by CAE Inc. and its development was based on the requirements of research at the LARCASE laboratory. The acquisition of these data was used to develop a linear model of the airplane in its longitudinal and lateral motions, and was further used to create the LFR’s models for 12 XCG /weights conditions, and thus the whole flight envelope using a friendly Graphical User Interface developed during this study. Then, the LFR’s models are analyzed using Interval Analysis method based upon Lyapunov function, and also the ‘stability and robustness analysis’ toolbox. The results were presented under the form of graphs, thus they have offered good readability, and were easily exploitable. The weakness of this method stays in a relatively long calculation, equal to about four hours for the entire flight envelope.Keywords: flight control clearance, LFR, stability analysis, robustness analysis
Procedia PDF Downloads 3555498 Superconducting Properties of Fe Doped in Cu-Site of Bi1.6Pb0.4Sr2Ca2Cu3-xFexOy
Authors: M. A. Suazlina, H. Azhan, S. A. Syamsyir, S. Y. S. Yusainee
Abstract:
Fe2O3 was doped to Bi-2223 superconductor prepared in bulk form using high purity oxide powders via solid state reaction technique with intermediate grinding. A stiochiometric of x=0.00, 0.02, 0.04, 0.06, 0.08 and 0.10 Fe are systematically added to the well balanced Bi1.6Pb0.4Sr2Ca2Cu3-xFexOy in order to trace the effect of Fe doping to the system. Microstructure, resistive transitions, phase volume, and cell parameters were hence investigated. Substitution of Fe is found to slowly decrease the Bi-2223 phase volume and the resistive transitions for x=0.00 – 0.10 samples whereas accelerated formation of the Bi-2212 phase is detected for further substitutions. Changes in superconducting properties of Fe-doping Bi-2223 system were discussed and the findings were further compared with available literature.Keywords: BSCCO, critical temperature, critical current density, XRD, flux pinning
Procedia PDF Downloads 3915497 Comparative Analysis of VTEC Bank of Rollers Brake Testers versus Maha, Ryme and Dynamometric Platform Testers Used at Ministry of Transport Facilities
Authors: Carolina Senabre, Sergio Valero, Emilio Velasco
Abstract:
This research objective is to compare the differences of brake measurements obtained with the same vehicle when braking on VTEQ Ministry of Transport (MOT) brake testers versus others such as Maha, Ryme and a dynamometric platform. These different types of brake testers have been used and analyzed by the mechanical engineering staffs at the mechanical laboratory at the Miguel Hernández University. Parameters of the vehicle have been controlled to be the same in all tests. Therefore, brake measurements variability will be due to the tester used. Advances and disadvantages of each brake tester have been analyzed.Keywords: brake tester, Ministry of transport, longitudinal braking, Bank of Rollers
Procedia PDF Downloads 3485496 Pedestrian Safe Bumper Design from Commingled Glass Fiber/Polypropylene Reinforced Sandwich Composites
Authors: L. Onal
Abstract:
The aim of this study is to optimize manufacturing process for thermoplastic sandwich composite structures for the pedestrian safety of automobiles subjected to collision condition. In particular, cost-effective manufacturing techniques for sandwich structures with commingled GF/PP skins and low-density foam cores are being investigated. The performance of these structures under bending load is being studied. Samples are manufactured using compression moulding technique. The relationship of this performance to processing parameters such as mould temperature, moulding time, moulding pressure and sequence of the layers during moulding is being investigated. The results of bending tests are discussed in the light of the moulding conditions and conclusions are given regarding optimum set of processing conditions using the compression moulding routeKeywords: twintex, flexural properties, automobile composites, sandwich structures
Procedia PDF Downloads 4355495 A Systematic Analysis of Knowledge Development Trends in Industrial Maintenance Projects
Authors: Lilian Ogechi Iheukwumere-Esotu, Akilu Yunusa-Kaltungo, Paul Chan
Abstract:
Industrial assets are prone to degradation and eventual failures due to repetitive loads and harsh environments in which they operate. These failures often lead to costly downtimes, which may involve loss of critical assets and/or human lives. The rising pressures from stakeholders for optimized systems’ outputs have further placed strains on business organizations. Traditional means of combating such failures are by adopting strategies capable of predicting, controlling, and/or reducing the likelihood of systems’ failures. Turnarounds, shutdowns, and outages (TSOs) projects are popular maintenance management activities conducted over a certain period of time. However, despite the critical and significant cost implications of TSOs, the management of the interface of knowledge between academia and industry to our best knowledge has not been fully explored in comparison to other aspects of industrial operations. This is perhaps one of the reasons for the limited knowledge transfer between academia and industry, which has affected the outcomes of most TSOs. Prior to now, the study of knowledge development trends as a failure analysis tool in the management of TSOs projects have not gained the required level of attention. Hence, this review provides useful references and their implications for future studies in this field. This study aims to harmonize the existing research trends of TSOs through a systematic review of more than 3,000 research articles published over 7 decades (1940- till date) which were extracted using very specific research criteria and later streamlined using nominated inclusion and exclusion parameters. The information obtained from the analysis were then synthesized and coded into 8 parameters, thereby allowing for a transformation into actionable outputs. The study revealed a variety of information, but the most critical findings can be classified into 4 folds: (1) Empirical validation of available conceptual frameworks and models is still a far cry in practice, (2) traditional project management views for managing uncertainties are still dominant, (3) Inconsistent approaches towards the adoption and promotion of knowledge management systems which supports creation, transfer and application of knowledge within and outside the project organization and, (4) exploration of social practices in industrial maintenance project environments are under-represented within the existing body of knowledge. Thus, the intention of this study is to depict the usefulness of a framework which incorporates fact findings emanating from careful analysis and illustrations of evidence based results as a suitable approach which can tackle reoccurring failures in industrial maintenance projects.Keywords: industrial maintenance, knowledge management, maintenance projects, systematic review, TSOs
Procedia PDF Downloads 1215494 Ammonia Release during Photocopying Operations
Authors: Kiurski S. Jelena, Kecić S. Vesna, Oros B. Ivana, Ranogajec G. Jonjaua
Abstract:
The paper represents the dependence of ammonia concentration on microclimate parameters and photocopying shop circulation. The concentration of ammonia was determined during 8-hours working time over five days including three sampling points of a photocopying shop in Novi Sad, Serbia. The obtained results pointed out that the room temperature possesses the highest impact on ammonia release. The obtained ammonia concentration was in the range of 1.53 to 0.42ppm and decreased with the temperature decreasing from 24.6 to 20.7 °C. As the detected concentrations were within the permissible levels of The Occupational Safety and Health Administration, The National Institute for Occupational Safety and The Health and Official Gazette of Republic of Serbia, in the range of 35 to 200ppm, there was no danger to the employee’s health in the photocopying shop.Keywords: ammonia, emission, indoor environment, photocopying procedure
Procedia PDF Downloads 4075493 Domestic Wastewater Treatment by Microalgae – Removal of Nitrogen
Authors: A. Siham Dehmani, B. Djamal Zerrouki
Abstract:
Domestic wastewater contains high concentrations of nitrogen, which can affect public health and cause harmful ecological impacts. The potential of microalgae as a source of renewable energy based on wastewater has received increasing interest worldwide in recent decades. The microalgae cultivation in wastewater has two advantages: wastewater treatment and algal biomass production. Our work aimed to remove nitrogen from municipal wastewater. Wastewater samples were taken from the wastewater treatment station located in Ouargla and used as a medium for the cultivation of chlorella microalgae strains inside a photobioreactor. Analysis of different parameters was done every 2 days along the period of the cultivation (10 days). The average removal efficiencies of nitrogen were maintained at 95%. Our results show the potential of integrating nutrient removal from wastewater by microalgae as a secondary wastewater treatment processes.Keywords: biomass, microalgae, treatment, wastewater
Procedia PDF Downloads 4275492 Real Time Adaptive Obstacle Avoidance in Dynamic Environments with Different D-S
Authors: Mohammad Javad Mollakazemi, Farhad Asadi
Abstract:
In this paper a real-time obstacle avoidance approach for both autonomous and non-autonomous dynamical systems (DS) is presented. In this approach the original dynamics of the controller which allow us to determine safety margin can be modulated. Different common types of DS increase the robot’s reactiveness in the face of uncertainty in the localization of the obstacle especially when robot moves very fast in changeable complex environments. The method is validated by simulation and influence of different autonomous and non-autonomous DS such as important characteristics of limit cycles and unstable DS. Furthermore, the position of different obstacles in complex environment is explained. Finally, the verification of avoidance trajectories is described through different parameters such as safety factor.Keywords: limit cycles, nonlinear dynamical system, real time obstacle avoidance, safety margin
Procedia PDF Downloads 4455491 Methodology for Obtaining Static Alignment Model
Authors: Lely A. Luengas, Pedro R. Vizcaya, Giovanni Sánchez
Abstract:
In this paper, a methodology is presented to obtain the Static Alignment Model for any transtibial amputee person. The proposed methodology starts from experimental data collected on the Hospital Militar Central, Bogotá, Colombia. The effects of transtibial prosthesis malalignment on amputees were measured in terms of joint angles, center of pressure (COP) and weight distribution. Some statistical tools are used to obtain the model parameters. Mathematical predictive models of prosthetic alignment were created. The proposed models are validated in amputees and finding promising results for the prosthesis Static Alignment. Static alignment process is unique to each subject; nevertheless the proposed methodology can be used in each transtibial amputee.Keywords: information theory, prediction model, prosthetic alignment, transtibial prosthesis
Procedia PDF Downloads 2595490 Heat and Mass Transfer in a Saturated Porous Medium Confined in Cylindrical Annular Geometry
Authors: A. Ja, J. Belabid, A. Cheddadi
Abstract:
This paper reports the numerical simulation of double diffusive natural convection flows within a horizontal annular filled with a saturated porous medium. The analysis concerns the influence of the different parameters governing the problem, namely, the Rayleigh number Ra, the Lewis number Le and the buoyancy ratio N, on the heat and mass transfer and on the flow structure, in the case of a fixed radius ratio R = 2. The numerical model used for the discretization of the dimensionless equations governing the problem is based on the finite difference method, using the ADI scheme. The study is focused on steady-state solutions in the cooperation situation.Keywords: natural convection, double-diffusion, porous medium, annular geometry, finite differences
Procedia PDF Downloads 3445489 Numerical Investigation for Ductile Fracture of an Aluminium Alloy 6061 T-6: Assessment of Critical J-Integral
Authors: R. Bensaada, M. Almansba, M. Ould Ouali, R. Ferhoum, N. E. Hannachi
Abstract:
The aim of this work is to simulate the ductile fracture of SEN specimens in aluminium alloy. The assessment of fracture toughness is performed with the calculation of Jc (the critical value of J-Integral) through the resistance curves. The study is done using finite element code calculation ABAQUSTM including an elastic plastic with damage model of material’s behaviour. The procedure involves specimens of four different thicknesses and four ligament sizes for every thickness. The material of study is an aluminium alloy 6061-T6 for which the necessary parameters to complete the study are given. We found the same results for the same specimen’s thickness and for different ligament sizes when the fracture criterion is evaluated.Keywords: j-integral, critical-j, damage, fracture toughness
Procedia PDF Downloads 3615488 Spectroscopic Autoradiography of Alpha Particles on Geologic Samples at the Thin Section Scale Using a Parallel Ionization Multiplier Gaseous Detector
Authors: Hugo Lefeuvre, Jerôme Donnard, Michael Descostes, Sophie Billon, Samuel Duval, Tugdual Oger, Herve Toubon, Paul Sardini
Abstract:
Spectroscopic autoradiography is a method of interest for geological sample analysis. Indeed, researchers may face different issues such as radioelement identification and quantification in the field of environmental studies. Imaging gaseous ionization detectors find their place in geosciences for conducting specific measurements of radioactivity to improve the monitoring of natural processes using naturally-occurring radioactive tracers, but also for the nuclear industry linked to the mining sector. In geological samples, the location and identification of the radioactive-bearing minerals at the thin-section scale remains a major challenge as the detection limit of the usual elementary microprobe techniques is far higher than the concentration of most of the natural radioactive decay products. The spatial distribution of each decay product in the case of uranium in a geomaterial is interesting for relating radionuclides concentration to the mineralogy. The present study aims to provide spectroscopic autoradiography analysis method for measuring the initial energy of alpha particles with a parallel ionization multiplier gaseous detector. The analysis method has been developed thanks to Geant4 modelling of the detector. The track of alpha particles recorded in the gas detector allow the simultaneous measurement of the initial point of emission and the reconstruction of the initial particle energy by a selection based on the linear energy distribution. This spectroscopic autoradiography method was successfully used to reproduce the alpha spectra from a 238U decay chain on a geological sample at the thin-section scale. The characteristics of this measurement are an energy spectrum resolution of 17.2% (FWHM) at 4647 keV and a spatial resolution of at least 50 µm. Even if the efficiency of energy spectrum reconstruction is low (4.4%) compared to the efficiency of a simple autoradiograph (50%), this novel measurement approach offers the opportunity to select areas on an autoradiograph to perform an energy spectrum analysis within that area. This opens up possibilities for the detailed analysis of heterogeneous geological samples containing natural alpha emitters such as uranium-238 and radium-226. This measurement will allow the study of the spatial distribution of uranium and its descendants in geo-materials by coupling scanning electron microscope characterizations. The direct application of this dual modality (energy-position) of analysis will be the subject of future developments. The measurement of the radioactive equilibrium state of heterogeneous geological structures, and the quantitative mapping of 226Ra radioactivity are now being actively studied.Keywords: alpha spectroscopy, digital autoradiography, mining activities, natural decay products
Procedia PDF Downloads 1535487 Radiation Hardness Materials Article Review
Authors: S. Abou El-Azm, U. Kruchonak, M. Gostkin, A. Guskov, A. Zhemchugov
Abstract:
Semiconductor detectors are widely used in nuclear physics and high-energy physics experiments. The application of semiconductor detectors could be limited by their ultimate radiation resistance. The increase of radiation defects concentration leads to significant degradation of the working parameters of semiconductor detectors. The investigation of radiation defects properties in order to enhance the radiation hardness of semiconductor detectors is an important task for the successful implementation of a number of nuclear physics experiments; we presented some information about radiation hardness materials like diamond, sapphire and CdTe. Also, the results of measurements I-V characteristics, charge collection efficiency and its dependence on the bias voltage for different doses of high resistivity (GaAs: Cr) and Si at LINAC-200 accelerator and reactor IBR-2 are presented.Keywords: semiconductor detectors, radiation hardness, GaAs, Si, CCE, I-V, C-V
Procedia PDF Downloads 1165486 Simulation of Remove the Fouling on the in vivo By Using MHD
Authors: Farhad Aalizadeh, Ali Moosavi
Abstract:
When a blood vessel is injured, the cells of your blood bond together to form a blood clot. The blood clot helps you stop bleeding. Blood clots are made of a combination of blood cells, platelets(small sticky cells that speed up the clot-making process), and fibrin (protein that forms a thread-like mesh to trap cells). Doctors call this kind of blood clot a “thrombus.”We study the effects of different parameters on the deposition of Nanoparticles on the surface of a bump in the blood vessels by the magnetic field. The Maxwell and the flow equations are solved for this purpose. It is assumed that the blood is non-Newtonian and the number of particles has been considered enough to rely on the results statistically. Using MHD and its property it is possible to control the flow velocity, remove the fouling on the walls and return the system to its original form.Keywords: MHD, fouling, in-vivo, blood clots, simulation
Procedia PDF Downloads 4725485 Development and Modelling of Cellulose Nano-Crystal from Agricultural Wastes for Adsorptive Removal of Pharmaceuticals in Wastewater
Authors: Abubakar Muhammad Hammari, Usman Dadum Hamza, Maryam Ibrahim, Kabir Garba, Idris Muhammad Misau, .
Abstract:
Pharmaceuticals are increasingly present in water systems, posing threats to ecosystems and human health. The effective treatment of pharmaceutical wastewater presents a significant challenge due to the complex and diverse organic and inorganic contaminants it contains. Conventional treatment methods often struggle to completely remove these pollutants due to their stability and water solubility, leading to environmental concerns and potential health risks. This research proposes the use of cellulose nanocrystals (CNCs) derived from agricultural waste as efficient and sustainable adsorbents for pharmaceutical wastewater treatment. CNCs offer high surface area, biodegradability, and low cost compared to existing options. This study evaluates the production, characterization, adsorption properties, and reusability of cellulose nanocrystals (CNCs) derived from waste paper (CNC-WP), rice husk (CNC-RH), and groundnut shell (CNC-GS). The percentage yield of CNCs was highest from wastepaper at 50.67%, followed by groundnut shell at 33.40% and rice husk at 26.46%. X-ray diffraction (XRD) confirmed the cellulose crystalline structure across all samples while scanning electron microscopy (SEM) revealed a needle-like morphology with size distribution variations. Energy-dispersive X-ray spectroscopy (EDX) identified carbon and oxygen as the primary elements, with minor residual inorganic materials varying by source. BET analysis indicated high surface areas for all CNCs, with CNC-RH exhibiting the highest value (464.592 m²/g), suggesting a more porous structure. The pore sizes of all samples fell within the meso-pore range (2.108 nm to 2.153 nm). Adsorption studies focused on metronidazole (MNZ) removal using CNC-WP. Isotherm models, including Langmuir and Sips, described the equilibrium between MNZ concentration and adsorption onto CNC-WP, showing the best fit with R² values exceeding 0.95. The adsorption process was favourable, with monolayer coverage and potential binding energy heterogeneity. Kinetic modelling identified the pseudo-second-order model as the best fit (R² = 1, SSE = 5.00 x 10-₇), indicating chemisorption as the predominant mechanism. Thermodynamic analysis revealed negative ΔG values at all temperatures, indicating spontaneous adsorption, with more favourable adsorption at higher temperatures. The adsorption process was exothermic, as indicated by negative ΔH values. Reusability studies demonstrated that CNC-WP retained high MNZ removal efficiency, with a modest decrease from 99.59% to 89.11% over ten regeneration cycles. This study highlights the efficiency of wastepaper as a raw material for CNC production and its potential for effective and reusable MNZ adsorption.Keywords: cellulose nanocrystals (CNCs), adsorption efficiency, metronidazole removal, reusability
Procedia PDF Downloads 95484 Development of 25A-Size Three-Layer Metal Gasket by Using FEM Simulation
Authors: Shigeyuki Haruyama, I Made Gatot Karohika, Akinori Sato, Didik Nurhadiyanto, Ken Kaminishi
Abstract:
Contact width and contact stress are important design parameters for optimizing corrugated metal gasket performance based on elastic and plastic contact stress. In this study, we used a three-layer metal gasket with Al, Cu, Ni as the outer layer, respectively. A finite element method was employed to develop simulation solution. The gasket model was simulated by using two simulation stages which are forming and tightening simulation. The simulation result shows that aluminum with tangent modulus, Ehal = Eal/150 has the highest slope for contact width. The slope of contact width for plastic mode gasket was higher than the elastic mode gasket.Keywords: contact width, contact stress, layer, metal gasket, corrugated, simulation
Procedia PDF Downloads 5285483 Electrospun TiO2/Nylon-6 Nanofiber Mat: Improved Hydrophilicity Properties
Authors: Roshank Haghighat, Laleh Maleknia
Abstract:
In this study, electrospun TiO2/nylon-6 nanofiber mats were successfully prepared. The nanofiber mats were characterized by SEM, FE-SEM, TEM, XRD, WCA, and EDX analyses. The results revealed that fibers in different distinct sizes (nano and subnano scale) were obtained with the electrospinning parameters. The presence of a small amount of TiO2 in nylon-6 solution was found to improve the hydrophilicity (antifouling effect), mechanical strength, antimicrobial and UV protecting ability of electrospun mats. The resultant nylon-6/TiO2 antimicrobial spider-net like composite mat with antifouling effect may be a potential candidate for future water filter applications, and its improved UV blocking ability will also make it a potential candidate for protective clothing.Keywords: electrospinning, hydrophilicity, antimicrobial, nanocomposite, nylon-6/TiO2
Procedia PDF Downloads 351