Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3217

Search results for: medium voltage

3217 Influence of Harmonics on Medium Voltage Distribution System: A Case Study for Residential Area

Authors: O. Arikan, C. Kocatepe, G. Ucar, Y. Hacialiefendioglu

Abstract:

In this paper, influence of harmonics on medium voltage distribution system of Bogazici Electricity Distribution Inc. (BEDAS) which takes place at Istanbul/Turkey is investigated. A ring network consisting of residential loads is taken into account for this study. Real system parameters and measurement results are used for simulations. Also, probable working conditions of the system are analyzed for %50, %75 and %100 loading of transformers with similar harmonic contents. Results of the study are exhibited the influence of nonlinear loads on %THDV, P.F. and technical losses of the medium voltage distribution system.

Keywords: distribution system, harmonic, technical losses, power factor, total harmonic distortion, residential load, medium voltage

Procedia PDF Downloads 377
3216 Voltage and Current Control of Microgrid in Grid Connected and Islanded Modes

Authors: Megha Chavda, Parth Thummar, Rahul Ghetia

Abstract:

This paper presents the voltage and current control of microgrid accompanied by the synchronization of microgrid with the main utility grid in both islanded and grid-connected modes. Distributed Energy Resources (DERs) satisfy the wide-spread power demand of consumer by behaving as a micro source for a low voltage (LV) grid or microgrid. Synchronization of the microgrid with the main utility grid is done using PLL and PWM gate pulse generation technique is used for the Voltage Source Converter. Potential Function method achieves the voltage and current control of this microgrid in both islanded and grid-connected modes. A low voltage grid consisting of three distributed generators (DG) is considered for the study and is simulated in time-domain using PSCAD/EMTDC software. The simulation results depict the appropriateness of voltage and current control of microgrid and synchronization of microgrid with the medium voltage (MV) grid.

Keywords: microgrid, distributed energy resources, voltage and current control, voltage source converter, pulse width modulation, phase locked loop

Procedia PDF Downloads 261
3215 Modal Analysis of Power System with a Microgrid

Authors: Burak Yildirim, Muhsin Tunay Gençoğlu

Abstract:

A microgrid (MG) is a small power grid composed of localized medium or low level power generation, storage systems, and loads. In this paper, the effects of a MG on power systems voltage stability are shown. The MG model, designed to demonstrate the effects of the MG, was applied to the IEEE 14 bus power system which is widely used in power system stability studies. Eigenvalue and modal analysis methods were used in simulation studies. In the study results, it is seen that MGs affect system voltage stability positively by increasing system voltage instability limit value for buses of a power system in which MG are placed.

Keywords: eigenvalue analysis, microgrid, modal analysis, voltage stability

Procedia PDF Downloads 239
3214 SCR-Based Advanced ESD Protection Device for Low Voltage Application

Authors: Bo Bae Song, Byung Seok Lee, Hyun young Kim, Chung Kwang Lee, Yong Seo Koo

Abstract:

This paper proposed a silicon controller rectifier (SCR) based ESD protection device to protect low voltage ESD for integrated circuit. The proposed ESD protection device has low trigger voltage and high holding voltage compared with conventional SCR-based ESD protection devices. The proposed ESD protection circuit is verified and compared by TCAD simulation. This paper verified effective low voltage ESD characteristics with low trigger voltage of 5.79V and high holding voltage of 3.5V through optimization depending on design variables (D1, D2, D3, and D4).

Keywords: ESD, SCR, holding voltage, latch-up

Procedia PDF Downloads 401
3213 DG Power Plants Placement and Evaluation of its Effect on Improving Voltage Security Margin in Radial Distribution Networks

Authors: Atabak Faramarzpour, Mohsen Mohammadian

Abstract:

In this article, we introduce the stability of power system voltage and state DG power plants placement and its effect on improving voltage security margin in radial distribution networks. For this purpose, first, important definitions in voltage stability area such as small and big voltage disturbances, instability, and voltage collapse, and voltage security definitions are stated. Then, according to voltage collapse time, voltage stability is classified and each one's characteristics are stated.

Keywords: DG power plants, evaluation, voltage security, radial distribution networks

Procedia PDF Downloads 526
3212 A Study on ESD Protection Circuit Applying Silicon Controlled Rectifier-Based Stack Technology with High Holding Voltage

Authors: Hee-Guk Chae, Bo-Bae Song, Kyoung-Il Do, Jeong-Yun Seo, Yong-Seo Koo

Abstract:

In this study, an improved Electrostatic Discharge (ESD) protection circuit with low trigger voltage and high holding voltage is proposed. ESD has become a serious problem in the semiconductor process because the semiconductor density has become very high these days. Therefore, much research has been done to prevent ESD. The proposed circuit is a stacked structure of the new unit structure combined by the Zener Triggering (SCR ZTSCR) and the High Holding Voltage SCR (HHVSCR). The simulation results show that the proposed circuit has low trigger voltage and high holding voltage. And the stack technology is applied to adjust the various operating voltage. As the results, the holding voltage is 7.7 V for 2-stack and 10.7 V for 3-stack.

Keywords: ESD, SCR, latch-up, power clamp, holding voltage

Procedia PDF Downloads 343
3211 Severity Index Level in Effectively Managing Medium Voltage Underground Power Cable

Authors: Mohd Azraei Pangah Pa'at, Mohd Ruzlin Mohd Mokhtar, Norhidayu Rameli, Tashia Marie Anthony, Huzainie Shafi Abd Halim

Abstract:

Partial Discharge (PD) diagnostic mapping testing is one of the main diagnostic testing techniques that are widely used in the field or onsite testing for underground power cable in medium voltage level. The existence of PD activities is an early indication of insulation weakness hence early detection of PD activities can be determined and provides an initial prediction on the condition of the cable. To effectively manage the results of PD Mapping test, it is important to have acceptable criteria to facilitate prioritization of mitigation action. Tenaga Nasional Berhad (TNB) through Distribution Network (DN) division have developed PD severity model name Severity Index (SI) for offline PD mapping test since 2007 based on onsite test experience. However, this severity index recommendation action had never been revised since its establishment. At presence, PD measurements data have been extensively increased, hence the severity level indication and the effectiveness of the recommendation actions can be analyzed and verified again. Based on the new revision, the recommended action to be taken will be able to reflect the actual defect condition. Hence, will be accurately prioritizing preventive action plan and minimizing maintenance expenditure.

Keywords: partial discharge, severity index, diagnostic testing, medium voltage, power cable

Procedia PDF Downloads 39
3210 A Study on Unidirectional Analog Output Voltage Inverter for Capacitive Load

Authors: Sun-Ki Hong, Nam-HeeByeon, Jung-Seop Lee, Tae-Sam Kang

Abstract:

For Common R or R-L load to apply arbitrary voltage, the bridge traditional inverters don’t have any difficulties by PWM method. However for driving some piezoelectric actuator, arbitrary voltage not a pulse but a steady voltage should be applied. Piezoelectric load is considered as R-C load and its voltage does not decrease even though the applied voltage decreases. Therefore it needs some special inverter with circuit that can discharge the capacitive energy. Especially for unidirectional arbitrary voltage driving like as sine wave, it becomes more difficult problem. In this paper, a charge and discharge circuit for unidirectional arbitrary voltage driving for piezoelectric actuator is proposed. The circuit has charging and discharging switches for increasing and decreasing output voltage. With the proposed simple circuit, the load voltage can have any unidirectional level with tens of bandwidth because the load voltage can be adjusted by switching the charging and discharging switch appropriately. The appropriateness is proved from the simulation of the proposed circuit.

Keywords: DC-DC converter, analog output voltage, sinusoidal drive, piezoelectric load, discharging circuit

Procedia PDF Downloads 233
3209 SCR-Stacking Structure with High Holding Voltage for IO and Power Clamp

Authors: Hyun Young Kim, Chung Kwang Lee, Han Hee Cho, Sang Woon Cho, Yong Seo Koo

Abstract:

In this paper, we proposed a novel SCR (Silicon Controlled Rectifier) - based ESD (Electrostatic Discharge) protection device for I/O and power clamp. The proposed device has a higher holding voltage characteristic than conventional SCR. These characteristics enable to have latch-up immunity under normal operating conditions as well as superior full chip ESD protection. The proposed device was analyzed to figure out electrical characteristics and tolerance robustness in term of individual design parameters (D1, D2, D3). They are investigated by using the Synopsys TCAD simulator. As a result of simulation, holding voltage increased with different design parameters. The holding voltage of the proposed device changes from 3.3V to 7.9V. Also, N-Stack structure ESD device with the high holding voltage is proposed. In the simulation results, 2-stack has holding voltage of 6.8V and 3-stack has holding voltage of 10.5V. The simulation results show that holding voltage of stacking structure can be larger than the operation voltage of high-voltage application.

Keywords: ESD, SCR, holding voltage, stack, power clamp

Procedia PDF Downloads 404
3208 Electret: A Solution of Partial Discharge in High Voltage Applications

Authors: Farhina Haque, Chanyeop Park

Abstract:

The high efficiency, high field, and high power density provided by wide bandgap (WBG) semiconductors and advanced power electronic converter (PEC) topologies enabled the dynamic control of power in medium to high voltage systems. Although WBG semiconductors outperform the conventional Silicon based devices in terms of voltage rating, switching speed, and efficiency, the increased voltage handling properties, high dv/dt, and compact device packaging increase local electric fields, which are the main causes of partial discharge (PD) in the advanced medium and high voltage applications. PD, which occurs actively in voids, triple points, and airgaps, is an inevitable dielectric challenge that causes insulation and device aging. The aging process accelerates over time and eventually leads to the complete failure of the applications. Hence, it is critical to mitigating PD. Sharp edges, airgaps, triple points, and bubbles are common defects that exist in any medium to high voltage device. The defects are created during the manufacturing processes of the devices and are prone to high-electric-field-induced PD due to the low permittivity and low breakdown strength of the gaseous medium filling the defects. A contemporary approach of mitigating PD by neutralizing electric fields in high power density applications is introduced in this study. To neutralize the locally enhanced electric fields that occur around the triple points, airgaps, sharp edges, and bubbles, electrets are developed and incorporated into high voltage applications. Electrets are electric fields emitting dielectric materials that are embedded with electrical charges on the surface and in bulk. In this study, electrets are fabricated by electrically charging polyvinylidene difluoride (PVDF) films based on the widely used triode corona discharge method. To investigate the PD mitigation performance of the fabricated electret films, a series of PD experiments are conducted on both the charged and uncharged PVDF films under square voltage stimuli that represent PWM waveform. In addition to the use of single layer electrets, multiple layers of electrets are also experimented with to mitigate PD caused by higher system voltages. The electret-based approach shows great promise in mitigating PD by neutralizing the local electric field. The results of the PD measurements suggest that the development of an ultimate solution to the decades-long dielectric challenge would be possible with further developments in the fabrication process of electrets.

Keywords: electrets, high power density, partial discharge, triode corona discharge

Procedia PDF Downloads 68
3207 Analysis of SCR-Based ESD Protection Circuit on Holding Voltage Characteristics

Authors: Yong Seo Koo, Jong Ho Nam, Yong Nam Choi, Dae Yeol Yoo, Jung Woo Han

Abstract:

This paper presents a silicon controller rectifier (SCR) based ESD protection circuit for IC. The proposed ESD protection circuit has low trigger voltage and high holding voltage compared with conventional SCR ESD protection circuit. Electrical characteristics of the proposed ESD protection circuit are simulated and analyzed using TCAD simulator. The proposed ESD protection circuit verified effective low voltage ESD characteristics with low trigger voltage and high holding voltage.

Keywords: electro-static discharge (ESD), silicon controlled rectifier (SCR), holding voltage, protection circuit

Procedia PDF Downloads 231
3206 A Silicon Controlled Rectifier-Based ESD Protection Circuit with High Holding Voltage and High Robustness Characteristics

Authors: Kyoung-il Do, Byung-seok Lee, Hee-guk Chae, Jeong-yun Seo Yong-seo Koo

Abstract:

In this paper, a Silicon Controlled Rectifier (SCR)-based Electrostatic Discharge (ESD) protection circuit with high holding voltage and high robustness characteristics is proposed. Unlike conventional SCR, the proposed circuit has low trigger voltage and high holding voltage and provides effective ESD protection with latch-up immunity. In addition, the TCAD simulation results show that the proposed circuit has better electrical characteristics than the conventional SCR. A stack technology was used for voltage-specific applications. Consequentially, the proposed circuit has a trigger voltage of 17.60 V and a holding voltage of 3.64 V.

Keywords: ESD, SCR, latch-up, power clamp, holding voltage

Procedia PDF Downloads 217
3205 Analog Voltage Inverter Drive for Capacitive Load with Adaptive Gain Control

Authors: Sun-Ki Hong, Yong-Ho Cho, Ki-Seok Kim, Tae-Sam Kang

Abstract:

Piezoelectric actuator is treated as RC load when it is modeled electrically. For some piezoelectric actuator applications, arbitrary voltage is required to actuate. Especially for unidirectional arbitrary voltage driving like as sine wave, some special inverter with circuit that can charge and discharge the capacitive energy can be used. In this case, the difference between power supply level and the object voltage level for RC load is varied. Because the control gain is constant, the controlled output is not uniform according to the voltage difference. In this paper, for charge and discharge circuit for unidirectional arbitrary voltage driving for piezoelectric actuator, the controller gain is controlled according to the voltage difference. With the proposed simple idea, the load voltage can have controlled smoothly although the voltage difference is varied. The appropriateness is proved from the simulation of the proposed circuit.

Keywords: analog voltage inverter, capacitive load, gain control, dc-dc converter, piezoelectric, voltage waveform

Procedia PDF Downloads 449
3204 Comparative Study of Line Voltage Stability Indices for Voltage Collapse Forecasting in Power Transmission System

Authors: H. H. Goh, Q. S. Chua, S. W. Lee, B. C. Kok, K. C. Goh, K. T. K. Teo

Abstract:

At present, the evaluation of voltage stability assessment experiences sizeable anxiety in the safe operation of power systems. This is due to the complications of a strain power system. With the snowballing of power demand by the consumers and also the restricted amount of power sources, therefore, the system has to perform at its maximum proficiency. Consequently, the noteworthy to discover the maximum ability boundary prior to voltage collapse should be undertaken. A preliminary warning can be perceived to evade the interruption of power system’s capacity. The effectiveness of line voltage stability indices (LVSI) is differentiated in this paper. The main purpose of the indices is used to predict the proximity of voltage instability of the electric power system. On the other hand, the indices are also able to decide the weakest load buses which are close to voltage collapse in the power system. The line stability indices are assessed using the IEEE 14 bus test system to validate its practicability. Results demonstrated that the implemented indices are practically relevant in predicting the manifestation of voltage collapse in the system. Therefore, essential actions can be taken to dodge the incident from arising.

Keywords: critical line, line outage, line voltage stability indices (LVSI), maximum loadability, voltage collapse, voltage instability, voltage stability analysis

Procedia PDF Downloads 225
3203 New Series Input Parallel Output LLC DC/DC Converter with the Input Voltage Balancing Capacitor for the Electric System of Electric Vehicles

Authors: Kang Hyun Yi

Abstract:

This paper presents a new parallel output LLC DC/DC converter for electric vehicle. The electric vehicle has two batteries. One is a high voltage battery for the powertrain of the vehicle and the other is a low voltage battery for the vehicle electric system. The low voltage is charged from the high voltage battery and the high voltage input and the high current output DC/DC converter is needed. Therefore, the new LLC converter with the input voltage compensation is proposed for the high voltage input and the low voltage output DC/DC converter. The proposed circuit has two LLC converters with the series input voltage from the battery for the powertrain and the parallel output low battery voltage for the vehicle electric system because the battery voltage for the powertrain and the electric power for the vehicle become high. Also, the input series voltage compensation capacitor is used for balancing the input current in the two LLC converters. The proposed converter has an equal electric stress of the semiconductor parts and the reactive components, high efficiency and good heat dissipation.

Keywords: electric vehicle, LLC DC/DC converter, input voltage balancing, parallel output

Procedia PDF Downloads 469
3202 Automated Distribution System Management: Substation Remote Diagnostic and Operation Solution for Obafemi Awolowo University

Authors: Aderonke Oluseun Akinwumi, Olusola A. Komolaf

Abstract:

This paper gives information about the wide array of challenges facing both the electric utilities and consumers in the distribution system in developing countries, using Obafemi Awolowo University, Ile-Ife Nigeria as a case study. It also proffers cost-effective solution through remote monitoring, diagnostic and operation of distribution networks without compromising the system reliability. As utilities move from manned and unintelligent networks to completely unmanned smart grids, switching activities at substations and feeders will be managed and controlled remotely by dedicated systems hence this design. The Substation Remote Diagnostic and Operation Solution (sRDOs) would remotely monitor the load on Medium Voltage (MV) and Low Voltage (LV) feeders as well as distribution transformers and allow the utility disconnect non-paying customers with absolutely no extra resource deployment and without interrupting supply to paying customers. The aftermath of the implementation of this design improved the lifetime of key distribution infrastructure by automatically isolating feeders during overload conditions and more importantly erring consumers. This increased the ratio of revenue generated on electricity bills to total network load.

Keywords: electric utility, consumers, remote monitoring, diagnostic, system reliability, manned and unintelligent networks, unmanned smart grids, switching activities, medium voltage, low voltage, distribution transformer

Procedia PDF Downloads 41
3201 Voltage Stability Assessment and Enhancement Using STATCOM -A Case Study

Authors: Puneet Chawla, Balwinder Singh

Abstract:

Recently, increased attention has been devoted to the voltage instability phenomenon in power systems. Many techniques have been proposed in the literature for evaluating and predicting voltage stability using steady state analysis methods. In this paper, P-V and Q-V curves have been generated for a 57 bus Patiala Rajpura circle of India. The power-flow program is developed in MATLAB using Newton-Raphson method. Using Q-V curves, the weakest bus of the power system and the maximum reactive power change permissible on that bus is calculated. STATCOMs are placed on the weakest bus to improve the voltage and hence voltage stability and also the power transmission capability of the line.

Keywords: voltage stability, reactive power, power flow, weakest bus, STATCOM

Procedia PDF Downloads 385
3200 Internal Node Stabilization for Voltage Sense Amplifiers in Multi-Channel Systems

Authors: Sanghoon Park, Ki-Jin Kim, Kwang-Ho Ahn

Abstract:

This paper discusses the undesirable charge transfer by the parasitic capacitances of the input transistors in a voltage sense amplifier. Due to its intrinsic rail-to-rail voltage transition, the input sides are inevitably disturbed. It can possible disturb the stabilities of the reference voltage levels. Moreover, it becomes serious in multi-channel systems by altering them for other channels, and so degrades the linearity of the systems. In order to alleviate the internal node voltage transition, the internal node stabilization technique is proposed by utilizing an additional biasing circuit. It achieves 47% and 43% improvements for node stabilization and input referred disturbance, respectively.

Keywords: voltage sense amplifier, voltage transition, node stabilization, biasing circuits

Procedia PDF Downloads 336
3199 Low Trigger Voltage Silicon Controlled Rectifier Stacking Structure with High Holding Voltage for High Voltage Applications

Authors: Kyoung-Il Do, Jun-Geol Park, Hee-Guk Chae, Jeong-Yun Seo, Yong-Seo Koo

Abstract:

A SCR stacking structure is proposed to have improved Latch-up immunity. In comparison with conventional SCR (Silicon Controlled Rectifier), the proposed Electrostatic Discharge (ESD) protection circuit has a lower trigger characteristic by using the LVTSCR (Low Voltage Trigger) structure. Also the proposed ESD protection circuit has improved Holding Voltage Characteristic by using N-stack technique. These characteristics enable to have latch-up immunity in operating conditions. The simulations are accomplished by using the Synopsys TCAD. It has a trigger voltage of 8.9V and a holding voltage of 1.8V in a single structure. And when applying the stack technique, 2-stack has the holding voltage of 3.8V and 3-stack has the holding voltage of 5.1 V.

Keywords: electrostatic discharge (ESD), low voltage trigger silicon controlled rectifier (LVTSCR), MVTSCR, power clamp, silicon controlled rectifier (SCR), latch-up

Procedia PDF Downloads 291
3198 Thermal Interruption Performance of High Voltage Gas Circuit Breaker Operating with CO₂ Mixtures

Authors: Yacine Babou, Nitesh Ranjan, Branimir Radisavljevic , Martin Seeger, Daniel Over, Torsten Votteler, Bernardo Galletti, Paulo Cristini

Abstract:

In the frame of replacement of Sulfur hexafluoride (SF6) gas as insulating and switching medium, diverse alternative gases, offering acceptable Global Warming Potential and fulfilling requirements in terms of heat dissipation, insulation and arc quenching performances are currently investigated for High Voltage Circuit Breaker applications. Among the potential gases, CO₂ seems a promising candidate for replacing SF6, because on one hand it is environmentally friendly, harmless, non-toxic, non-corrosive, non-flammable and on the other hand previous studies have demonstrated its fair interruption capabilities. The present study aims at investigating the performance of CO₂ for the thermal interruption in high voltage self-blast circuit breakers. In particular, the correlation between thermal interruption performance and arc voltage is considered and the effect of the arc-network interaction on the performance is rigorously analyzed. For the considered designs, the thermal interruption was evaluated by varying the slope at current zero (i.e., di/dt) for which the breaker could interrupt. Besides, the characteristics of the post-arc current are examined in detail for various rated voltages and currents. The outcome of these experimental investigations will be reported and analyzed.

Keywords: current zero measurement, high voltage circuit breaker, thermal arc discharge, thermal interruption

Procedia PDF Downloads 42
3197 Stabilization Technique for Multi-Inputs Voltage Sense Amplifiers in Node Sharing Converters

Authors: Sanghoon Park, Ki-Jin Kim, Kwang-Ho Ahn

Abstract:

This paper discusses the undesirable charge transfer through the parasitic capacitances of the input transistors in a multi-inputs voltage sense amplifier. Its intrinsic rail-to-rail voltage transitions at the output nodes inevitably disturb the input sides through the capacitive coupling between the outputs and inputs. Then, it can possible degrade the stabilities of the reference voltage levels. Moreover, it becomes more serious in multi-channel systems by altering them for other channels, and so degrades the linearity of the overall systems. In order to alleviate the internal node voltage transition, the internal node stabilization techniques are proposed. It achieves 45% and 40% improvements for node stabilization and input referred disturbance, respectively.

Keywords: voltage sense amplifier, multi-inputs, voltage transition, node stabilization, biasing circuits

Procedia PDF Downloads 449
3196 Dielectric Recovery Characteristics of High Voltage Gas Circuit Breakers Operating with CO₂ Mixture

Authors: Peng Lu, Branimir Radisavljevic, Martin Seeger, Daniel Over, Torsten Votteler, Bernardo Galletti

Abstract:

CO₂-based gas mixtures exhibit huge potential as the interruption medium for replacing SF₆ in high voltage switchgears. In this paper, the recovery characteristics of dielectric strength of CO₂-O₂ mixture in the post arc phase after the current zero are presented. As representative examples, the dielectric recovery curves under conditions of different gas filling pressures and short-circuit current amplitudes are presented. A series of dielectric recovery measurements suggests that the dielectric recovery rate is proportional to the mass flux of the blowing gas, and the dielectric strength recovers faster in the case of lower short circuit currents.

Keywords: CO₂ mixture, high voltage circuit breakers, dielectric recovery rate, short-circuit current, mass flux

Procedia PDF Downloads 40
3195 Ultra-High Voltage Energization of Electrostatic Precipitators for Coal Fired Boilers

Authors: Mads Kirk Larsen

Abstract:

Strict air pollution control is today high on the agenda world-wide. By reducing the particular emission, not only the mg/Nm3 will be reduced – also parts of mercury and other hazardous matters attached to the particles will be reduced. Furthermore, it is possible to catch the fine particles (PM2.5). For particulate control, the precipitators are still the preferred choice and much efforts have been done to improve the efficiencies. Many ESP’s have seen electrical upgrading by changing the traditional 1 phase power system into either 3 phase or SMPS (High Frequency) units. However, there exist a 4th type of power supply – the pulse type. This is unfortunately widely unknown, but may be of great benefit to power plants. The FLSmidth type is called COROMAX® and it is a high voltage pulse generator for precipitators using a semiconductor switch operating at medium potential. The generated high voltage pulses have rated amplitude of 80 kV and duration of 75 μs and are superimposed on a variable base voltage of 60 kV rated voltage. Hereby, achieving a peak voltage of 140 kV. COROMAX® has the ability to increase the voltage beyond the natural spark limit inside the precipitator. Voltage levels may often be twice as high after installation of COROMAX®. Hereby also the migration velocity increases and thereby the efficiency. As the collection efficiency is proportional to the voltage peak and mean values, this also increases the collection efficiency of the fine particles where test has shown 80% removal of particles less than 0.07 micron. Another great advantage is the indifference to back-corona. Simultaneously with emission reduction, the power consumption will also be reduced. Another great advantage of the COROMAX® system is that the emission can be improved without the need to change the internal parts or enlarge the ESP. Recently, more than 150 units have been installed in China, where emissions have been reduced to ultra-low levels.

Keywords: eleectrostatic precipitator, high resistivity dust, micropulse energization, particulate removal

Procedia PDF Downloads 225
3194 Analysis of Stacked SCR-Based ESD Protection Circuit with Low Trigger Voltage and Latch-Up Immunity

Authors: Jun-Geol Park, Kyoung-Il Do, Min-Ju Kwon, Kyung-Hyun Park, Yong-Seo Koo

Abstract:

In this paper, we proposed the SCR (Silicon Controlled Rectifier)-based ESD (Electrostatic Discharge) protection circuit for latch-up immunity. The proposed circuit has a lower trigger voltage and a higher holding voltage characteristic by using the zener diode structure. These characteristics prevent latch-up problem in normal operating conditions. The proposed circuit was analyzed to figure out the electrical characteristics by the variations of design parameters D1, D2 and stack technology to obtain the n-fold electrical characteristics. The simulations are accomplished by using the Synopsys TCAD simulator. When using the stack technology, 2-stack has the holding voltage of 6.9V and 3-stack has the holding voltage of 10.9V.

Keywords: ESD, SCR, trigger voltage, holding voltage

Procedia PDF Downloads 363
3193 An Active Rectifier with Time-Domain Delay Compensation to Enhance the Power Conversion Efficiency

Authors: Shao-Ku Kao

Abstract:

This paper presents an active rectifier with time-domain delay compensation to enhance the efficiency. A delay calibration circuit is designed to convert delay time to voltage and adaptive control on/off delay in variable input voltage. This circuit is designed in 0.18 mm CMOS process. The input voltage range is from 2 V to 3.6 V with the output voltage from 1.8 V to 3.4 V. The efficiency can maintain more than 85% when the load from 50 Ω ~ 1500 Ω for 3.6 V input voltage. The maximum efficiency is 92.4 % at output power to be 38.6 mW for 3.6 V input voltage.

Keywords: wireless power transfer, active diode, delay compensation, time to voltage converter, PCE

Procedia PDF Downloads 146
3192 Coordinated Voltage Control in a Radial Distribution System

Authors: Shivarudraswamy, Anubhav Shrivastava, Lakshya Bhat

Abstract:

Distributed generation has indeed become a major area of interest in recent years. Distributed Generation can address large number of loads in a power line and hence has better efficiency over the conventional methods. However there are certain drawbacks associated with it, increase in voltage being the major one. This paper addresses the voltage control at the buses for an IEEE 30 bus system by regulating reactive power. For carrying out the analysis, the suitable location for placing distributed generators (DG) is identified through load flow analysis and seeing where the voltage profile is dipping. MATLAB programming is used to regulate the voltage at all buses within +/-5% of the base value even after the introduction of DG’s. Three methods for regulation of voltage are discussed. A sensitivity based analysis is later carried out to determine the priority among the various methods listed in the paper.

Keywords: distributed generators, distributed system, reactive power, voltage control

Procedia PDF Downloads 363
3191 Superordinated Control for Increasing Feed-in Capacity and Improving Power Quality in Low Voltage Distribution Grids

Authors: Markus Meyer, Bastian Maucher, Rolf Witzmann

Abstract:

The ever increasing amount of distributed generation in low voltage distribution grids (mainly PV and micro-CHP) can lead to reverse load flows from low to medium/high voltage levels at times of high feed-in. Reverse load flow leads to rising voltages that may even exceed the limits specified in the grid codes. Furthermore, the share of electrical loads connected to low voltage distribution grids via switched power supplies continuously increases. In combination with inverter-based feed-in, this results in high harmonic levels reducing overall power quality. Especially high levels of third-order harmonic currents can lead to neutral conductor overload, which is even more critical if lines with reduced neutral conductor section areas are used. This paper illustrates a possible concept for smart grids in order to increase the feed-in capacity, improve power quality and to ensure safe operation of low voltage distribution grids at all times. The key feature of the concept is a hierarchically structured control strategy that is run on a superordinated controller, which is connected to several distributed grid analyzers and inverters via broad band powerline (BPL). The strategy is devised to ensure both quick response time as well as the technically and economically reasonable use of the available inverters in the grid (PV-inverters, batteries, stepless line voltage regulators). These inverters are provided with standard features for voltage control, e.g. voltage dependent reactive power control. In addition they can receive reactive power set points transmitted by the superordinated controller. To further improve power quality, the inverters are capable of active harmonic filtering, as well as voltage balancing, whereas the latter is primarily done by the stepless line voltage regulators. By additionally connecting the superordinated controller to the control center of the grid operator, supervisory control and data acquisition capabilities for the low voltage distribution grid are enabled, which allows easy monitoring and manual input. Such a low voltage distribution grid can also be used as a virtual power plant.

Keywords: distributed generation, distribution grid, power quality, smart grid, virtual power plant, voltage control

Procedia PDF Downloads 175
3190 Electrochemical Studies of Si, Si-Ge- and Ge-Air Batteries

Authors: R. C. Sharma, Rishabh Bansal, Prajwal Menon, Manoj K. Sharma

Abstract:

Silicon-air battery is highly promising for electric vehicles due to its high theoretical energy density (8470 Whkg⁻¹) and its discharge products are non-toxic. For the first time, pure silicon and germanium powders are used as anode material. Nickel wire meshes embedded with charcoal and manganese dioxide powder as cathode and concentrated potassium hydroxide is used as electrolyte. Voltage-time curves have been presented in this study for pure silicon and germanium powder and 5% and 10% germanium with silicon powder. Silicon powder cell assembly gives a stable voltage of 0.88 V for ~20 minutes while Si-Ge provides cell voltage of 0.80-0.76 V for ~10-12 minutes, and pure germanium cell provides cell voltage 0.80-0.76 V for ~30 minutes. The cell voltage is higher for concentrated (10%) sodium hydroxide solution (1.08 V) and it is stable for ~40 minutes. A sharp decrease in cell voltage beyond 40 min may be due to rapid corrosion.

Keywords: Silicon-air battery, Germanium-air battery, voltage-time curve, open circuit voltage, Anodic corrosion

Procedia PDF Downloads 77
3189 High-Quality Flavor of Black Belly Pork under Lightning Corona Discharge Using Tesla Coil for High Voltage Education

Authors: Kyung-Hoon Jang, Jae-Hyo Park, Kwang-Yeop Jang, Dongjin Kim

Abstract:

The Tesla coil is an electrical resonant transformer circuit designed by inventor Nikola Tesla in 1891. It is used to produce high voltage, low current and high frequency alternating current electricity. Tesla experimented with a number of different configurations consisting of two or sometimes three coupled resonant electric circuits. This paper focuses on development and high voltage education to apply a Tesla coil to cuisine for high quality flavor and taste conditioning as well as high voltage education under 50 kV corona discharge. The result revealed that the velocity of roasted black belly pork by Tesla coil is faster than that of conventional methods such as hot grill and steel plate etc. depending on applied voltage level and applied voltage time. Besides, carbohydrate and crude protein increased, whereas natrium and saccharides significantly decreased after lightning surge by Tesla coil. This idea will be useful in high voltage education and high voltage application.

Keywords: corona discharge, Tesla coil, high voltage application, high voltage education

Procedia PDF Downloads 202
3188 Detection of Voltage Sag and Voltage Swell in Power Quality Using Wavelet Transforms

Authors: Nor Asrina Binti Ramlee

Abstract:

Voltage sag, voltage swell, high-frequency noise and voltage transients are kinds of disturbances in power quality. They are also known as power quality events. Equipment used in the industry nowadays has become more sensitive to these events with the increasing complexity of equipment. This leads to the importance of distributing clean power quality to the consumer. To provide better service, the best analysis on power quality is very vital. Thus, this paper presents the events detection focusing on voltage sag and swell. The method is developed by applying time domain signal analysis using wavelet transform approach in MATLAB. Four types of mother wavelet namely Haar, Dmey, Daubechies, and Symlet are used to detect the events. This project analyzed real interrupted signal obtained from 22 kV transmission line in Skudai, Johor Bahru, Malaysia. The signals will be decomposed through the wavelet mothers. The best mother is the one that is capable to detect the time location of the event accurately.

Keywords: power quality, voltage sag, voltage swell, wavelet transform

Procedia PDF Downloads 234