Search results for: multidrug resistance of pathogens
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3694

Search results for: multidrug resistance of pathogens

3334 Effect of Various Tillage Systems on Soil Compaction

Authors: Sushil Kumar, Mukesh Jain, Vijaya Rani, Vinod Kumar

Abstract:

The prime importance of tillage is that it prepares the land where the seed easily germinate and later the plant can well establish. Using different types of equipments driven manually or by powered, machines make the soil suitable to place the seeds into the desirable depth. Moreover, tillage loosens the compacted layers. Heavy equipment and tillage implements can cause damage to the soil structure. Effect of various tillage methods on soil compaction was studied in Rabi season of 2013-14 at village Ladwa, Hisar, Haryana (India). The experiments studied the effect of six tillage treatments i.e. no tillage or zero tillage (T1), tillage with rotavator (T2), disc harrow (T3), rotavator + sub soiler (T4), disc harrow + sub soiler (T5) and power harrow (T6) on soil compaction. Soil compaction was measured before tillage and after sowing at 0, 30, 60 and 90 days after sowing. No change in soil resistance was recorded before and after no tillage treatment. Maximum soil resistance was found in zero tillage followed by disc harrow up to 150 mm soil depth. Minimum soil resistance was found in rotavator immediately after the tillage treatment. However, the soil resistance approached the same level as it had been before the tillage after the soil strata where the implement cannot reach.

Keywords: tillage, no tillage, rotavator, subsoiler, compaction

Procedia PDF Downloads 319
3333 Exploratory Tests of Crude Bacteriocins from Autochthonous Lactic Acid Bacteria against Food-Borne Pathogens and Spoilage Bacteria

Authors: M. Naimi, M. B. Khaled

Abstract:

The aim of the present work was to test in vitro inhibition of food pathogens and spoilage bacteria by crude bacteriocins from autochthonous lactic acid bacteria. Thirty autochthonous lactic acid bacteria isolated previously, belonging to the genera: Lactobacillus, Carnobacterium, Lactococcus, Vagococcus, Streptococcus, and Pediococcus, have been screened by an agar spot test and a well diffusion assay against Gram-positive and Gram-negative harmful bacteria: Bacillus cereus, Bacillus subtilis ATCC 6633, Escherichia coli ATCC 8739, Salmonella typhimurium ATCC 14028, Staphylococcus aureus ATCC 6538, and Pseudomonas aeruginosa under conditions means to reduce lactic acid and hydrogen peroxide effect to select bacteria with high bacteriocinogenic potential. Furthermore, crude bacteriocins semiquantification and heat sensitivity to different temperatures (80, 95, 110°C, and 121°C) were performed. Another exploratory test concerning the response of St. aureus ATCC 6538 to the presence of crude bacteriocins was realized. It has been observed by the agar spot test that fifteen candidates were active toward Gram-positive targets strains. The secondary screening demonstrated an antagonistic activity oriented only against St. aureus ATCC 6538, leading to the selection of five isolates: Lm14, Lm21, Lm23, Lm24, and Lm25 with a larger inhibition zone compared to the others. The ANOVA statistical analysis reveals a small variation of repeatability: Lm21: 0.56%, Lm23: 0%, Lm25: 1.67%, Lm14: 1.88%, Lm24: 2.14%. Conversely, slight variation was reported in terms of inhibition diameters: 9.58± 0.40, 9.83± 0.46, and 10.16± 0.24 8.5 ± 0.40 10 mm for, Lm21, Lm23, Lm25, Lm14and Lm24, indicating that the observed potential showed a heterogeneous distribution (BMS = 0.383, WMS = 0.117). The repeatability coefficient calculated displayed 7.35%. As for the bacteriocins semiquantification, the five samples exhibited production amounts about 4.16 for Lm21, Lm23, Lm25 and 2.08 AU/ml for Lm14, Lm24. Concerning the sensitivity the crude bacteriocins were fully insensitive to heat inactivation, until 121°C, they preserved the same inhibition diameter. As to, kinetic of growth , the µmax showed reductions in pathogens load for Lm21, Lm23, Lm25, Lm14, Lm24 of about 42.92%, 84.12%, 88.55%, 54.95%, 29.97% in the second trails. Inversely, this pathogen growth after five hours displayed differences of 79.45%, 12.64%, 11.82%, 87.88%, 85.66% in the second trails, compared to the control. This study showed potential inhibition to the growth of this food pathogen, suggesting the possibility to improve the hygienic food quality.

Keywords: exploratory test, lactic acid bacteria, crude bacteriocins, spoilage, pathogens

Procedia PDF Downloads 213
3332 Efficacy Enhancement of Hydrophobic Antibiotics Employing Rhamnolipid as Biosurfactant

Authors: Abdurrahim A. Elouzi, Abdurrauf M. Gusbi, Ali M. Elgerbi

Abstract:

Antibiotic resistance has become a global public-health problem, thus it is imperative that new antibiotics continue to be developed. Major problems are being experienced in human medicine from antibiotic resistant bacteria. Moreover, no new chemical class of antibiotics has been introduced into medicine in the past two decades. The aim of the current study presents experimental results that evaluate the capability of bio surfactant rhamnolipid on enhancing the efficacy of hydrophobic antibiotics. Serial dilutions of azithromycin and clarithromycin were prepared. A bacterial suspension (approximately 5 X 105 CFU) from an overnight culture in MSM was inoculated into 20 ml sterile test tube each containing a serial 10-fold dilution of the test antibiotic(s) in broth with or without 200 mgL-1 rhamnolipid. The tubes were incubated for 24 h with vigorous shaking at 37°C. Antimicrobial activity in multiple antibiotic-resistant gram-negative bacteria pathogens and gram-positive bacteria were assessed using optical density technique. The results clearly demonstrated that the presence of rhamnolipid significantly improved the efficiency of both antibiotics. We hypothesized that the addition of rhamnolipid at low concentration, causes release of LPS which results in an increase in cell surface hydrophobicity. This allows increased association of cells with hydrophobic antibiotics resulting in increased cytotoxicity rates.

Keywords: hydrophobic antibiotics, biosurfactant, rhamnolipid, azithromycin, clarithromycin

Procedia PDF Downloads 517
3331 Influence of Titanium Addition on Wear Properties of AM60 Magnesium Alloy

Authors: H. Zengin, M. E. Turan, Y. Turen, H. Ahlatci, Y. Sun

Abstract:

This study aimed for improving wear resistance of AM60 magnesium alloy by Ti addition (0, 0.2, 0.5, 1wt%Ti). An electric resistance furnace was used to produce alloys. Pure Mg together with Al, Al-Ti and Al-Mn were melted at 750 0C in a stainless steel crucible under controlled Ar gas atmosphere and then poured into a metal mould preheated at 250 0C. Microstructure characterizations were performed by light optical (LOM) and scanning electron microscope (SEM) after the wear test. Wear rates and friction coefficients were measured with a pin-on-disk type UTS-10 Tribometer test device under a load of 20N. The results showed that Ti addition altered the morphology and the amount of b-Mg17Al12 phase in the microstructure of AM60 alloy. b-Mg17Al12 phases on the grain boundaries were refined with increasing amount of Ti. An improvement in wear resistance of AM60 alloy was observed due to the alteration in the microstructure by Ti addition.

Keywords: magnesium alloy, titanium, SEM, wear

Procedia PDF Downloads 334
3330 Homology Modelling of Beta Defensin 3 of Bos taurus and Its Docking Studies with Molecules Responsible for Formation of Biofilm

Authors: Ravinder Singh, Ankita Gurao, Saroj Bandhan, Sudhir Kumar Kashyap

Abstract:

The Bos taurus Beta defensin 3 is a defensin peptide secreted by neutrophils and epithelial that exhibits anti-microbial activity. It is one of the crucial components forming an innate defense against intra mammary infections in livestock. The beta defensin 3 by virtue of its anti-microbial activity inhibits major mastitis pathogens including Staphylococcus aureus and Pseudomonas aeruginosa etc, which are also responsible for biofilm formation leading to antibiotic resistance phenomenon. Therefore, the defensin may prove as a non-conventional option to treat mastitis. In this study, computational analysis has been performed including sequence comparison among species and homology modeling of Bos taurus beta defensin 3 protein. The assessments of protein structure were done using the protein structure and model assessment tools integrated in Swiss Model server, which employs various local and global quality evaluation parameters. Further, molecular docking was also carried out between the defensin peptide and the components of biofilm to gain insight into various interactions and structural differences crucial for functionality of this protein.

Keywords: beta defensin 3, bos taurus, docking, homology modeling

Procedia PDF Downloads 291
3329 The Effect of Durability and Pathogen Strains on the Wheat Induced Resistance against Zymoseptoria tritici as a Response to Paenibacillus sp. Strain B2

Authors: E. Samain, T. Aussenac, D. van Tuinen, S. Selim

Abstract:

Plant growth promoting rhizobacteria are known as potential biofertilizers and plant resistance inducers. The present work aims to study the durability of the resistance induced as a response to wheat seeds inoculation with PB2 and its influence by Z. tritici strains. The internal and external roots colonization have been determined in vitro, seven days post inoculation, by measuring the colony forming unit (CFU). In planta experimentations were done under controlled conditions included four wheat cultivars with different levels of resistance against Septoria Leaf Blotch (SLB) and four Z. tritici strains with high aggressiveness and resistance levels to fungicides. Plantlets were inoculated with PB2 at sowing and infected with Z. tritici at 3 leaves or tillering growth stages. The infection level with SLB was evaluated at 17 days post inoculation using real-time quantitative polymerase chain reaction (PCR). Results showed that PB2 has a high potential of wheat root external colonization (> 10⁶ CFU/g of root). However, the internal colonization seems to be cultivar dependent. Indeed, PB2 has not been observed as endophytic for one cultivar but has a high level of internal colonization with more than 104 CFU/g of root concerning the three others. Two wheat cultivars (susceptible and moderated resistant) were used to investigate PB2-induced resistance (PB2-IR). After the first infection with Z. tritici, results showed that PB2-IR has conferred a high protection efficiency (40-90%) against SLB in the two tested cultivars. Whereas the PB2-IR was effective against all tested strains with the moderate resistant cultivar, it was higher with the susceptible cultivar (> 64%) but against three of the four tested strains. Concerning the durability of the PB2-IR, after the second infection timing, it has been observed a significant decrease (10-59%) depending strains in the moderate resistant cultivar. Contrarily, the susceptible cultivar showed a stable and high protection level (76-84%) but against three of the four tested strains and interestingly, the strain that overcame PB2-IR was not the same as that of the first infection timing. To conclude, PB2 induces a high and durable resistance against Z. tritici. The PB2-IR is pathogen strain, plant growth stage and genotype dependent. These results may explain the loss of the induced resistance effectiveness under field conditions.

Keywords: induced resistance, Paenibacillus sp. strain B2, wheat genotypes, Zymoseptoria tritici

Procedia PDF Downloads 150
3328 Prevalence of Urinary Tract Infections and Risk Factors among Pregnant Women Attending Ante Natal Clinics in Government Primary Health Care Centres in Akure

Authors: Adepeju Simon-Oke, Olatunji Odeyemi, Mobolanle Oniya

Abstract:

Urinary tract infection has become the most common bacterial infections in humans, both at the community and hospital settings; it has been reported in all age groups and in both sexes. This study was carried out in order to determine and evaluate the prevalence, current drug susceptibility pattern of the isolated organisms and identify the associated risk factors of UTIs among the pregnant women in Akure, Ondo State, Nigeria. A cross-sectional study was conducted on the urine of pregnant women, and socio-demographic information of the women was collected. A total of 300 clean midstream urine samples were collected, and a general urine microscopic examination and culture were carried out, the Microbact identification system was used to identify gram-negative bacteria. Out of the 300 urine samples cultured, 183(61.0%) yielded significant growth of urinary pathogens while 117(39.0%) yielded either insignificant growth or no growth of any urinary pathogen. Prevalence of UTI was significantly associated with the type of toilet used, symptoms of UTI, and previous history of urinary tract infection (p<0.05). Escherichia coli 58(31.7%) was the dominant pathogen isolated, and the least isolated uropathogens were Citrobacter freudii and Providencia retgerri 2(1.1%) respectively. Gram-negative bacteria showed 77.6%, 67.9%, and 61.2% susceptibility to ciprofloxacin, augmentin, and chloramphenicol, respectively. Resistance against septrin, chloramphenicol, sparfloxacin, amoxicillin, augmentin, gentamycin, pefloxacin, trivid, and streptomycin was observed in the range of 23.1 to 70.1%. Gram-positive uropathogens isolated showed high resistance to amoxicillin (68.4%) and high susceptibility to the remaining nine antibiotics in the range 65.8% to 89.5%. This study justifies that pregnant women are at high risk of UTI. Therefore screening of pregnant women during antenatal clinics should be considered very important to avoid complications. Health education with regular antenatal and personal hygiene is recommended as precautionary measures to UTI.

Keywords: pregnant women, prevalence, risk factor, UTIs

Procedia PDF Downloads 147
3327 An Immune-Inspired Web Defense Architecture

Authors: Islam Khalil, Amr El-Kadi

Abstract:

With the increased use of web technologies, microservices, and Application Programming Interface (API) for integration between systems, and with the development of containerization of services on the operating system level as a method of isolating system execution and for easing the deployment and scaling of systems, there is a growing need as well as opportunities for providing platforms that improve the security of such services. In our work, we propose an architecture for a containerization platform that utilizes various concepts derived from the human immune system. The goal of the proposed containerization platform is to introduce the concept of slowing down or throttling suspected malicious digital pathogens (intrusions) to reduce their damage footprint while providing more opportunities for forensic inspection of suspected pathogens in addition to the ability to snapshot, rollback, and recover from possible damage. The proposed platform also leverages existing intrusion detection algorithms by integrating and orchestrating their cooperative operation for more effective intrusion detection. We show how this model reduces the damage footprint of intrusions and gives a greater time window for forensic investigation. Moreover, during our experiments, our proposed platform was able to uncover unintentional system design flaws that resulted in internal DDoS-like attacks by submodules of the system itself rather than external intrusions.

Keywords: containers, human immunity, intrusion detection, security, web services

Procedia PDF Downloads 97
3326 Antimicrobial Activity of Seed Oil of Garlic and Moringa oleifera against Some Food-Borne Microorganisms

Authors: Mansur Abdulrasheed, Ibrahim I. Hussein, Ahmed M. Mubarak, Ahmed F. Umar

Abstract:

This study was aimed at evaluating the phytochemical constituents and the antimicrobial activity of the seed oil of Moringa oleifera and garlic against some selected food-borne microorganisms (Staphylococcus aureus, Escherichia coli, Salmonella spp and Pseudomonas aeruginosa) using disc diffusion method. The results of the phytochemical screening revealed differences in the presence of the phytochemicals among the extracts. Saponins were detected in both Moringa oleifera and garlic seed oil, while alkaloid and tannins were observed in seed oil of garlic. Furthermore, the antibacterial assay results show that the seed oil of Moringa oleifera was inactive against all the tested organisms, even at 100 % concentration. In contrast, garlic oil was found to be active against all the tested organisms. The highest inhibition was observed in E. coli (12 mm) at 100 % concentration, while at 20 % concentration, Salmonella Sp and P. aeruginosa showed the least inhibiton (6 mm). The antimicrobial activity of the seed oil of garlic may be attributed to its phytochemicals components which were not detected in the seed oil of Moringa oleifera. The results of this study have shown the potentials of the seed oil of garlic as an antimicrobial agent more especially in foods, by inhibiting the growth of the test organisms, which range from food-borne pathogens to food spoilage organisms.

Keywords: antimicrobial, garlic, Moringa oleifera, food borne pathogens

Procedia PDF Downloads 507
3325 Metagenomic Analysis and Pharmacokinetics of Phage Therapy in the Treatment of Bovine Subclinical Mastitis

Authors: Vaibhav D. Bhatt, Anju P. Kunjadia, D. S. Nauriyal, Bhumika J. Joshi, Chaitanya G. Joshi

Abstract:

Metagenomic analysis of milk samples collected from local cattle breed, kankrej (Bos indicus), Gir (Bos indicus) and Crossbred (Bos indicus X Bos taurus) cattle harbouring subclinical mastitis was carried out by next-generation sequencing (NGS) 454 GS-FLX technology. Around 56 different species including members of Enterobacteriales, Pseudomonadales, Bacillales and Lactobacillales with varying abundance were detected in infected milk. The interesting presence of bacteriophages against Staphylococcus aureus, Escherichia coli, Enterobacter and Yersinia species were observed, especially Enterobacteria and E. coli phages (0∙32%) in Kankrej, Enterobacteria and Staphylococcus phages (1∙05%) in Gir and Staphylococcus phages (2∙32%) in crossbred cattle. NGS findings suggest that phages may be involved in imparting natural resistance of the cattle against pathogens. Further infected milk samples were subjected for bacterial isolation. Fourteen different isolates were identified, and DNA was extracted. Genes (Tet-K, Msr-A, and Mec-A) providing antibiotic resistance to the bacteria were screened by Polymerase Chain Reaction and results were validated with traditional antibiotic assay. Total 3 bacteriophages were isolated from nearby environment of the cattle farm. The efficacy of phages was checked against multi-drug resistant bacteria, identified by PCR. In-vivo study was carried out for phage therapy in mammary glands of female rats “Wister albino”. Mammary glands were infused with MDR isolates for 3 consecutive days. Recovery was observed in infected rats after intramammary infusion of sterile phage suspension. From day 4th onwards, level of C-reactive protein was significant increases up to day 12th . However, significant reduction was observed between days 12th to 18th post treatment. Bacteriophages have significant potential as antibacterial agents and their ability to replicate exponentially within their hosts and their specificity, make them ideal candidates for more sustainable mastitis control.

Keywords: bacteriophages, c-reactive protein, mastitis, metagenomic analysis

Procedia PDF Downloads 319
3324 Change Management as a Critical Success Factor In E-Government initiatives

Authors: Mohammed Alassim

Abstract:

In 2014, a UN survey stated that: "The greatest challenge to the adoption of whole-of government, which fundamentally rests on increased collaboration, is resistance to change among government actors". Change management has experienced both theoretically and practically many transformation over the years. When organizations have to implement radical changes, they have to encounter a plethora of issues which leads to ineffective or inefficient implementation of change in most cases. 70% of change projects fail because of human issues. It has been cited that” most studies still show a 60-70% failure rate for organizational change projects — a statistic that has stayed constant from the 1970’s to the present.”. E-government involves not just technical change but cultural, policy, social and organizational evolution. Managing change and overcoming resistance to change is seen as crucial in the success of E-government projects. Resistance can be from different levels in the organization (top management, middle management or employees at operational levels). There can be many reasons for resistance including fear of change and insecurity, lack of knowledge and absence of commitment from management to implement the change. The purpose of this study is to conduct in-depth research to understand the process of change and to identify the critical factors that have led to resistance from employees at different levels (top management, Middle management and operational employees) during e-government initiatives in the public sector in Saudi Arabia. The study is based on qualitative and empirical research methods conducted in the public sector in the Kingdom of Saudi Arabia. This research will use triangulation in data method (interview, group discussion and document review). This research will contribute significantly to knowledge in this field and will identify the measures that can be taken to reduce resistance to change, Upon analysis recommendations or model will be offered which can enable decision makers in public sector in Saudi Arabia how to plan, implement and evaluate change in e-government initiatives via change management strategy.

Keywords: change management, e-government, managing change, resistance to change

Procedia PDF Downloads 318
3323 Comparison of Entropy Coefficient and Internal Resistance of Two (Used and Fresh) Cylindrical Commercial Lithium-Ion Battery (NCR18650) with Different Capacities

Authors: Sara Kamalisiahroudi, Zhang Jianbo, Bin Wu, Jun Huang, Laisuo Su

Abstract:

The temperature rising within a battery cell depends on the level of heat generation, the thermal properties and the heat transfer around the cell. The rising of temperature is a serious problem of Lithium-Ion batteries and the internal resistance of battery is the main reason for this heating up, so the heat generation rate of the batteries is an important investigating factor in battery pack design. The delivered power of a battery is directly related to its capacity, decreases in the battery capacity means the growth of the Solid Electrolyte Interface (SEI) layer which is because of the deposits of lithium from the electrolyte to form SEI layer that increases the internal resistance of the battery. In this study two identical cylindrical Lithium-Ion (NCR18650)batteries from the same company with noticeable different in capacity (a fresh and a used battery) were compared for more focusing on their heat generation parameters (entropy coefficient and internal resistance) according to Brandi model, by utilizing potentiometric method for entropy coefficient and EIS method for internal resistance measurement. The results clarify the effect of capacity difference on cell electrical (R) and thermal (dU/dT) parameters. It can be very noticeable in battery pack design for its Safety.

Keywords: heat generation, Solid Electrolyte Interface (SEI), potentiometric method, entropy coefficient

Procedia PDF Downloads 474
3322 Comparison of Antimicrobial Activity of Seed Oil of Garlic and Moringa oleifera against Some Food-Borne Microorganisms

Authors: Mansur Abdulrasheed, Ibrahim I. Hussein, Ahmed M. Mubarak, Ahmed F. Umar

Abstract:

This study was aimed at evaluating the phytochemical constituents and the antimicrobial activity of the seed oil of Moringa oleifera and garlic against some selected food-borne microorganisms (Staphylococcus aureus, Escherichia coli, Salmonella spp and Pseudomonas aeruginosa) using disc diffusion method. The results of the phytochemical screening revealed differences in the presence of the phytochemicals among the extracts. Saponins were detected in both Moringa oleifera and garlic seed oil, while alkaloid and tannins were observed in seed oil of garlic. Furthermore, the antibacterial assay results show that the seed oil of Moringa oleifera was inactive against all the tested organisms, even at 100 % concentration. In contrast, garlic oil was found to be active against all the tested organisms. The highest inhibition was observed in E. coli (12 mm)at 100 % concentration, while at 20 % concentration, Salmonella Sp and P. aeruginosa showed the least inhibit on (6 mm). The antimicrobial activity of the seed oil of garlic may be attributed to its phytochemicals components which were not detected in the seed oil of Moringa oleifera. The results of this study have shown the potentials of the seed oil of garlic as an antimicrobial agent more especially in foods, by inhibiting the growth of the test organisms, which range from food-borne pathogens to food spoilage organisms.

Keywords: antimicrobial, garlic, Moringa oleifera, food borne pathogens

Procedia PDF Downloads 415
3321 Biocontrol Potential of Trichoderma sp. against Macrophomina phaseolina

Authors: Jayarama Reddy, Anand S., H., Sundaram, Jeldi Hemachandran

Abstract:

Forty two strains of Trichoderma sp. were isolated from cultivated lands around Bangalore and analyzed for their antagonistic potential against Macrophomina phaseolina. The potential of biocontrol agents ultimately lies in their capacity to control pathogens in vivo. Bioefficacy studies were hence conducted using chickpea (Cicer arientum c.v. Annigeri) as an experimental plant by the roll paper towel method. Overall the isolates T6, T35, T30, and T25 showed better antagonistic potential in addition to enhancing plant growth. The production of chitinases to break down the mycelial cell walls of fungal plant pathogens has been implicated as a major cause of biocontrol activity. In order to study the mechanism of biocontrol against Macrophomina phaseolina, ten better performing strains were plated on media, amended with colloidal chitin and Sclerotium rolfsii cell wall extract. All the isolates showed chitinolytic activity on day three as well as day five. Production of endochitinase and exochitinase were assayed in liquid media using colloidal chitin amended broth. Strains T35 and T6 displayed maximum endochitinase and exochitinase activity. Although all strains exhibited cellulase activity, the quantum of enzyme produced was higher in T35 and T6. The results also indicate a positive correlation between enzyme production and bioefficacy.

Keywords: biocontrol, bioefficacy, cellulase, chitinase

Procedia PDF Downloads 379
3320 Development of a Large-Scale Cyclic Shear Testing Machine Under Constant Normal Stiffness

Authors: S. M. Mahdi Niktabara, K. Seshagiri Raob, Amit Kumar Shrivastavac, Jiří Ščučkaa

Abstract:

The presence of the discontinuity in the form of joints is one of the most significant factors causing instability in the rock mass. On the other hand, dynamic loads, including earthquake and blasting induce cyclic shear loads along the joints in rock masses; therefore, failure of rock mass exacerbates along the joints due to changing shear resistance. Joints are under constant normal load (CNL) and constant normal stiffness (CNS) conditions. Normal stiffness increases on the joints with increasing depth, and it can affect shear resistance. For correct assessment of joint shear resistance under varying normal stiffness and number of cycles, advanced laboratory shear machine is essential for the shear test. Conventional direct shear equipment has limitations such as boundary conditions, working under monotonic movements only, or cyclic shear loads with constant frequency and amplitude of shear loads. Hence, a large-scale servo-controlled direct shear testing machine was designed and fabricated to perform shear test under the both CNL and CNS conditions with varying normal stiffness at different frequencies and amplitudes of shear loads. In this study, laboratory cyclic shear tests were conducted on non-planar joints under varying normal stiffness. In addition, the effects of different frequencies and amplitudes of shear loads were investigated. The test results indicate that shear resistance increases with increasing normal stiffness at the first cycle, but the influence of normal stiffness significantly decreases with an increase in the number of shear cycles. The frequency of shear load influences on shear resistance, i.e. shear resistance increases with increasing frequency. However, at low shear amplitude the number of cycles does not affect shear resistance on the joints, but it decreases with higher amplitude.

Keywords: cyclic shear load, frequency of load, amplitude of displacement, normal stiffness

Procedia PDF Downloads 153
3319 PhenoScreen: Development of a Systems Biology Tool for Decision Making in Recurrent Urinary Tract Infections

Authors: Jonathan Josephs-Spaulding, Hannah Rettig, Simon Graspeunter, Jan Rupp, Christoph Kaleta

Abstract:

Background: Recurrent urinary tract infections (rUTIs) are a global cause of emergency room visits and represent a significant burden for public health systems. Therefore, metatranscriptomic approaches to investigate metabolic exchange and crosstalk between uropathogenic Escherichia coli (UPEC), which is responsible for 90% of UTIs, and collaborating pathogens of the urogenital microbiome is necessary to better understand the pathogenetic processes underlying rUTIs. Objectives: This study aims to determine the level in which uropathogens optimize the host urinary metabolic environment to succeed during invasion. By developing patient-specific metabolic models of infection, these observations can be taken advantage of for the precision treatment of human disease. Methods: To date, we have set up an rUTI patient cohort and observed various urine-associated pathogens. From this cohort, we developed patient-specific metabolic models to predict bladder microbiome metabolism during rUTIs. This was done by creating an in silico metabolomic urine environment, which is representative of human urine. Metabolic models of uptake and cross-feeding of rUTI pathogens were created from genomes in relation to the artificial urine environment. Finally, microbial interactions were constrained by metatranscriptomics to indicate patient-specific metabolic requirements of pathogenic communities. Results: Metabolite uptake and cross-feeding are essential for strain growth; therefore, we plan to design patient-specific treatments by adjusting urinary metabolites through nutritional regimens to counteract uropathogens by depleting essential growth metabolites. These methods will provide mechanistic insights into the metabolic components of rUTI pathogenesis to provide an evidence-based tool for infection treatment.

Keywords: recurrent urinary tract infections, human microbiome, uropathogenic Escherichia coli, UPEC, microbial ecology

Procedia PDF Downloads 136
3318 Real-time PCR to Determine Resistance Genes in ESBLEscherichia Coli Strains Stored in the Epidemic Diseases Laboratory of the National Institute of Hygiene (INH)

Authors: A. Qasmaoui, F. Ohmani, Z. Zaine, I. El Akrad, J. Hamamouchi, K. Halout, B. Belkadi, R. Charof

Abstract:

The evolution of antibiotic resistance is a crucial aspect of the problem related to the intensive use of these substances in medicine for humans and animals. The production of ESBL extended spectrum β-lactamase enzymes is the main mechanism of resistance to β-lactam antibiotics in Escherichia coli. The objective of our work is to determine the resistance genes in E. coli strains.ESBL coli stored at the epidemic diseases laboratory of the National Institute of Hygiene. The strains were identified according to the classic bacteriological criteria. An antibiogram was performed on the strains isolated by the Mueller Hinton agar disc diffusion method. The production of ESBL in the strains was detected by the synergy assay technique and confirmed for the presence of the blaCTX-M1, blaCTX-M2, blaTEM, blaSHV, blaOXA-48 genes by gene amplification . Of the 27 observed strains of E.coli, 17 isolated strains present the phenotype of extended-spectrum Beta-lactamase with a percentage of 63%.. All 18 cefotaxime-resistant strains were analyzed for an ESBL phenotype. All strains were positive in the double-disc synergy assay. The fight against the emergence and spread of these multi-resistant antibiotic-resistant strains requires the reasonable use of antibiotics.

Keywords: E coli, BLSE, CTX, TEM, SHV, OXA, résistance aux antibiotique

Procedia PDF Downloads 24
3317 Antimicrobial Resistance Patterns of Campylobacter from Pig and Cattle Carcasses in Poland

Authors: Renata Szewczyk, Beata Lachtara, Kinga Wieczorek, Jacek Osek

Abstract:

Campylobacter is recognized as the main cause of bacterial gastrointestinal infections in Europe. A main source of the pathogen is poultry and poultry meat; however, other animals like pigs and cattle can also be reservoirs of the bacteria. Human Campylobacter infections are often self-limiting but in some cases, macrolide and fluoroquinolones have to be used. The aim of this study was to determine antimicrobial resistance patterns (AMR) of Campylobacter isolated from pig and cattle carcasses. Between July 2009 and December 2015, 735 swabs from pig (n = 457) and cattle (n = 278) carcasses were collected at Polish slaughterhouses. All samples were tested for the presence of Campylobacter by ISO 10272-1 and confirmed to species level using PCR. The antimicrobial susceptibility of Campylobacter isolates was determined by a microbroth dilution method with six antimicrobials: gentamicin (GEN), streptomycin (STR), erythromycin (ERY), nalidixic acid (NAL), ciprofloxacin (CIP) and tetracycline (TET). It was found that 167 of 735 samples (22.7%) were contaminated with Campylobacter. The vast majority of them were of pig origin (134; 80.2%), whereas for cattle carcasses Campylobacter was less prevalent (33; 19.8%). Among positive samples C. coli was predominant species (123; 73.7%) and it was isolated mainly from pig carcasses. The remaining isolates were identified as C. jejuni (44; 26.3%). Antimicrobial susceptibility indicated that 22 out of 167 Campylobacter (13.2%) were sensitive to all antimicrobials used. Fourteen of them were C. jejuni (63.6%; pig, n = 6; cattle, n = 8) and 8 was C. coli (36.4%; pig, n = 4; cattle, n = 4). Most of the Campylobacter isolates (145; 86.8%) were resistant to one or more antimicrobials (C. coli, n = 115; C. jejuni, n = 30). Comparing the AMR for Campylobacter species it was found that the most common pattern for C. jejuni was CIP-NAL-TET (9; 30.0%), whereas CIP-NAL-STR-TET was predominant among C. coli (47; 40.9%). Multiresistance, defined as resistance to three or more classes of antimicrobials, was found in 57 C. coli strains, mostly obtained from pig (52 isolates). On the other hand, only one C. jejuni strain, isolated from cattle, showed multiresistance with pattern CIP-NAL-STR-TET. Moreover, CIP-NAL-STR-TET was characteristic for most of multiresistant C. coli isolates (47; 82.5%). For the remaining C. coli the resistance patterns were CIP-ERY-NAL-TET (7 strains; 12.3%) and for one strain of each patterns: ERY-STR-TET, CIP-STR-TET, CIP-NAL-GEN-STR-TET. According to the present findings resistance to erythromycin was observed only in 11 C. coli (pig, n = 10; cattle, n = 1). In conclusion, the results of this study showed that pig carcasses may be a serious public health concern because of contamination with C. coli that might features multiresistance to antimicrobials.

Keywords: antimicrobial resistance, Campylobacter, carcasses, multi resistance

Procedia PDF Downloads 334
3316 Experimental Investigation of Hull Form for Electric Driven Ferry

Authors: Vasilij Djackov, Tomas Zapnickas, Evgenii Iamshchikov, Lukas Norkevicius, Rima Mickeviciene, Larisa Vasiljeva

Abstract:

In this paper, the resistance and pitching values of the test of an electric ferry are presented. The research was carried out in the open flow channel of Klaipėda University with a multi-axis dynamometer. The received model resistance values were recalculated to the real vessel and the preliminary chosen propulsion unit power was compared. After analyzing the results of the pitching of the model, it was concluded that the shape of the hull needs to be further improved, taking into account the possible uneven weight distribution at the ends of the ferry. Further investigation of the hull of the electric ferry is recommended, including experiments with various water depths and activation of propulsion units.

Keywords: electrical ferry, model tests, open flow channel, pitching, resistance

Procedia PDF Downloads 96
3315 Evaluation of Antimicrobial Efficacy of Nanofluid Containing Carbon Nanotubes Functionalized with Antibiotic on Urinary Tract Infection

Authors: Erfan Rahimi, Hadi Bahari Far, Mojgan Shikhpour

Abstract:

Background: Urinary tract infection is one of the most common nosocomial infections, especially among women. E. coli is one of the main causes of urinary tract infections and one of the most common antibiotics to fight this bacterium is ampicillin. As conventional antibiotics led to bacterial antibiotic resistance, modification of the pure drugs can address this issue. The aim of this study was to prepare nanofluids containing carbon nanotubes conjugated with ampicillin to improve drug performance and reduce antibiotic resistance. Methods: Multi-walled carbon nanotubes (MWCNTs) were activated with thionyl chloride by reflux system and nanofluids containing antibiotics were prepared by ultrasonic method. The properties of the prepared nano-drug were investigated by general element analysis, infrared spectroscopy, Raman spectroscopy, scanning electron microscopy and transmission electron microscopy. After the treatment of the desired strain with nanofluid, microbial studies were performed to evaluate the antibacterial effects and molecular studies were carried out to measure the expression of the resistance gene AcrAB. Result: We have shown that the antimicrobial effect of ampicillin-functionalized MWCNTs at low concentrations performed better than that of the conventional drug in both resistant and ATCC strains. Also, a decrease in antibiotic resistance of bacteria treated with ampicillin-functionalized MWCNTs compared to the pure drug was observed. Also, ampicillin-functionalized MWCNTs downregulated the expression of AcrAB in treated bacteria. Conclusion: Because carbon nanotubes are capable of destroying the bacterial wall, which provides antibiotic resistance features in bacteria, their usage in the form of nanofluids can make lower dosages (about three times less) than that of the pure drug more effective. Additionally, the expression of the bacterial resistance gene AcrAB decreased, thereby reducing antibiotic resistance and improving drug performance against bacteria.

Keywords: urinary tract infection, antibiotic resistance, carbon nanotube, nanofluid

Procedia PDF Downloads 147
3314 Prevalence and Genetic Determinant of Drug Resistant Tuberculosis among Patients Completing Intensive Phase of Treatment in a Tertiary Referral Center in Nigeria

Authors: Aminu Bashir Mohammad, Agwu Ezera, Abdulrazaq G. Habib, Garba Iliyasu

Abstract:

Background: Drug resistance tuberculosis (DR-TB) continues to be a challenge in developing countries with poor resources. Routine screening for primary DR-TB before commencing treatment is not done in public hospitals in Nigeria, even with the large body of evidence that shows a high prevalence of primary DR-TB. Data on drug resistance and its genetic determinant among follow up TB patients is lacking in Nigeria. Hence the aim of this study was to determine the prevalence and genetic determinant of drug resistance among follow up TB patients in a tertiary hospital in Nigeria. Methods: This was a cross-sectional laboratory-based study conducted on 384 sputum samples collected from consented follow-up tuberculosis patients. Standard microbiology methods (Zeil-Nielsen staining and microscopy) and PCR (Line Probe Assay)] were used to analyze the samples collected. Person’s Chi-square was used to analyze the data generated. Results: Out of three hundred and eighty-four (384) sputum samples analyzed for mycobacterium tuberculosis (MTB) and DR-TB twenty-five 25 (6.5%) were found to be AFB positive. These samples were subjected to PCR (Line Probe Assay) out of which 18(72%) tested positive for DR-TB. Mutations conferring resistance to rifampicin (rpo B) and isoniazid (katG, and or inhA) were detected in 12/18(66.7%) and 6/18(33.3%), respectively. Transmission dynamic of DR-TB was not significantly (p>0.05) dependent on demographic characteristics. Conclusion: There is a need to strengthened the laboratory capacity for diagnosis of TB and drug resistance testing and make these services available, affordable, and accessible to the patients who need them.

Keywords: drug resistance tuberculosis, genetic determinant, intensive phase, Nigeria

Procedia PDF Downloads 288
3313 Marker Assisted Selection of Rice Genotypes for Xa5 and Xa13 Bacterial Leaf Blight Resistance Genes

Authors: P. Sindhumole, K. Soumya, R. Renjimol

Abstract:

Rice (Oryza sativa L.) is the major staple food crop over the world. It is prone to a number of biotic and abiotic stresses, out of which Bacterial Leaf Blight (BLB), caused by Xanthomonas oryzae pv. oryzae, is the most rampant. Management of this disease through chemicals or any other means is very difficult. The best way to control BLB is by the development of Host Plant Resistance. BLB resistance is not an activity of a single gene but it involves a cluster of more than thirty genes reported. Among these, Xa5 and Xa13 genes are two important ones, which can be diagnosed through marker assisted selection using closely linked molecular markers. During 2014, the first phase of field screening using forty traditional rice genotypes was carried out and twenty resistant symptomless genotypes were identified. Molecular characterisation of these genotypes using RM 122 SSR marker revealed the presence of Xa5 gene in thirteen genotypes. Forty-two traditional rice genotypes were used for the second phase of field screening for BLB resistance. Among these, sixteen resistant genotypes were identified. These genotypes, along with two susceptible check genotypes, were subjected to marker assisted selection for Xa13 gene, using the linked STS marker RG-136. During this process, presence of Xa13 gene could be detected in ten resistant genotypes. In future, these selected genotypes can be directly utilised as donors in Marker assisted breeding programmes for BLB resistance in rice.

Keywords: oryza sativa, SSR, STS, marker, disease, breeding

Procedia PDF Downloads 395
3312 Resistance Spot Welding of Boron Steel 22MnB5 with Complex Welding Programs

Authors: Szymon Kowieski, Zygmunt Mikno

Abstract:

The study involved the optimization of process parameters during resistance spot welding of Al-coated martensitic boron steel 22MnB5, applied in hot stamping, performed using a programme with a multiple current impulse mode and a programme with variable pressure force. The aim of this research work was to determine the possibilities of a growth in welded joint strength and to identify the expansion of a welding lobe. The process parameters were adjusted on the basis of welding process simulation and confronted with experimental data. 22MnB5 steel is known for its tendency to obtain high hardness values in weld nuggets, often leading to interfacial failures (observed in the study-related tests). In addition, during resistance spot welding, many production-related factors can affect process stability, e.g. welding lobe narrowing, and lead to the deterioration of quality. Resistance spot welding performed using the above-named welding programme featuring 3 levels of force made it possible to achieve 82% of welding lobe extension. Joints made using the multiple current impulse program, where the total welding time was below 1.4s, revealed a change in a peeling mode (to full plug) and an increase in weld tensile shear strength of 10%.

Keywords: 22MnB5, hot stamping, interfacial fracture, resistance spot welding, simulation, single lap joint, welding lobe

Procedia PDF Downloads 390
3311 Novel Development on Orthopedic Prosthesis by Nanocrystalline Hydroxyapatite Nanocomposite Coated on 316 L Stainless Steel

Authors: Neriman Ozada, Ebrahim Karamian, Amirsalar Khandan, Sina Ghafoorpoor Yazdi

Abstract:

Natural hydroxyapatite, NHA, coatings on the surface of 316 L stainless steel implants has been widely employed in order to achieve better osteoconductivity. For coating, the plasma spraying method is generally used because they ensure adhesion between the coating and the 316 L stainless steel (SS) surface. Some compounds such as zircon (ZrSiO4) is employed as an additive in an attempt to improve HA’s mechanical properties such as wear resistance and hardness. In this study wear resistance has been carried out in different chemical compositions of coating. Therefore, nanocomposites based on NHA containing of 0 wt.%, 5 wt.%, 10 wt.%, and 15 wt.% of zircon were used as a coating on the SS implants. The samples consisted of NHA, derived from calf heated at 850 °C for 3 h. The composite mixture was coated on SS by plasma spray method. The results were estimated using the scanning electron microscopy (SEM), X-ray diffraction (XRD) techniques were utilized to characterize the shape and size of NHA powder. Disc wear test and Vickers hardness were utilized to characterize the coated nanocomposite samples. The prepared NHA powder had nano-scale morphological structure with the mean crystallite size of 30-50 nm in diameter. The wear resistance are almost 320, 380, 415, and 395 m/g and hardness are approximately 376, 391, 420, 410 VHN in ceramic composite materials containing ZrSiO4. The results have been shown that the best wear resistance and hardness occurred in the sample coated by NHA/ZrSiO4 containing of 10 wt.% of zircon.

Keywords: zircon, 316 L stainless steel, wear resistance, orthopedic applications, plasma spray

Procedia PDF Downloads 434
3310 Analysis and Modeling of Graphene-Based Percolative Strain Sensor

Authors: Heming Yao

Abstract:

Graphene-based percolative strain gauges could find applications in many places such as touch panels, artificial skins or human motion detection because of its advantages over conventional strain gauges such as flexibility and transparency. These strain gauges rely on a novel sensing mechanism that depends on strain-induced morphology changes. Once a compression or tension strain is applied to Graphene-based percolative strain gauges, the overlap area between neighboring flakes becomes smaller or larger, which is reflected by the considerable change of resistance. Tiny strain change on graphene-based percolative strain sensor can act as an important leverage to tremendously increase resistance of strain sensor, which equipped graphene-based percolative strain gauges with higher gauge factor. Despite ongoing research in the underlying sensing mechanism and the limits of sensitivity, neither suitable understanding has been obtained of what intrinsic factors play the key role in adjust gauge factor, nor explanation on how the strain gauge sensitivity can be enhanced, which is undoubtedly considerably meaningful and provides guideline to design novel and easy-produced strain sensor with high gauge factor. We here simulated the strain process by modeling graphene flakes and its percolative networks. We constructed the 3D resistance network by simulating overlapping process of graphene flakes and interconnecting tremendous number of resistance elements which were obtained by fractionizing each piece of graphene. With strain increasing, the overlapping graphenes was dislocated on new stretched simulation graphene flake simulation film and a new simulation resistance network was formed with smaller flake number density. By solving the resistance network, we can get the resistance of simulation film under different strain. Furthermore, by simulation on possible variable parameters, such as out-of-plane resistance, in-plane resistance, flake size, we obtained the changing tendency of gauge factor with all these variable parameters. Compared with the experimental data, we verified the feasibility of our model and analysis. The increase of out-of-plane resistance of graphene flake and the initial resistance of sensor, based on flake network, both improved gauge factor of sensor, while the smaller graphene flake size gave greater gauge factor. This work can not only serve as a guideline to improve the sensitivity and applicability of graphene-based strain sensors in the future, but also provides method to find the limitation of gauge factor for strain sensor based on graphene flake. Besides, our method can be easily transferred to predict gauge factor of strain sensor based on other nano-structured transparent optical conductors, such as nanowire and carbon nanotube, or of their hybrid with graphene flakes.

Keywords: graphene, gauge factor, percolative transport, strain sensor

Procedia PDF Downloads 418
3309 Regulation on Macrophage and Insulin Resistance after Aerobic Exercise in High-Fat Diet Mice

Authors: Qiaofeng Guo

Abstract:

Aims: Obesity is often accompanied by insulin resistance (IR) and whole-body inflammation. Aerobic exercise is an effective treatment to improve insulin resistance and inflammation. However, the anti-inflammatory mechanisms of exercise on epididymal and subcutaneous adipose remain to be elucidated. Here, we compared the macrophage polarization between epididymal and subcutaneous adipose after aerobic exercise. Methods: Male C57BL/6 mice were fed a normal diet group or a high-fat diet group for 12 weeks and performed aerobic training on a treadmill at 55%~65% VO₂ max for eight weeks. Food intake, body weight, and fasting blood glucose levels were monitored weekly. The intraperitoneal glucose tolerance test was to evaluate the insulin resistance model. Fat mass, blood lipid profile, serum IL-1β, TNF-α levels, and CD31/CD206 rates were analysed after the intervention. Results: FBG (P<0.01), AUCIPGTT (P<0.01), and HOMA-IR (P<0.01) increased significantly for a high-fat diet and decreased significantly after the exercise. Eight weeks of aerobic exercise attenuated HFD-induced weight gain and glucose intolerance and improved insulin sensitivity. Serum IL-1β, TNF-α, CD11C/CD206 expression in subcutaneous adipose tissue were not changed before and after exercise, but not in epididymal adipose tissue (P<0.01). Conclusion: Insulin resistance is not accompanied by chronic inflammation and M1 polarization of subcutaneous adipose tissue macrophages in high-fat diet mice. Aerobic exercise effectively improved lipid metabolism and insulin sensitivity, which may be closely associated with reduced M1 polarization of epididymal adipose macrophages.

Keywords: aerobic exercise, insulin resistance, chronic inflammation, adipose, macrophage polarization

Procedia PDF Downloads 78
3308 Study of Temperature Difference and Current Distribution in Parallel-Connected Cells at Low Temperature

Authors: Sara Kamalisiahroudi, Jun Huang, Zhe Li, Jianbo Zhang

Abstract:

Two types of commercial cylindrical lithium ion batteries (Panasonic 3.4 Ah NCR-18650B and Samsung 2.9 Ah INR-18650), were investigated experimentally. The capacities of these samples were individually measured using constant current-constant voltage (CC-CV) method at different ambient temperatures (-10 ℃, 0 ℃, 25 ℃). Their internal resistance was determined by electrochemical impedance spectroscopy (EIS) and pulse discharge methods. The cells with different configurations of parallel connection NCR-NCR, INR-INR and NCR-INR were charged/discharged at the aforementioned ambient temperatures. The results showed that the difference of internal resistance between cells much more evident at low temperatures. Furthermore, the parallel connection of NCR-NCR exhibits the most uniform temperature distribution in cells at -10 ℃, this feature is quite favorable for the safety of the battery pack.

Keywords: batteries in parallel connection, internal resistance, low temperature, temperature difference, current distribution

Procedia PDF Downloads 480
3307 Wear Resistance of Graphene Oxide and Carbon Nanotubes Silanized Coatings

Authors: Henrique Gomes dos Santos, Manoel Henrique Alves, Jane Zoppas Ferreira, Annelise Kopp Alves

Abstract:

This work aimed to seek an environmentally sustainable surface coating alternative by researching the influence of the addition of graphene oxide (GO) and carbon nanotubes (CNT) on the silanization of coatings to increase the wear resistance in galvanized steel, using the pin-on-disk test. The results obtained were compared between different concentrations of additives and the number of coating layers, in addition to comparing with samples without coating and only with silane layers. Bis-1,2-(triethoxysilyl)ethane (BTSE) silane was used in silanizing the coatings with CNT or GO and applied to the samples through dip-coating to form one, four, or eight layers. The wear test results found that three samples stood out in relation to the objective, showing an increase in wear resistance compared to the galvanized sample only. The rolling effect and the lubricity character presented by carbon nanotubes were positive for the increase in wear resistance obtained. The reduction in wear compared to the galvanized-only sample reached 82%. Raman spectroscopy was also carried out to detect the presence of silane, GO, and CNT, in addition to roughness tests and SEM to assess the homogeneity of the coating. The carbonaceous additives, graphene oxide, and carbon nanotubes in certain amounts of layers and specific concentrations fulfilled their objective against the wear imposed on the substrate.

Keywords: silane, coating, graphene oxide, carbon nanotubes, wear resistance

Procedia PDF Downloads 20
3306 Comparison Between Vegans and Omnivores on the Recovery of Delayed Onset Muscle Soreness in Young Females

Authors: Njeim Pressila, Hajj-Boutros Guy, Antony D. Karelis

Abstract:

Background: Acute resistance exercise is associated with an elevated inflammation response, which could lead to delayed onset muscle soreness (DOMS). There is evidence that suggests that ingesting foods that have anti-inflammation properties may help reduce DOMS. A vegan diet has also been shown to be an anti-inflammatory diet which could, in turn, decrease DOMS. Objective and hypothesis: The purpose of the present study will be to compare markers of DOMS between vegans and omnivores after acute resistance exercise in young females. We hypothesize that vegans will have a better recovery of DOMS markers after a resistance exercise session compared to omnivores. Methods: Population: We will recruit30 vegans and 30 omnivores to participate in this study. Allvolunteers will follow either a vegan or an omnivore diet for at least 2 years. Anthropometric measurements, body composition, musclestrength (leg and chest press), markers of DOMS (swelling, pain, and stiffness), and dietary factors, as well as a wellness and anxiety questionnaire will be measured. All participants will also perform an acute resistance exercise session in order to induce DOMS. Pertinence: This project will give us a better understanding on the recovery process of vegans after a resistance training session and, as such, provide useful information to health professionals and athletes/coaches (kinesiologists and nutritionists)

Keywords: vgeans, omnivores, delayed onset muscle soreness, pain, stifness

Procedia PDF Downloads 127
3305 Nanoderma: Ecofriendly Nano Biofungicides for Controlling Plant Pathogenic Fungi

Authors: Kamel A. Abd-Elsalam, Alexei R. Khokhlov

Abstract:

Studies on bioefficacy (in vitro and in vivo) and mode of action of the nanocides against the most important plant diseases in Egypt and Russia might assist in the goal of sustainable agriculture. To our knowledge, few researchers have evaluated the combined antimicrobial effect of inorganic nanoparticles (NPs) with bioorganic pesticides for controlling plant pathogens in the greenhouse and open field, decontrol investigated synergistic effect. In the current project, we will develop eco-friendly alternative management strategies including the use of heavy nanometal-tolerant Trichoderma strains and the main effective material in conventional fungicides (curpic, sulfur, phosphorus and zinc) for controlling plant diseases. Studies on bioefficacy and the mechanism of the nanocides against the most important plant diseases in Egypt were evaluated. There is a growing need to establish mechanisms of action for nano bio and/or fungicides to assist the design of new compounds or combinations of compounds, in order to understand resistance mechanisms and to provide a focus for toxicological attention. Nanofungicides represent an emerging technological development that could offer a range of benefits including increased efficacy, durability, and a reduction in the amounts of active ingredients that need to be used.

Keywords: biohybrids, biocides, bioagent, plant pathogenic fungi

Procedia PDF Downloads 255