Search results for: mass production oleic acid
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 12810

Search results for: mass production oleic acid

12450 Vitamin B9 Separation by Synergic Pertraction

Authors: Blaga Alexandra Cristina, Kloetzer Lenuta, Bompa Amalia Stela, Galaction Anca Irina, Cascaval Dan

Abstract:

Vitamin B9 is an important member of vitamins B group, being a growth factor, important for making genetic material as DNA and RNA, red blood cells, for building muscle tissues, especially during periods of infancy, adolescence and pregnancy. Its production by biosynthesis is based on the high metabolic potential of mutant Bacillus subtilis, due to a superior biodisponibility compared to that obtained by chemical pathways. Pertraction, defined as the extraction and transport through liquid membranes consists in the transfer of a solute between two aqueous phases of different pH-values, phases that are separated by a solvent layer of various sizes. The pertraction efficiency and selectivity could be significantly enhanced by adding a carrier in the liquid membrane, such as organophosphoric compounds, long chain amines or crown-ethers etc., the separation process being called facilitated pertraction. The aim of the work is to determine the impact of the presence of two extractants/carriers in the bulk liquid membrane, i.e. di(2-ethylhexyl) phosphoric acid (D2EHPA) and lauryltrialkylmetilamine (Amberlite LA2) on the transport kinetics of vitamin B9. The experiments have been carried out using two pertraction equipments for a free liquid membrane or bulk liquid membrane. One pertraction cell consists on a U-shaped glass pipe (used for the dichloromethane membrane) and the second one is an H-shaped glass pipe (used for h-heptane), having 45 mm inner diameter of the total volume of 450 mL, the volume of each compartment being of 150 mL. The aqueous solutions are independently mixed by means of double blade stirrers with 6 mm diameter and 3 mm height, having the rotation speed of 500 rpm. In order to reach high diffusional rates through the solvent layer, the organic phase has been mixed with a similar stirrer, at a similar rotation speed (500 rpm). The area of mass transfer surface, both for extraction and for reextraction, was of 1.59x10-³ m2. The study on facilitated pertraction with the mixture of two carriers, namely D2EHPA and Amberlite LA-2, dissolved in two solvents with different polarities: n-heptane and dichloromethane, indicated the possibility to obtain the synergic effect. The synergism has been analyzed by considering the vitamin initial and final mass flows, as well as the permeability factors through liquid membrane. The synergic effect has been observed at low D2EHPA concentrations and high Amberlite LA-2 concentrations, being more important for the low-polar solvent (n-heptane). The results suggest that the mechanism of synergic pertraction consists on the reaction between the organophosphoric carrier and vitamin B9 at the interface between the feed and membrane phases, while the aminic carrier enhances the hydrophobicity of this compound by solvation. However, the formation of this complex reduced the reextraction rate and, consequently, affects the synergism related to the final mass flows and permeability factor. For describing the influences of carriers concentrations on the synergistic coefficients, some equations have been proposed by taking into account the vitamin mass flows or permeability factors, with an average deviations between 4.85% and 10.73%.

Keywords: pertraction, synergism, vitamin B9, Amberlite LA-2, di(2-ethylhexyl) phosphoric acid

Procedia PDF Downloads 273
12449 Genome Analysis of Lactobacillus Plantarum and Lactobacillus Brevis Isolated From Traditionally Fermented Ethiopian Kocho and Their Probiotic Properties

Authors: Guesh Mulaw, Haile Beruhulay, Anteneh Tesfaye, Tesfaye Sisay Diriba Muleta

Abstract:

Probiotics are live microorganisms that, when administered in adequate amounts, promote the health of a consumer. The present work aims to study the whole genome sequence of probiotic strains of lactic acid bacteria (LAB) isolated from traditional Ethiopian fermented kocho for bacteriocin production and to evaluate their probiotic properties. LAB were isolated from traditionally fermented kocho samples and characterized following standard methods. Accordingly, a total of 150 LAB were isolated, of which 7 (4.67%) isolates showed 50.52-74.05% and 33.33-62.40% survival rates at pH 2 for 3 and 6 h, respectively. The 7 acid-tolerant isolates were also tolerated 0.3% bile salt for 24 h with 88.96 to 98.10% survival. The acid and bile salt-tolerant LAB isolates also inhibited some reference foodborne pathogenic bacteria to varying degrees. All 7 acid- and bile salt-tolerant isolates were susceptible to ampicillin, tetracycline and erythromycin. However, the potent isolates showed remarkable resistance to kanamycin. Likewise, four of the 7 isolates were resistant to streptomycin, but three of the 7 isolates were sensitive to streptomycin. The identification of the seven selected probiotic LAB isolates and their genetic relatedness was performed based on whole-genome sequence comparisons. Consequently, these isolates belonged to Lactobacillus species, including 6 Lb. plantarum, 1 Lb. brevis. Among the 7 potential probiotic LAB strains, BAGEL predicted 2 bacteriocin for class II in the genome of 7 strains. The 7 Lactobacillus strains were found to be potentially useful for producing functional products and could be suitable probiotic candidates for food processing industries

Keywords: ferneted foods, kocho, probiotics, lactic acid bacteria

Procedia PDF Downloads 17
12448 Synergistic Effect of Cold Plasma on Antioxidant Properties and Fatty Acid Composition of Rice Bran

Authors: Rohit Thirumdas, Annapure U. S.

Abstract:

Low-pressure air plasma is used to investigate the antioxidant properties and fatty acid composition of rice bran at different power levels (40 W and 60 W). We observed partial hydrogenation of rice bran oil after the treatment. The fatty acid composition analysis by gas chromatography showed an increase of 28.2% in palmitic acid and a 29.4% decrease in linoleic acid. FTIR spectrum shows no new peak formation, which confirms negligible amounts of trans-fatty acids. There is a decrease in peroxide value and iodine value, which can be correlated to an increase in saturated fatty acids. The total polyphenolic content was observed to be increased by 20.1% after the treatment. There is an increase in reducing power and DPPH % inhibition of rice bran due to plasma treatment. This study shows cold plasma treatment can be considered an alternative technology for the hydrogenation of oils, replacing traditional toxic processes.

Keywords: cold plasma, rice bran, fatty acid composition, hydrogenation of oils, antioxidant properties

Procedia PDF Downloads 134
12447 A Mathematical Programming Model for Lot Sizing and Production Planning in Multi-Product Companies: A Case Study of Azar Battery Company

Authors: Farzad Jafarpour Taher, Maghsud Solimanpur

Abstract:

Production planning is one of the complex tasks in multi-product firms that produce a wide range of products. Since resources in mass production companies are limited and different products use common resources, there must be a careful plan so that firms can respond to customer needs efficiently. Azar-battery Company is a firm that provides twenty types of products for its customers. Therefore, careful planning must be performed in this company. In this research, the current conditions of Azar-battery Company were investigated to provide a mathematical programming model to determine the optimum production rate of the products in this company. The production system of this company is multi-stage, multi-product and multi-period. This system is studied in terms of a one-year planning horizon regarding the capacity of machines and warehouse space limitation. The problem has been modeled as a linear programming model with deterministic demand in which shortage is not allowed. The objective function of this model is to minimize costs (including raw materials, assembly stage, energy costs, packaging, and holding). Finally, this model has been solved by Lingo software using the branch and bound approach. Since the computation time was very long, the solver interrupted, and the obtained feasible solution was used for comparison. The proposed model's solution costs have been compared to the company’s real data. This non-optimal solution reduces the total production costs of the company by about %35.

Keywords: multi-period, multi-product production, multi-stage, production planning

Procedia PDF Downloads 90
12446 Optimization of Surface Coating on Magnetic Nanoparticles for Biomedical Applications

Authors: Xiao-Li Liu, Ling-Yun Zhao, Xing-Jie Liang, Hai-Ming Fan

Abstract:

Owing to their unique properties, magnetic nanoparticles have been used as diagnostic and therapeutic agents for biomedical applications. Highly monodispersed magnetic nanoparticles with controlled particle size and surface coating have been successfully synthesized as a model system to investigate the effect of surface coating on the T2 relaxivity and specific absorption rate (SAR) under an alternating magnetic field, respectively. Amongst, by using mPEG-g-PEI to solubilize oleic-acid capped 6 nm magnetic nanoparticles, the T2 relaxivity could be significantly increased by up to 4-fold as compared to PEG coated nanoparticles. Moreover, it largely enhances the cell uptake with a T2 relaxivity of 92.6 mM-1s-1 for in vitro cell MRI. As for hyperthermia agent, SAR value increase with the decreased thickness of PEG surface coating. By elaborate optimization of surface coating and particle size, a significant increase of SAR (up to 74%) could be achieved with a minimal variation on the saturation magnetization (<5%). The 19 nm magnetic nanoparticles with 2000 Da PEG exhibited the highest SAR of 930 W•g-1 among the samples, which can be maintained in various simulated physiological conditions. This systematic work provides a general strategy for the optimization of surface coating of magnetic core for high performance MRI contrast agent and hyperthermia agent.

Keywords: magnetic nanoparticles, magnetic hyperthermia, magnetic resonance imaging, surface modification

Procedia PDF Downloads 504
12445 Influence of Synthetic Antioxidant in the Iodine Value and Acid Number of Jatropha Curcas Biodiesel

Authors: Supriyono, Sumardiyono

Abstract:

Biodiesel is one of the alternative fuels that promising for substituting petrodiesel as energy source which is have advantage on sustainability and eco-friendly. Due to the raw material that tend to decompose during storage, biodiesel also have the same characteristic that tend to decompose and formed higher acid value which is the result of oxidation to double bond on a chain of ester. Decomposition of biodiesel due to oxidation reaction could prevent by introduce a small amount of antioxidant. The origin of raw materials and the process for producing biodiesel will determine the effectiveness of antioxidant. The quality degradation on biodiesel could evaluated by measuring iodine value and acid number of biodiesel. Biodiesel made from High Fatty Acid Jatropha curcas oil equality by using esterification and esterification process will stand on the quality by introduce 90 ppm pyrogallol powder on the biodiesel, which could extend the quality from 2 hours to more than 6 hours in rancimat test evaluation.

Keywords: biodiesel, antioxidant, iodine number, acid value

Procedia PDF Downloads 305
12444 Study on Hydrophilicity of Anodic Aluminum Oxide Templates with TiO2-NTs

Authors: Yu-Wei Chang, Hsuan-Yu Ku, Jo-Shan Chiu, Shao-Fu Chang, Chien-Chon Chen

Abstract:

This paper aims to discuss the hydrophilicity about the anodic aluminum oxide (AAO) template with titania nanotubes (NTs). The AAO templates with pore size diameters of 20-250 nm were generated by anodizing 6061 aluminum alloy substrates in acid solution of sulfuric acid (H2SO4), oxalic acid (COOH)2, and phosphoric acid (H3PO4), respectively. TiO2-NTs were grown on AAO templates by the sol-gel deposition process successfully. The water contact angle on AAO/TiO2-NTs surface was lower compared to the water contact angle on AAO surface. So, the characteristic of hydrophilicity was significantly associated with the AAO pore size and what kinds of materials were immersed variables.

Keywords: AAO, nanotube, sol-gel, anodization, hydrophilicity

Procedia PDF Downloads 348
12443 Green Technologies Developed by JSC “NIUIF”

Authors: Andrey Norov

Abstract:

In the recent years, Samoilov Research Institute for Mineral Fertilizers JSC “NIUIF”, the oldest (established in September 1919) industry-oriented institute in Russia, has developed a range of sustainable, environment-friendly, zero-waste technologies that ensure minimal consumption of materials and energy resources and fully consistent with the principles of Green Chemistry that include: - Ecofriendly energy and resource saving technology of sulfuric acid from sulfur according to DC-DA scheme (double conversion - double absorption); - Improved zero-waste technology of wet phosphoric acid (WPA) by dihydrate-hemihydrate process applicable to various types of phosphate raw materials; - Flexible, efficient, zero-waste, universal technology of NP / NPS / NPK / NPKS fertilizers with maximum heat recovery from chemical processes; - Novel, zero-waste, no-analogue technology of granular PK / PKS / NPKS fertilizers with controlled dissolution rate and nutrient supply into the soil, which allows to process a number of wastes and by-products; - Innovative resource-saving joint processing of wastes from the production of phosphogypsum and fluorosilicic acid (FSA) into ammonium sulfate with simultaneous neutralization of fluoride compounds with no lime used. - New fertilizer technology of increased environmental and agrochemical efficiency (currently under development). All listed green technologies are patented with Russian and Eurasian patents. The development of ecofriendly, safe, green technologies is ongoing in JSC “NIUIF”.

Keywords: NPKS fertilizers, FSA, sulfuric acid, WPA

Procedia PDF Downloads 92
12442 Nonconventional Method for Separation of Rosmarinic Acid: Synergic Extraction

Authors: Lenuta Kloetzer, Alexandra C. Blaga, Dan Cascaval, Alexandra Tucaliuc, Anca I. Galaction

Abstract:

Rosmarinic acid, an ester of caffeic acid and 3-(3,4-dihydroxyphenyl) lactic acid, is considered a valuable compound for the pharmaceutical and cosmetic industries due to its antimicrobial, antioxidant, antiviral, anti-allergic, and anti-inflammatory effects. It can be obtained by extraction from vegetable or animal materials, by chemical synthesis and biosynthesis. Indifferent of the method used for rosmarinic acid production, the separation and purification process implies high amount of raw materials and laborious stages leading to high cost for and limitations of the separation technology. This study focused on separation of rosmarinic acid by synergic reactive extraction with a mixture of two extractants, one acidic (acid di-(2ethylhexyl) phosphoric acid, D2EHPA) and one with basic character (Amberlite LA-2). The studies were performed in experimental equipment consisting of an extraction column where the phases’ mixing was made by mean of a perforated disk with 45 mm diameter and 20% free section, maintained at the initial contact interface between the aqueous and organic phases. The vibrations had a frequency of 50 s⁻¹ and 5 mm amplitude. The extraction was carried out in two solvents with different dielectric constants (n-heptane and dichloromethane) in which the extractants mixture of varying concentration was dissolved. The pH-value of initial aqueous solution was varied between 1 and 7. The efficiency of the studied extraction systems was quantified by distribution and synergic coefficients. For calculating these parameters, the rosmarinic acid concentration in the initial aqueous solution and in the raffinate have been measured by HPLC. The influences of extractants concentrations and solvent polarity on the efficiency of rosmarinic acid separation by synergic extraction with a mixture of Amberlite LA-2 and D2EHPA have been analyzed. In the reactive extraction system with a constant concentration of Amberlite LA-2 in the organic phase, the increase of D2EHPA concentration leads to decrease of the synergic coefficient. This is because the increase of D2EHPA concentration prevents the formation of amine adducts and, consequently, affects the hydrophobicity of the interfacial complex with rosmarinic acid. For these reasons, the diminution of synergic coefficient is more important for dichloromethane. By maintaining a constant value of D2EHPA concentration and increasing the concentration of Amberlite LA-2, the synergic coefficient could become higher than 1, its highest values being reached for n-heptane. Depending on the solvent polarity and D2EHPA amount in the solvent phase, the synergic effect is observed for Amberlite LA-2 concentrations over 20 g/l dissolved in n-heptane. Thus, by increasing the concentration of D2EHPA from 5 to 40 g/l, the minimum concentration value of Amberlite LA-2 corresponding to synergism increases from 20 to 40 g/l for the solvent with lower polarity, namely, n-heptane, while there is no synergic effect recorded for dichloromethane. By analysing the influences of the main factors (organic phase polarity, extractant concentration in the mixture) on the efficiency of synergic extraction of rosmarinic acid, the most important synergic effect was found to correspond to the extractants mixture containing 5 g/l D2EHPA and 40 g/l Amberlite LA-2 dissolved in n-heptane.

Keywords: Amberlite LA-2, di(2-ethylhexyl) phosphoric acid, rosmarinic acid, synergic effect

Procedia PDF Downloads 285
12441 Green-synthesized of Selenium Nanoparticles Using Garlic Extract and Their Application for Rapid Detection of Salicylic Acid in Milk

Authors: Kashif Jabbar

Abstract:

Milk adulteration is a global concern, and the current study was plan to synthesize Selenium nanoparticles by green method using plant extract of garlic, Allium Sativum, and to characterize Selenium nanoparticles through different analytical techniques and to apply Selenium nanoparticles as fast and easy technique for the detection of salicylic acid in milk. The highly selective, sensitive, and quick interference green synthesis-based sensing of possible milk adulterants i.e., salicylic acid, has been reported here. Salicylic acid interacts with nanoparticles through strong bonding interactions, hence resulting in an interruption within the formation of selenium nanoparticles which is confirmed by UV-VIS spectroscopy, scanning electron microscopy, and x-ray diffraction. This interaction in the synthesis of nanoparticles resulted in transmittance wavelength that decrease with the increasing amount of salicylic acid, showing strong binding of selenium nanoparticles with adulterant, thereby permitting in-situ fast detection of salicylic acid from milk having a limit of detection at 10-3 mol and linear coefficient correlation of 0.9907. Conclusively, it can be draw that colloidal selenium could be synthesize successfully by garlic extract in order to serve as a probe for fast and cheap testing of milk adulteration.

Keywords: adulteration, green synthesis, selenium nanoparticles, salicylic acid, aggregation

Procedia PDF Downloads 79
12440 Determination of Myocardial Function Using Heart Accumulated Radiopharmaceuticals

Authors: C. C .D. Kulathilake, M. Jayatilake, T. Takahashi

Abstract:

The myocardium is composed of specialized muscle which relies mainly on fatty acid and sugar metabolism and it is widely contribute to the heart functioning. The changes of the cardiac energy-producing system during heart failure have been proved using autoradiography techniques. This study focused on evaluating sugar and fatty acid metabolism in myocardium as cardiac energy getting system using heart-accumulated radiopharmaceuticals. Two sets of autoradiographs of heart cross sections of Lewis male rats were analyzed and the time- accumulation curve obtained with use of the MATLAB image processing software to evaluate fatty acid and sugar metabolic functions.

Keywords: autoradiographs, fatty acid, radiopharmaceuticals, sugar

Procedia PDF Downloads 446
12439 Development of Broad Spectrum Nitrilase Biocatalysts and Bioprocesses for Nitrile Biotransformation

Authors: Avinash Vellore Sunder, Shikha Shah, Pramod P. Wangikar

Abstract:

The enzymatic conversion of nitriles to carboxylic acids by nitrilases has gained significance in the green synthesis of several pharmaceutical precursors and fine chemicals. While nitrilases have been characterized from different sources, the industrial application requires the identification of nitrilases that possess higher substrate tolerance, wider specificity and better thermostability, along with the development of an efficient bioprocess for producing large amounts of nitrilase. To produce large amounts of nitrilase, we developed a fed-batch fermentation process on defined media for the high cell density cultivation of E. coli cells expressing the well-studied nitrilase from Alcaligenes fecalis. A DO-stat feeding approach was employed combined with an optimized post-induction strategy to achieve nitrilase titer of 2.5*105 U/l and 78 g/l dry cell weight. We also identified 16 novel nitrilase sequences from genome mining and analysis of substrate binding residues. The nitrilases were expressed in E. coli and their biocatalytic potential was evaluated on a panel of 22 industrially relevant nitrile substrates using high-throughput screening and HPLC analysis. Nine nitrilases were identified to exhibit high activity on structurally diverse nitriles including aliphatic and aromatic dinitriles, heterocyclic, -hydroxy and -keto nitriles. With fed-batch biotransformation, whole-cell Zobelia galactanivorans nitrilase achieved yields of 2.4 M nicotinic acid and 1.8 M isonicotinic acid from 3-cyanopyridine and 4-cyanopyridine respectively within 5 h, while Cupravidus necator nitrilase enantioselectively converted 740 mM mandelonitrile to (R)–mandelic acid. The nitrilase from Achromobacter insolitus could hydrolyze 542 mM iminodiacetonitrile in 1 h. The availability of highly active nitrilases along with bioprocesses for enzyme production expands the toolbox for industrial biocatalysis.

Keywords: biocatalysis, isonicotinic acid, iminodiacetic acid, mandelic acid, nitrilase

Procedia PDF Downloads 227
12438 Metabolic Manipulation as a Strategy for Optimization of Biomass Productivity and Oil Content in the Microalgae Desmodesmus Sp.

Authors: Ivan A. Sandoval Salazar, Silvia F. Valderrama

Abstract:

The microalgae oil emerges as a promising source of raw material for many industrial applications. Thus, this study had as a main focus on the cultivation of the microalgae species Desmodesmus sp. in laboratory scale with a view to maximizing biomass production and triglyceride content in the lipid fraction. Initially, culture conditions were selected to optimize biomass production, which was subsequently subjected to nutritional stress by varying nitrate and phosphate concentrations in order to increase the content and productivity of fatty acids. The culture medium BOLD 3N, nitrate and phosphate, light intensity 250,500 and 1000 μmol photons.m².s⁻¹, photoperiod of 12:12 were evaluated. Under the best conditions of the tests, a maximum cell division of 1.13 div.dia⁻¹ was obtained on the sixth day of culture, beginning of the exponential phase, and a maximum concentration of 8.42x107 cell.mL⁻¹ and dry biomass of 3.49 gL⁻¹ on the 20th day, in the stationary phase. The lipid content in the first stage of culture was approximately 8% after 12 days and at the end of the culture in the stationary phase ranged from 12% to 16% (20 days). In the microalgae grown at 250 μmol fotons.m2.s-1 the fatty acid profile was mostly polyunsaturated (52%). The total of unsaturated fatty acids, identified in this species of microalga, reached values between 70 and 75%, being qualified for use in the food and pharmaceutical industry. In addition, this study showed that the cultivation conditions influenced mainly the production of polyunsaturated fatty acids, with the predominance of γ-linolenic acid. However, in the cultures submitted to the highest the intensity of light (1000 μmol photons.m².s⁻¹) and low concentrations of nitrate and phosphate, saturated and monounsaturated fatty acids, which present greater oxidative stability, were identified mainly (60 to 70 %) being qualified for the production of biodiesel and for oleochemistry.

Keywords: microalgae, Desmodesmus sp, fatty acids, biodiesel

Procedia PDF Downloads 144
12437 Investigating the Potential Use of Unsaturated Fatty Acids as Antifungal Crop Protective Agents

Authors: Azadeh Yasari, Michael Ganzle, Stephen Strelkov, Nuanyi Liang, Jonathan Curtis, Nat N. V. Kav

Abstract:

Pathogenic fungi cause significant yield losses and quality reductions to major crops including wheat, canola, and barley. Toxic metabolites produced by phytopathogenic fungi also pose significant risks to animal and human health. Extensive application of synthetic fungicides is not a sustainable solution since it poses risks to human, animal and environmental health. Unsaturated fatty acids may provide an environmentally friendly alternative because of their direct antifungal activity against phytopathogens as well as through the stimulation of plant defense pathways. The present study assessed the in vitro and in vivo efficacy of two hydroxy fatty acids, coriolic acid and ricinoleic acid, against the phytopathogens Fusarium graminearum, Pyrenophora tritici-repentis, Pyrenophora teres f. teres, Sclerotinia sclerotiorum, and Leptosphaeria maculans. Antifungal activity of coriolic acid and ricinoleic acid was evaluated using broth micro-dilution method to determine the minimum inhibitory concentration (MIC). Results indicated that both ricinoleic acid and coriolic acid showed antifungal activity against phytopathogens, with the strongest inhibitory activity against L. maculans, but the MIC varied greatly between species. An antifungal effect was observed for coriolic acid in vivo against pathogenic fungi of wheat and barley. This effect was not correlated to the in vitro activity because ricinoleic acid with equivalent in vitro antifungal activity showed no protective effect in vivo. Moreover, neither coriolic acid nor ricinoleic acid controlled fungal pathogens of canola. In conclusion, coriolic acid inhibits some phytopathogens in vivo and may have the potential to be an effective crop protection agent.

Keywords: coriolic acid, minimum inhibitory concentration, pathogenic fungi, ricinoleic acid

Procedia PDF Downloads 171
12436 The Study of Heat and Mass Transfer for Ferrous Materials' Filtration Drying

Authors: Dmytro Symak

Abstract:

Drying is a complex technologic, thermal and energy process. Energy cost of drying processes in many cases is the most costly stage of production, and can be over 50% of total costs. As we know, in Ukraine over 85% of Portland cement is produced moist, and the finished product energy costs make up to almost 60%. During the wet cement production, energy costs make up over 5500 kJ / kg of clinker, while during the dry only 3100 kJ / kg, that is, switching to a dry Portland cement will allow result into double cutting energy costs. Therefore, to study raw materials drying process in the manufacture of Portland cement is very actual task. The fine ferrous materials drying (small pyrites, red mud, clay Kyoko) is recommended to do by filtration method, that is one of the most intense. The essence of filtration method drying lies in heat agent filtering through a stationary layer of wet material, which is located on the perforated partition, in the "layer-dispersed material - perforated partition." For the optimum drying purposes, it is necessary to establish the dependence of pressure loss in the layer of dispersed material, and the values of heat and mass transfer, depending on the speed of the gas flow filtering. In our research, the experimentally determined pressure loss in the layer of dispersed material was generalized based on dimensionless complexes in the form and coefficients of heat exchange. We also determined the relation between the coefficients of mass and heat transfer. As a result of theoretic and experimental investigations, it was possible to develop a methodology for calculating the optimal parameters for the thermal agent and the main parameters for the filtration drying installation. The comparison of calculated by known operating expenses methods for the process of small pyrites drying in a rotating drum and filtration method shows to save up to 618 kWh per 1,000 kg of dry material and 700 kWh during filtration drying clay.

Keywords: drying, cement, heat and mass transfer, filtration method

Procedia PDF Downloads 256
12435 Topological Analysis of Hydrogen Bonds in Pyruvic Acid-Water Mixtures

Authors: Ferid Hammami

Abstract:

The molecular geometries of the possible conformations of pyruvic acid-water complexes (PA-(H₂O)ₙ = 1- 4) have been fully optimized at DFT/B3LYP/6-311G ++ (d, p) levels of calculation. Among several optimized molecular clusters, the most stable molecular arrangements obtained when one, two, three, and four water molecules are hydrogen-bonded to a central pyruvic acid molecule are presented in this paper. Apposite topological and geometrical parameters are considered as primary indicators of H-bond strength. Atoms in molecules (AIM) analysis shows that pyruvic acid can form a ring structure with water, and the molecular structures are stabilized by both strong O-H...O and C-H...O hydrogen bonds. In large clusters, classical O-H...O hydrogen bonds still exist between water molecules, and a cage-like structure is built around some parts of the central molecule of pyruvic acid. The electrostatic potential energy map (MEP) and the HOMO-LUMO molecular orbital (highest occupied molecular orbital-lowest unoccupied molecular orbital) analysis has been performed for all considered complexes.

Keywords: pyruvic acid, PA-water complex, hydrogen bonding, DFT, AIM, MEP, HOMO-LUMO

Procedia PDF Downloads 211
12434 Biochemical Characterization and Structure Elucidation of a New Cytochrome P450 Decarboxylase

Authors: Leticia Leandro Rade, Amanda Silva de Sousa, Suman Das, Wesley Generoso, Mayara Chagas Ávila, Plinio Salmazo Vieira, Antonio Bonomi, Gabriela Persinoti, Mario Tyago Murakami, Thomas Michael Makris, Leticia Maria Zanphorlin

Abstract:

Alkenes have an economic appeal, especially in the biofuels field, since they are precursors for drop-in biofuels production, which have similar chemical and physical properties to the conventional fossil fuels, with no oxygen in their composition. After the discovery of the first P450 CYP152 OleTJE in 2011, reported with its unique property of decarboxylating fatty acids (FA), by using hydrogen peroxide as a cofactor and producing 1-alkenes as the main product, the scientific and technological interest in this family of enzymes vastly increased. In this context, the present work presents a new decarboxylase (OleTRN) with low similarity with OleTJE (32%), its biochemical characterization, and structure elucidation. As main results, OleTRN presented a high yield of expression and purity, optimum reaction conditions at 35 °C and pH from 6.5 to 8.0, and higher specificity for oleic acid. Besides that, structure-guided mutations were performed and according to the functional characterizations, it was observed that some mutations presented different specificity and chemoselectivity by varying the chain-length of FA substrates from 12 to 20 carbons. These results are extremely interesting from a biotechnological perspective as those characteristics could diversify the applications and contribute to designing better cytochrome P450 decarboxylases. Considering that peroxygenases have the potential activity of decarboxylating and hydroxylating fatty acids and that the elucidation of the intriguing mechanistic involved in the decarboxylation preferential from OleTJE is still a challenge, the elucidation of OleTRN structure and the functional characterizations of OleTRN and its mutants contribute to new information about CYP152. Besides that, the work also contributed to the discovery of a new decarboxylase with a different selectivity profile from OleTJE, which allows a wide range of applications.

Keywords: P450, decarboxylases, alkenes, biofuels

Procedia PDF Downloads 191
12433 4P-Model of Information Terrorism

Authors: Nataliya Venelinova

Abstract:

The paper proposes a new interdisciplinary model of reconsidering the role of mass communication effects by coverage of terrorism. The idea of 4P model is based on the synergy, created by the information strategy of threat, predominantly used by terrorist groups, the effects of mediating the symbolic action of the terrorist attacks or the taking of responsibility of any attacks, and the reshaped public perception for security after the attacks being mass communicated. The paper defines the mass communication cycle of terrorism, which leads not only to re-agenda setting of the societies, but also spirally amplifying the effect of propagating fears by over-informing on terrorism attacks. This finally results in the outlining of the so called 4P-model of information terrorism: mass propaganda, panic, paranoia and pandemic.

Keywords: information terrorism, mass communication cycle, public perception, security

Procedia PDF Downloads 167
12432 Structural Characterization and Application of Tio2 Nano-Partical

Authors: Maru Chetan, Desai Abhilash

Abstract:

The structural characteristics & application of TiO2 powder with different phases are study by various techniques in this paper. TTIP, EG and citric acid use as Ti source and catalyst respectively synthesis for sol gel synthesis of TiO2 powder. To replace sol gel method we develop the new method of making nano particle of TiO2 powder. It is two route method one is physical and second one is chemical route. Specific aim to this process is to minimize the production cost and the large scale production of nano particle The synthesis product work characterize by EDAX, SEM, XRD tests.

Keywords: mortal and pestle, nano particle , TiO2, TTIP

Procedia PDF Downloads 315
12431 Hybridization as a Process of Refusal of Imposed Popular Architecture

Authors: Jorge Eliseo Muñiz-Gutierrez, Daniel Olvera-García, Cristina Sotelo-Salas

Abstract:

The objective of this research is to allow the understanding of the hybridization process shown in culture through the architecture of mass production for the purpose of consumption, taking as a case study the mass-built housing of the city of Mexicali, Mexico. The methodology is born from the hermeneutical study of the meta-modified architectural object, which guided the research with a qualitative focus to be carried out in two stages, the first is based on the literature review regarding cultural hybridization, and the second stage is carried out in through an ethnographic study of the cultural exploration of the contextual landscape produced by the houses located in popular neighborhoods of the city of Mexicali, Mexico. The research shows that there is an unconscious hybridization process, the birth of a mixture of impositions guided by the popular and the personal aspirations of the inhabitant. The study presents the possibilities of a home and the relationship with its inhabitant and, in turn, its effects on the context and its contribution to culture through hybridization.

Keywords: hybridization, architectural landscape, architecture, mass housing

Procedia PDF Downloads 165
12430 Development of Fluorescence Resonance Energy Transfer-Based Nanosensor for Measurement of Sialic Acid in vivo

Authors: Ruphi Naz, Altaf Ahmad, Mohammad Anis

Abstract:

Sialic acid (5-Acetylneuraminic acid, Neu5Ac) is a common sugar found as a terminal residue on glycoconjugates in many animals. Humans brain and the central nervous system contain the highest concentration of sialic acid (as N-acetylneuraminic acid) where these acids play an important role in neural transmission and ganglioside structure in synaptogenesis. Due to its important biological function, sialic acid is attracting increasing attention. To understand metabolic networks, fluxes and regulation, it is essential to be able to determine the cellular and subcellular levels of metabolites. Genetically-encoded fluorescence resonance energy transfer (FRET) sensors represent a promising technology for measuring metabolite levels and corresponding rate changes in live cells. Taking this, we developed a genetically encoded FRET (fluorescence resonance energy transfer) based nanosensor to analyse the sialic acid level in living cells. Sialic acid periplasmic binding protein (sia P) from Haemophilus influenzae was taken and ligated between the FRET pair, the cyan fluorescent protein (eCFP) and Venus. The chimeric sensor protein was expressed in E. coli BL21 (DE3) and purified by affinity chromatography. Conformational changes in the binding protein clearly confirmed the changes in FRET efficiency. So any change in the concentration of sialic acid is associated with the change in FRET ratio. This sensor is very specific to sialic acid and found stable with the different range of pH. This nanosensor successfully reported the intracellular level of sialic acid in bacterial cell. The data suggest that the nanosensors may be a versatile tool for studying the in vivo dynamics of sialic acid level non-invasively in living cells

Keywords: nanosensor, FRET, Haemophilus influenzae, metabolic networks

Procedia PDF Downloads 124
12429 Advantages of a New Manufacturing Facility for the Production of Nanofiber

Authors: R. Knizek, D. Karhankova

Abstract:

The production of nanofibers and the machinery for their production is a current issue. The pioneer, in the industrial production of nanofibers, is the machinery with the sales descriptions NanospiderTM from the company Elmarco, which came into being in 2008. Most of the production facilities, like NanospiderTM, use electrospinning. There are also other methods of industrial production of nanofibers, such as the centrifugal spinning process, which is used by FibeRio Technology Corporation. However, each method and machine has its advantages, but also disadvantages and that is the reason why a new machine called as Nanomachine, which eliminates the disadvantages of other production facilities producing nanofibers, has been developed.

Keywords: nanomachine, nanospider, spinning slat, electrospinning

Procedia PDF Downloads 301
12428 Variation of Phenolic Compounds in Latvian Apple Juices and Their Suitability for Cider Production

Authors: Rita Riekstina-Dolge, Zanda Kruma, Fredijs Dimins, Inta Krasnova, Daina Karklina

Abstract:

Apple juice is the main raw material for cider production. In this study apple juices obtained from 14 dessert and crab apples grown in Latvia were investigated. For all samples total phenolic compounds, tannins and individual phenolic compounds content were determined. The total phenolic content of different variety apple juices ranged from 650mg L-1 to 4265mg L-1. Chlorogenic acid is the predominant phenolic compound in all juice samples and ranged from 143.99mg L-1 in ‘Quaker Beauty’ apple juice to 617.66mg L-1 in ‘Kerr’ juice. Some dessert and crab apple juices have similar phenolic composition, but in several varieties such as ‘Cornelie’, ‘Hyslop’ and ‘Riku’ it was significantly higher. For cider production it is better to blend different kinds of apple juices including apples rich in high phenol content ('Rick', 'Cornelie') and also, for successful fermentation, apples rich in sugars and soluble solids content should be used in blends.

Keywords: apple juice, phenolic compounds, hierarchical cluster analysis, cider production

Procedia PDF Downloads 426
12427 The Evaluation of Substitution of Acacia villosa in Ruminants Ration

Authors: Hadriana Bansi, Elizabeth Wina, Toto Toharmat

Abstract:

Acacia villosa is thornless shrub legume which contents high crude protein. However, the utilization of A. villosa as ruminant feed is limited by its secondary compounds. The aim of this article is to find out the maximum of substitution A. villosa in sheep ration. The nutritional evaluation consisted of in vitro two stages, in vivo, and in vitro gas production trials. The secondary compounds of A. villosa also were analyzed. Evaluating digestibility of increasing level of substitution A. villosa replacing Pennisetum purpureum was using in vitro two stages. The substitution of 30% A. villosa was compared to 100% P. purpureum by in vitro gas production technique and in vivo digestibility. The results of two stages in vitro showed that total phenol, condensed tannin, and non-protein amino acid (NPAA) were high. Substitution 15% A. villosa reached the highest digestibility for both dry matter (DM) and crude protein (CP) which were 67% and 86% respectively, but it was shown that DM and CP digestibility of substitution 30% of A. villosa was still high which were 61.82% and 75-67% respectively. The pattern of gas production showed that first 8 hours total gas production substitution of 30% A. villosa was higher than 100% P. purpureum and declined after 10 hours incubation. In vivo trials showed that substitution of 30% A. villosa significantly increased CP intake, CP digestibility, and nitrogen retention. It can be concluded that substitution A. villosa until 30% still gave the good impact even though it has high secondary compounds.

Keywords: Acacia villosa, digestibility, gas production, secondary compounds

Procedia PDF Downloads 156
12426 Malachite Green and Red Congo Dyes Adsorption onto Chemical Treated Sewage Sludge

Authors: Zamouche Meriem, Mehcene Ismahan, Temmine Manel, Bencheikh Lehocine Mosaab, Meniai Abdeslam Hassen

Abstract:

In this study, the adsorption of Malachite Green (MG) by chemical treated sewage sludge has been studied. The sewage sludge, collected from drying beds of the municipal wastewater treatment station of IBN ZIED, Constantine, Algeria, was treated by different acids such us HNO₃, H₂SO₄, H₃PO₄ for modifying its aptitude to removal the MG from aqueous solutions. The results obtained shows that the sewage sludge activated by sulfuric acid give the highest elimination amounts of MG (9.52 mg/L) compared by the other acids used. The effects of operation parameters have been investigated, the results obtained show that the adsorption capacity per unit of adsorbent mass decreases from 18.69 to 1.20 mg/g when the mass of the adsorbent increases from 0.25 to 4 g respectively, the optimum mass for which a maximum of elimination of the dye is equal to 0.5g. The increasing in the temperature of the solution results in a slight decrease in the adsorption capacity of the chemically treated sludge. The highest amount of dye adsorbed by CSSS (9.56 mg/g) was observed for the optimum temperature of 25°C. The chemical activated sewage sludge proved its effectiveness for the removal of the Red Congo (RC), but by comparison the adsorption of the two dyes studies, we noted that the sludge has more affinity to adsorb the (MG).

Keywords: adsorption, chemical activation, malachite green, sewage sludge

Procedia PDF Downloads 185
12425 Mitigation Measures for the Acid Mine Drainage Emanating from the Sabie Goldfield: Case Study of the Nestor Mine

Authors: Rudzani Lusunzi, Frans Waanders, Elvis Fosso-Kankeu, Robert Khashane Netshitungulwana

Abstract:

The Sabie Goldfield has a history of gold mining dating back more than a century. Acid mine drainage (AMD) from the Nestor mine tailings storage facility (MTSF) poses a serious threat to the nearby ecosystem, specifically the Sabie River system. This study aims at developing mitigation measures for the AMD emanating from the Nestor MTSF using materials from the Glynns Lydenburg MTSF. The Nestor MTSF (NM) and the Glynns Lydenburg MTSF (GM) each provided about 20 kg of bulk composite samples. Using samples from the Nestor MTSF and the Glynns Lydenburg MTSF, two mixtures were created. MIX-A is a mixture that contains 25% weight percent (GM) and 75% weight percent (NM). MIX-B is the name given to the second mixture, which contains 50% AN and 50% AG. The same static test, i.e., acid–base accounting (ABA), net acid generation (NAG), and acid buffering characteristics curve (ABCC) was used to estimate the acid-generating probabilities of samples NM and GM for MIX-A and MIX-B. Furthermore, the mineralogy of the Nestor MTSF samples consists of the primary acid-producing mineral pyrite as well as the secondary minerals ferricopiapite and jarosite, which are common in acidic conditions. The Glynns Lydenburg MTSF samples, on the other hand, contain primary acid-neutralizing minerals calcite and dolomite. Based on the assessment conducted, materials from the Glynns Lydenburg are capable of neutralizing AMD from Nestor MTSF. Therefore, the alkaline tailings materials from the Glynns Lydenburg MTSF can be used to rehabilitate the acidic Nestor MTSF.

Keywords: Nestor Mine, acid mine drainage, mitigation, Sabie River system

Procedia PDF Downloads 80
12424 Microwave-Assisted Torrefaction of Teakwood Biomass Residues: The Effect of Power Level and Fluid Flows

Authors: Lukas Kano Mangalla, Raden Rinova Sisworo, Luther Pagiling

Abstract:

Torrefaction is an emerging thermo-chemical treatment process that aims to improve the quality of biomass fuels. This study focused on upgrading the waste teakwood through microwave torrefaction processes and investigating the key operating parameters to improve energy density for the quality of biochar production. The experiments were carried out in a 250 mL reactor placed in a microwave cavity on two different media, inert and non-inert. The microwave was operated at a frequency of 2.45GHz with power level variations of 540W, 720W, and 900W, respectively. During torrefaction processes, the nitrogen gas flows into the reactor at a rate of 0.125 mL/min, and the air flows naturally. The temperature inside the reactor was observed every 0.5 minutes for 20 minutes using a K-Type thermocouple. Changes in the mass and the properties of the torrefied products were analyzed to predict the correlation between calorific value, mass yield, and level power of the microwave. The results showed that with the increase in the operating power of microwave torrefaction, the calorific value and energy density of the product increased significantly, while mass and energy yield tended to decrease. Air can be a great potential media for substituting the expensive nitrogen to perform the microwave torrefaction for teakwood biomass.

Keywords: torrefaction, microwave heating, energy enhancement, mass and energy yield

Procedia PDF Downloads 84
12423 Development of Basic Patternmaking Using Parametric Modelling and AutoLISP

Authors: Haziyah Hussin, Syazwan Abdul Samad, Rosnani Jusoh

Abstract:

This study is aimed towards the automisation of basic patternmaking for traditional clothes for the purpose of mass production using AutoCAD to apply AutoLISP feature under software Hazi Attire. A standard dress form (industrial form) with the size of small (S), medium (M) and large (L) size is measured using full body scanning machine. Later, the pattern for the clothes is designed parametrically based on the measured dress form. Hazi Attire program is used within the framework of AutoCAD to generate the basic pattern of front bodice, back bodice, front skirt, back skirt and sleeve block (sloper). The generation of pattern is based on the parameters inputted by user, whereby in this study, the parameters were determined based on the measured size of dress form. The finalized pattern parameter shows that the pattern fit perfectly on the dress form. Since the pattern is generated almost instantly, these proved that using the AutoLISP programming, the manufacturing lead time for the mass production of the traditional clothes can be decreased.

Keywords: apparel, AutoLISP, Malay traditional clothes, pattern ganeration

Procedia PDF Downloads 248
12422 Levels of Selected Adipokines in Women with Gestational Diabetes and Type 2 Diabetes, Their Relationship to Metabolic Parameters

Authors: David Karasek, Veronika Kubickova, Ondrej Krystynik, Dominika Goldmannova, Lubica Cibickova, Jan Schovanek

Abstract:

Introduction: Adiponectin, adipocyte-fatty acid-binding protein (A-FABP), and Wnt1 inducible signaling pathway protein-1 (WISP-1) are adipokines particularly associated with insulin resistance. The aim of the study was to compare their levels in women with gestational diabetes (GDM), type 2 diabetes mellitus (T2DM) and healthy controls and determine their relation with metabolic parameters. Methods: Fifty women with GDM, 50 women with T2DM, and 35 healthy women were included in the study. In addition to adipokines, anthropometric, lipid parameters, and markers, insulin resistance, and glucose control were assessed in all participants. Results: Compared to healthy controls only significantly lower levels of adiponectin were detected in women with GDM, whereas lower levels of adiponectin, higher levels of A-FABP and of WISP-1 were present in women with T2DM. Women with T2DM had also lower levels of adiponectin and higher levels of A-FABP compared to women with GDM. In women with GDM or T2DM adiponectin correlated negatively with body mass index (BMI), triglycerides (TG), C-peptide and positively with HDL-cholesterol; A-FABP positively correlated with BMI, TG, waist, and C-peptide. Moreover, there was a positive correlation between WISP-1 and C-peptide in women with T2DM. Conclusion: Adverse adipokines production detecting dysfunctional fat tissue is in women with GDM less presented than in women with T2DM, but more expressed compared to healthy women. Acknowledgment: Supported by AZV NV18-01-00139 and MH CZ DRO (FNOl, 00098892).

Keywords: adiponectin, adipocyte-fatty acid binding protein, wnt1 inducible signaling pathway protein-1, gestational diabetes, type 2 diabetes mellitus

Procedia PDF Downloads 130
12421 Combination of Electrodialysis and Electrodeionization for Treatment of Condensate from Ammonium Nitrate Production

Authors: Lubomir Machuca, Vit Fara

Abstract:

Ammonium nitrate (AN) is produced by the reaction of ammonia and nitric acid, and a waste condensate is obtained. The condensate contains pure AN in concentration up to 10g/L. The salt content in the condensate is too high to discharge immediately into the river thus it must be treated. This study is concerned with the treatment of condensates from an industrial AN production by combination of electrodialysis (ED) and electrodeionization (EDI). The condensate concentration was in range 1.9–2.5g/L of AN. A pilot ED module with 25 membrane pairs following by a laboratory EDI module with 10 membrane pairs operated continuously during 800 hours. Results confirmed that the combination of ED and EDI is suitable for the condensate treatment.

Keywords: desalination, electrodialysis, electrodeionization, fertilizer industry

Procedia PDF Downloads 235