Search results for: particle mass concentration
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9199

Search results for: particle mass concentration

5389 Numerical Simulation of a Solar Photovoltaic Panel Cooled by a Forced Air System

Authors: Djamila Nebbali, Rezki Nebbali, Ahmed Ouibrahim

Abstract:

This study focuses on the cooling of a photovoltaic panel (PV). Indeed, the cooling improves the conversion capacity of this one and maintains, under extreme conditions of air temperature, the panel temperature at an appreciable level which avoids the altering. To do this, a fan provides forced circulation of air. Because the fan is supplied by the panel, it is necessary to determine the optimum operating point that unites efficiency of the PV with the consumption of the fan. For this matter, numerical simulations are performed at varying mass flow rates of air, under two extreme air temperatures (50°C, 25°C) and a fixed solar radiation (1000 W.m2) in a case of no wind.

Keywords: energy conversion, efficiency, balance energy, solar cell

Procedia PDF Downloads 403
5388 Structural Analysis and Modelling in an Evolving Iron Ore Operation

Authors: Sameh Shahin, Nannang Arrys

Abstract:

Optimizing pit slope stability and reducing strip ratio of a mining operation are two key tasks in geotechnical engineering. With a growing demand for minerals and an increasing cost associated with extraction, companies are constantly re-evaluating the viability of mineral deposits and challenging their geological understanding. Within Rio Tinto Iron Ore, the Structural Geology (SG) team investigate and collect critical data, such as point based orientations, mapping and geological inferences from adjacent pits to re-model deposits where previous interpretations have failed to account for structurally controlled slope failures. Utilizing innovative data collection methods and data-driven investigation, SG aims to address the root causes of slope instability. Committing to a resource grid drill campaign as the primary source of data collection will often bias data collection to a specific orientation and significantly reduce the capability to identify and qualify complexity. Consequently, these limitations make it difficult to construct a realistic and coherent structural model that identifies adverse structural domains. Without the consideration of complexity and the capability of capturing these structural domains, mining operations run the risk of inadequately designed slopes that may fail and potentially harm people. Regional structural trends have been considered in conjunction with surface and in-pit mapping data to model multi-batter fold structures that were absent from previous iterations of the structural model. The risk is evident in newly identified dip-slope and rock-mass controlled sectors of the geotechnical design rather than a ubiquitous dip-slope sector across the pit. The reward is two-fold: 1) providing sectors of rock-mass controlled design in previously interpreted structurally controlled domains and 2) the opportunity to optimize the slope angle for mineral recovery and reduced strip ratio. Furthermore, a resulting high confidence model with structures and geometries that can account for historic slope instabilities in structurally controlled domains where design assumptions failed.

Keywords: structural geology, geotechnical design, optimization, slope stability, risk mitigation

Procedia PDF Downloads 22
5387 Photocatalytic Degradation of Lead from Aqueous Solution Using TiO2 as Adsorbent

Authors: Navven Desai, Veena Soraganvi

Abstract:

Heavy metals such as lead, cadmium and mercury do not have biological significance hence they are known to be extremely toxic heavy metals. Water contains various heavy metals like Cadmium (Cd), Chromium (Cr), Copper (Cu), Nickel (Ni), Arsenic (As), Lead (Pb), and Zinc (Zn) etc., when it gets polluted with industrial waste water. These heavy metals cause various health effects even at low concentration when consumed by humans. Most of the heavy metals are poisonous to living organisms. Heavy metals are non-degradable and are preserved in the environment through bioaccumulation. Therefore removal of heavy metals from water is necessary. In recent years, a great deal of attentions has been focused on to the application of nanosized metal oxides to treat heavy metals, especially titanium oxides, ferric oxides, manganese oxides, aluminium oxides and magnesium oxides as adsorbent and photocatalyst. TiO2 based photocatalysts have attracted continuously increasing attention because of the excellent properties such as high light -conversion efficiency, chemical stability, nontoxic nature, low cost. The catalyst displays high photocatalytic activity because of its large surface area. In this study, the photocatalytic degradation of Lead (Pb) from aqueous solution was investigated in natural sunlight by using TiO2 as Nanomaterial. This study was performed at laboratory scale. All the experiments were carried out in the batch process. The concentration of lead was constant (25mg/lit) in the experiment and effect of titanium dioxide dose and pH were varied to study the removal efficiency of the lead by adsorption. Further study was performed on the dependence of photocatalytic reaction on the reaction temperature. The aqueous solution was prepared by Lead metal powder. TiO2 photo catalyst nanopowder used was Sisco-74629 grade. The heavy metal is analyzed with VARIAN AA 240 atomic adsorption spectrophotometer. The study shows, with increasing TiO2 dose and pH the lead removal increases. According to study, it can be concluded that the utilization of titanium dioxide accounted for higher efficiency in the removal of lead from aqueous solution.

Keywords: adsorption, heavy metals, nanomaterial, photocatalysis

Procedia PDF Downloads 283
5386 Minimizing Fresh and Wastewater Using Water Pinch Technique in Petrochemical Industries

Authors: Wasif Mughees, Malik Al-Ahmad, Muhammad Naeem

Abstract:

This research involves the design and analysis of pinch-based water/wastewater networks to minimize water utility in the petrochemical and petroleum industries. A study has been done on Tehran Oil Refinery to analyze feasibilities of regeneration, reuse and recycling of water network. COD is considered as a single key contaminant. Amount of freshwater was reduced about 149m3/h (43.8%) regarding COD. Re-design (or retrofitting) of water allocation in the networks was undertaken. The results were analyzed through graphical method and mathematical programming technique which clearly demonstrated that amount of required water would be determined by mass transfer of COD.

Keywords: minimization, water pinch, water management, pollution prevention

Procedia PDF Downloads 431
5385 Electrical Properties of CVD-Graphene on SiC

Authors: Bilal Jabakhanji, Dimitris Kazazis, Adrien Michon, Christophe Consejo, Wilfried Desrat, Benoit Jouault

Abstract:

In this paper, we investigate the electrical properties of graphene grown by Chemical Vapor Deposition (CVD) on the Si face of SiC substrates. Depending on the growth condition, hole or electron doping can be achieved, down to a few 1011cm−2. The high homogeneity of the graphene and the low intrinsic carrier concentration, allow the remarkable observation of the Half Integer Quantum Hall Effect, typical of graphene, at the centimeter scale.

Keywords: graphene, quantum hall effect, chemical vapor, deposition, silicon carbide

Procedia PDF Downloads 651
5384 Phytoremediation of Cr from Tannery Effluent by Vetiver Grass

Authors: Mingizem Gashaw Seid

Abstract:

Phytoremediation of chromium metal by vetiver grass was investigated in hydroponic system. The removal efficiency for organic load, nutrient and chromium were evaluated as a function of concentration of waste effluent (40 and 50% dilution with distilled water). Under this conditions 64.49-94.06 % of chromium was removed. This shows vetiver grass has potential for accumulation of chromium metal from tannery waste water stream.

Keywords: chromium, phytoremediation, tannery effluent, vetiver grass

Procedia PDF Downloads 400
5383 A Hybrid Pareto-Based Swarm Optimization Algorithm for the Multi-Objective Flexible Job Shop Scheduling Problems

Authors: Aydin Teymourifar, Gurkan Ozturk

Abstract:

In this paper, a new hybrid particle swarm optimization algorithm is proposed for the multi-objective flexible job shop scheduling problem that is very important and hard combinatorial problem. The Pareto approach is used for solving the multi-objective problem. Several new local search heuristics are integrated into an algorithm based on the critical block concept to enhance the performance of the algorithm. The algorithm is compared with the recently published multi-objective algorithms based on benchmarks selected from the literature. Several metrics are used for quantifying performance and comparison of the achieved solutions. The algorithms are also compared based on the Weighting summation of objectives approach. The proposed algorithm can find the Pareto solutions more efficiently than the compared algorithms in less computational time.

Keywords: swarm-based optimization, local search, Pareto optimality, flexible job shop scheduling, multi-objective optimization

Procedia PDF Downloads 359
5382 On the Possibility of Real Time Characterisation of Ambient Toxicity Using Multi-Wavelength Photoacoustic Instrument

Authors: Tibor Ajtai, Máté Pintér, Noémi Utry, Gergely Kiss-Albert, Andrea Palágyi, László Manczinger, Csaba Vágvölgyi, Gábor Szabó, Zoltán Bozóki

Abstract:

According to the best knowledge of the authors, here we experimentally demonstrate first, a quantified correlation between the real-time measured optical feature of the ambient and the off-line measured toxicity data. Finally, using these correlations we are presenting a novel methodology for real time characterisation of ambient toxicity based on the multi wavelength aerosol phase photoacoustic measurement. Ambient carbonaceous particulate matter is one of the most intensively studied atmospheric constituent in climate science nowadays. Beyond their climatic impact, atmospheric soot also plays an important role as an air pollutant that harms human health. Moreover, according to the latest scientific assessments ambient soot is the second most important anthropogenic emission source, while in health aspect its being one of the most harmful atmospheric constituents as well. Despite of its importance, generally accepted standard methodology for the quantitative determination of ambient toxicology is not available yet. Dominantly, ambient toxicology measurement is based on the posterior analysis of filter accumulated aerosol with limited time resolution. Most of the toxicological studies are based on operational definitions using different measurement protocols therefore the comprehensive analysis of the existing data set is really limited in many cases. The situation is further complicated by the fact that even during its relatively short residence time the physicochemical features of the aerosol can be masked significantly by the actual ambient factors. Therefore, decreasing the time resolution of the existing methodology and developing real-time methodology for air quality monitoring are really actual issues in the air pollution research. During the last decades many experimental studies have verified that there is a relation between the chemical composition and the absorption feature quantified by Absorption Angström Exponent (AAE) of the carbonaceous particulate matter. Although the scientific community are in the common platform that the PhotoAcoustic Spectroscopy (PAS) is the only methodology that can measure the light absorption by aerosol with accurate and reliable way so far, the multi-wavelength PAS which are able to selectively characterise the wavelength dependency of absorption has become only available in the last decade. In this study, the first results of the intensive measurement campaign focusing the physicochemical and toxicological characterisation of ambient particulate matter are presented. Here we demonstrate the complete microphysical characterisation of winter time urban ambient including optical absorption and scattering as well as size distribution using our recently developed state of the art multi-wavelength photoacoustic instrument (4λ-PAS), integrating nephelometer (Aurora 3000) as well as single mobility particle sizer and optical particle counter (SMPS+C). Beyond this on-line characterisation of the ambient, we also demonstrate the results of the eco-, cyto- and genotoxicity measurements of ambient aerosol based on the posterior analysis of filter accumulated aerosol with 6h time resolution. We demonstrate a diurnal variation of toxicities and AAE data deduced directly from the multi-wavelength absorption measurement results.

Keywords: photoacoustic spectroscopy, absorption Angström exponent, toxicity, Ames-test

Procedia PDF Downloads 286
5381 Europium Chelates as a Platform for Biosensing

Authors: Eiman A. Al-Enezi, Gin Jose, Sikha Saha, Paul Millner

Abstract:

Rare earth nanotechnology has gained a considerable amount of interest in the field of biosensing due to the unique luminescence properties of lanthanides. Chelating rare earth ions plays a significant role in biological labelling applications including medical diagnostics, due to their different excitation and emission wavelengths, variety of their spectral properties, sharp emission peaks and long fluorescence lifetimes. We aimed to develop a platform for biosensors based on Europium (Eu³⁺) chelates against biomarkers of cardiac injury (heart-type fatty acid binding protein; H-FABP3) and stroke (glial fibrillary acidic protein; GFAP). Additional novelty in this project is the use of synthetic binding proteins (Affimers), which could offer an excellent alternative targeting strategy to the existing antibodies. Anti-GFAP and anti-HFABP3 Affimer binders were modified to increase the number of carboxy functionalities. Europium nitrate then incubated with the modified Affimer. The luminescence characteristics of the Eu³⁺ complex with modified Affimers and antibodies against anti-GFAP and anti-HFABP3 were measured against different concentrations of the respective analytes on excitation wavelength of 395nm. Bovine serum albumin (BSA) was used as a control against the IgG/Affimer Eu³⁺ complexes. The emission spectrum of Eu³⁺ complex resulted in 5 emission peaks ranging between 550-750 nm with the highest intensity peaks were at 592 and 698 nm. The fluorescence intensity of Eu³⁺ chelates with the modified Affimer or antibodies increased significantly by 4-7 folder compared to the emission spectrum of Eu³⁺ complex. The fluorescence intensity of the Affimer complex was quenched proportionally with increased analyte concentration, but this did not occur with antibody complex. In contrast, the fluorescence intensity for Eu³⁺ complex increased slightly against increased concentration of BSA. These data demonstrate that modified Affimers Eu³⁺ complexes can function as nanobiosensors with potential diagnostic and analytical applications.

Keywords: lanthanides, europium, chelates, biosensors

Procedia PDF Downloads 508
5380 Evaluation of Erosive Wear Resistance of Commercial Hard Coatings with Plasma Nitride and Without Plasma Nitride in Aluminium Die Casting

Authors: A. Mohammed, R. Lewis, M. Marshall

Abstract:

Commonly used coatings to protect tools in die casting were used. A heat treatment and then surface coating can have a large effect on erosion damage. Samples have been tested to evaluate their resistances to erosive wear and to assess how this compares with behaviour seen for untreated material. Five commercial (PN + TiN), (PN + TiAlCN), (TiN X 2), (TiN), and (TiAlCN) coatings have been evaluated for their wear resistance. The objective was to permit an optimized selection of coatings to be used to give good resistance to erosive wear. A test-Rig has been developed to study the erosive wear in aluminium die casting and provide an environment similar to industrial operation that is more practical than using actual machines. These surfaces were analysed using a Scanning Electron Microscope (SEM) and Optical Microscopes each with a different level of resolution. Examination of coating materials revealed an important parameter associated with the failure of the coating materials.This was adhesion of the coating material to the substrate surface. A well-adhered coating withstands wear much better compared to the poorest-adhering coating.

Keywords: solid particle erosion, PVD-coatings, steel, erosion testing

Procedia PDF Downloads 230
5379 Association of Sleep Duration and Insomnia with Body Mass Index Among Brazilian Adults

Authors: Giovana Longo-Silva, Risia Cristina Egito de Menezes, Renan Serenini, Márcia de Oliveira Lima, Júlia Souza de Melo, Larissa de Lima Soares

Abstract:

Introduction: Sleep duration and quality have been increasingly recognized as important factors affecting overall health and well-being, including their potential impact on body weight and composition. Previous research has shown inconsistent results regarding the association between sleep patterns and body mass index (BMI), particularly among diverse populations such as Brazilian adults. Understanding these relationships is crucial for developing targeted interventions to address obesity and related health issues. Objective: This study aimed to investigate the association between sleep duration, insomnia, and BMI among Brazilian adults using data from a large national survey focused on chronic nutrition and sleep habits. Materials and Methods: The study included 2050 participants from a population-based virtual survey. BMI was calculated using self-reported weight and height measurements. Participants also reported usual bedtime and wake time on weekdays and weekends and whether they experienced symptoms of insomnia. The average sleep duration across the entire week was calculated as follows: [(5×sleep duration on weekdays) + (2×sleep duration on weekends)]/7. Linear regression analyses were conducted to assess the association between sleep duration, insomnia, and BMI, adjusting for potential confounding factors, including age, sex, marital status, physical exercise duration, and diet quality. Results: After adjusting for confounding variables, the study found that BMI decreased by 0.19 kg/m² for each additional hour of sleep duration (95% CI = -0.37, -0.02; P = 0.03). Conversely, individuals with insomnia had a higher BMI, with an increase of 0.75 kg/m² (95% CI = 0.28, 1.22; P = 0.002) compared to those without insomnia. Conclusions: The findings suggest a significant association between sleep duration, insomnia, and BMI among Brazilian adults. Longer sleep duration was associated with lower BMI, while insomnia was associated with higher BMI. These results underscore the importance of considering sleep patterns in strategies aimed at preventing and managing obesity in this population. Further research is needed to explore the underlying mechanisms and potential interventions targeting sleep-related factors to promote healthier body weight outcomes.

Keywords: sleep, obesity, chronobiology, nutrition

Procedia PDF Downloads 22
5378 Colonialism and Modernism in Architecture, the Case of a Blank Page Opportunity in Casablanka

Authors: Nezha Alaoui

Abstract:

The early 1950s French colonial context in Morocco provided an opportunity for architects to question the modernist established order by building dwellings for the local population. The dwellings were originally designed to encourage Muslims to adopt an urban lifestyle based on local customs. However, the inhabitants transformed their dwelling into a hybrid habitation. This paper aims to prove the relevance of the design process in accordance with the local colonial context by analyzing the dwellers' appropriation process and the modification of their habitat.

Keywords: colonial heritage, appropriation process, islamic spatial habit, housing experiment, modernist mass housing

Procedia PDF Downloads 119
5377 Thermal Performance Analysis of Nanofluids in a Concetric Heat Exchanger Equipped with Turbulators

Authors: Feyza Eda Akyurek, Bayram Sahin, Kadir Gelis, Eyuphan Manay, Murat Ceylan

Abstract:

Turbulent forced convection heat transfer and pressure drop characteristics of Al2O3–water nanofluid flowing through a concentric tube heat exchanger with and without coiled wire turbulators were studied experimentally. The experiments were conducted in the Reynolds number ranging from 4000 to 20000, particle volume concentrations of 0.8 vol.% and 1.6 vol.%. Two turbulators with the pitches of 25 mm and 39 mm were used. The results of nanofluids indicated that average Nusselt number increased much more with increasing Reynolds number compared to that of pure water. Thermal conductivity enhancement by the nanofluids resulted in heat transfer enhancement. Once the pressure drop of the alumina/water nanofluid was analyzed, it was nearly equal to that of pure water at the same Reynolds number range. It was concluded that nanofluids with the volume fractions of 0.8 and 1.6 did not have a significant effect on pressure drop change. However, the use of wire coils in heat exchanger enhanced heat transfer as well as the pressure drop.

Keywords: turbulators, heat exchanger, nanofluids, heat transfer enhancement

Procedia PDF Downloads 387
5376 Cognitive Models of Future in Political Texts

Authors: Solopova Olga

Abstract:

The present paper briefly recalls theoretical preconditions for investigating cognitive-discursive models of future in political discourse. The author reviews theories and methods used for strengthening a future focus in this discourse working out two main tools – a model of future and a metaphorical scenario. The paper examines the implications of metaphorical analogies for modeling future in mass media. It argues that metaphor is not merely a rhetorical ornament in the political discourse of media regulation but a conceptual model that legislates and regulates our understanding of future.

Keywords: cognitive approach, future research, political discourse, model, scenario, metaphor

Procedia PDF Downloads 379
5375 V0 Physics at LHCb. RIVET Analysis Module for Z Boson Decay to Di-Electron

Authors: A. E. Dumitriu

Abstract:

The LHCb experiment is situated at one of the four points around CERN’s Large Hadron Collider, being a single-arm forward spectrometer covering 10 mrad to 300 (250) mrad in the bending (non-bending) plane, designed primarily to study particles containing b and c quarks. Each one of LHCb’s sub-detectors specializes in measuring a different characteristic of the particles produced by colliding protons, its significant detection characteristics including a high precision tracking system and 2 ring-imaging Cherenkov detectors for particle identification. The major two topics that I am currently concerned in are: the RIVET project (Robust Independent Validation of Experiment and Theory) which is an efficient and portable tool kit of C++ class library useful for validation and tuning of Monte Carlo (MC) event generator models by providing a large collection of standard experimental analyses useful for High Energy Physics MC generator development, validation, tuning and regression testing and V0 analysis for 2013 LHCb NoBias type data (trigger on bunch + bunch crossing) at √s=2.76 TeV.

Keywords: LHCb physics, RIVET plug-in, RIVET, CERN

Procedia PDF Downloads 406
5374 Protective Effect of Wheat Grass (Triticum Durum) against Oxidative Damage Induced by Lead: Study of Some Biomarkers and Histological Few Organs in Males Wistar Rats

Authors: Mansouri Ouarda, Abdennour Cherif, Saidi Malika

Abstract:

Since the industrial revolution, many anthropogenic activities have caused environmental, considerable and overall changes. The lead represents a very dangerous disruptive for the functioning of the body. In this context the current study aims at evaluating a natural therapy by the use of the plant grass in wheat (Triticum durum) against the toxicity of lead in rat wistar male. The rats were divided into three groups: the control group, the group treated with 600 mg /kg food of lead only (Pb) is the group treated with the combination of 600 mg/kg of food and 9g/rat /day of the plant grass in wheat (Pb-bl). The duration of the treatment is 6 weeks. The results of the biometrics of the organs (thyroid, kidney, testis and epididymis) show no significant difference between the three groups. The dosage of a few parameters and hormonal biochemical shows a decrease in the concentration of the hormone T3 and TSH levels among the group pb alone compared to the control and Pb-Bl. These results have been confirmed by the study of histological slices. A morphological changes represented by a shrinking volume of vesicles with the group treated with Pb alone. A return to the normal state of the structure of the follicles was observed. The concentration in serum testosterone, urea and creatinine was significantly increased among the group treated by Pb only in relation to the control and Pb-Bl. whereas the rate of glucose did not show any significant difference. The histology study of the kidney, testis and epididymal weights show no modification at the group Pb-bl comparing to the control. The parenchyma of the kidney shows a dilation of tubes distal and proximal causing a tubular nephropathy for the batch processed by Pb only. The testicles have marked a destruction or absence of germ cells and the light of some seminiferous are almost empty. Conclusion: The supplementation of the plant Triticum durum has caused a considerable improvement which ensures the return of parameters investigated in the normal state.

Keywords: creatinine, glucose, histological sections, T3, TSH, testosterone

Procedia PDF Downloads 361
5373 Optimization of Cutting Forces in Drilling of Polimer Composites via Taguchi Methodology

Authors: Eser Yarar, Fahri Vatansever, A. Tamer Erturk, Sedat Karabay

Abstract:

In this study, drilling behavior of multi-layer orthotropic polyester composites reinforced with woven polyester fiber and PTFE particle was investigated. Conventional drilling methods have low cost and ease of use. Therefore, it is one of the most preferred machining methods. The increasing range of use of composite materials in many areas has led to the investigation of the machinability performance of these materials. The drilling capability of the synthetic polymer composite material was investigated by measuring the cutting forces using different tool diameters, feed rate and high cutting speed parameters. Cutting forces were measured using a dynamometer in the experiments. In order to evaluate the results of the experiment, the Taguchi experimental design method was used. According to the results, the optimum cutting parameters were obtained for 0.1 mm/rev, 1070 rpm and 2 mm diameter drill bit. Verification tests were performed for the optimum cutting parameters obtained according to the model. Verification experiments showed the success of the established model.

Keywords: cutting force, drilling, polimer composite, Taguchi

Procedia PDF Downloads 152
5372 The Antioxidant Activity of Grape Chkhaveri and Its Wine Cultivated in West Georgia (Adjaria)

Authors: Maia Kharadze, Indira Djaparidze, Maia Vanidze, Aleko Kalandia

Abstract:

Modern scientific world studies chemical components and antioxidant activity of different kinds of vines according to their breed purity and location. To our knowledge, this kind of research has not been conducted in Georgia yet. The object of our research was to study Chkhaveri vine, which is included in the oldest varieties of the Black Sea basin vine. We have studied different-altitude Chkaveri grapes, juice, and wine (half dry rose-colored produced with European technologies) and their technical markers, qualitative and quantitive composition of their biologically active compounds and their antioxidant activity. We were determining the amount of phenols using Folin-Ciocalteu reagent, Flavonoids, Catechins and Anthocyanins using Spectral method and antioxidant activity using DPPH method. Several compounds were identified using –HPLC-UV-Vis, UPLC-MS methods. Six samples of Chkhaveri species– 5, 300, 360, 380, 400, 780 meter altitudes were taken and analyzed. The sample taken from 360 m altitude is distinguished by its cluster mass (383.6 grams) and high amount of sugar (20.1%). The sample taken from the five-meter altitude is distinguished by having high acidity (0.95%). Unlike other grapes varieties, such concentration of sugar and relatively low levels of citric acid ultimately leads to Chkhaveri wine individuality. Biologically active compounds of Chkhaveri were researched in 2014, 2015, 2016. The amount of total phenols in samples of 2016 fruit varies from 976.7 to 1767.0 mg/kg. Amount of Anthocians is 721.2-1630.2 mg/kg, and the amount of Flavanoids varies from 300.6 to 825.5 mg/kg. Relatively high amount of anthocyanins was found in the Chkhaveri at 780-meter altitude - 1630.2 mg/kg. Accordingly, the amount of Phenols and Flavanoids is high- 1767.9 mg/kg and 825.5 mg/kg. These characteristics are low in samples gathered from 5 meters above sea level, Anthocyanins-721.2 mg/ kg, total Phenols-976.7 mg/ kg, and Flavanoids-300.6 mg/kg. The highest amount of bioactive compounds can be found in the Chkhaveri samples of high altitudes because with rising height environment becomes harsh, the plant has to develop a better immune system using Phenolic compounds. The technology that is used for the production of wine also plays a huge role in the composition of the final product. Optimal techniques of maceration and ageing were worked out. While squeezing Chkhaveri, there are no anthocyanins in the juice. However, the amount of Anthocyanins rises during maceration. After the fermentation of dregs, the amount of anthocyanins is 55%, 521.3 gm/l, total Phenols 80% 1057.7 mg/l and Flavanoids 23.5 mg/l. Antioxidant activity of samples was also determined using the effect of 50% inhibition of the samples. All samples have high antioxidant activity. For instance, in samples at 780 meters above the sea-level antioxidant activity was 53.5%. It is relatively high compared to the sample at 5 m above sea-level with the antioxidant activity of 30.5%. Thus, there is a correlation between the amount Anthocyanins and antioxidant activity. The designated project has been fulfilled by financial support of the Georgia National Science Foundation (Grant AP/96/13, Grant 216816), Any idea in this publication is possessed by the author and may not represent the opinion of the Georgia National Science Foundation.

Keywords: antioxidants, bioactive content, wine, chkhaveri

Procedia PDF Downloads 212
5371 Improvement of Reaction Technology of Decalin Halogenation

Authors: Dmitriy Yu. Korulkin, Ravshan M. Nuraliev, Raissa A. Muzychkina

Abstract:

In this research paper, we investigated the main regularities of a radical bromination reaction of decalin. We studied the temperature effect, durations of reaction, frequency rate of process, ratio of initial components, type and number of the initiator on decalin bromination degree. We found specified optimum conditions of synthesis of a perbromodecalin by the method of a decalin bromination. We developed the technological flowchart of receiving a perbromodecalin and the mass balance of process on the first and the subsequent loadings of components. The results of the research of antibacterial and antifungal activity of synthesized bromoderivatives have been represented.

Keywords: decalin, optimum technology, perbromodecalin, radical bromination

Procedia PDF Downloads 211
5370 Maximum Power Point Tracking Using Fuzzy Logic Control for a Stand-Alone PV System with PI Controller for Battery Charging Based on Evolutionary Technique

Authors: Mohamed A. Moustafa Hassan, Omnia S .S. Hussian, Hany M. Elsaved

Abstract:

This paper introduces the application of Fuzzy Logic Controller (FLC) to extract the Maximum Power Point Tracking (MPPT) from the PV panel. In addition, the proportional integral (PI) controller is used to be the strategy for battery charge control according to acceptable performance criteria. The parameters of the PI controller have been tuned via Modified Adaptive Accelerated Coefficient Particle Swarm Optimization (MAACPSO) technique. The simulation results, using MATLAB/Simulink tools, show that the FLC technique has advantages for use in the MPPT problem, as it provides a fast response under changes in environmental conditions such as radiation and temperature. In addition, the use of PI controller based on MAACPSO results in a good performance in terms of controlling battery charging with constant voltage and current to execute rapid charging.

Keywords: battery charging, fuzzy logic control, maximum power point tracking, PV system, PI controller, evolutionary technique

Procedia PDF Downloads 152
5369 Central Nervous System Lesion Differentiation in the Emergency Radiology Department

Authors: Angelis P. Barlampas

Abstract:

An 89 years old woman came to the emergency department complaining of long-lasting headaches and nausea. A CT examination was performed, and a homogeneous midline anterior cranial fossa lesion was revealed, which was situated near the base and measured 2,4 cm in diameter. The patient was allergic, and an i.v.c injection could not be done on the spot, and neither could an MRI exam because of metallic implants. How could someone narrow down the differential diagnosis? The interhemispheric meningioma is usually a silent midline lesion with no edema, and most often presents as a homogeneous, solid type, isodense, or slightly hyperdense mass ( usually the smallest lesions as this one ). Of them, 20-30% have some calcifications. Hyperostosis is typical for meningiomas that abut the base of the skull but is absent in the current case, presumably of a more cephalad location that is borderline away from the bone. Because further investigation could not be done, as the patient was allergic to the contrast media, some other differential options should be considered. Regarding the site of the lesion, the most common other entities to keep in mind are the following: Metastasis, tumor of skull base, abscess, primary brain tumors, meningioma, giant aneurysm of the anterior cerebral artery, olfactory neuroblastoma, interhemispheric meningioma, giant aneurysm of the anterior cerebral artery, midline lesion. Appearance will depend on whether the aneurysm is non-thrombosed, or partially, or completely thrombosed. Non-contrast: slightly hyperdense, well-defined round extra-axial mass, may demonstrate a peripheral calcified rim, olfactory neuroblastoma, midline lesion. The mass is of soft tissue attenuation and is relatively homogeneous. Focal calcifications are occasionally present. When an intracranial extension is present, peritumoral cysts between it and the overlying brain are often present. Final diagnosis interhemispheric meningioma (Known from the previous patient’s history). Meningiomas come from the meningocytes or the arachnoid cells of the meninges. They are usually found incidentally, have an indolent course, and their most common location is extra-axial, parasagittal, and supratentorial. Other locations include the sphenoid ridge, olfactory groove, juxtasellar, infratentorial, intraventricular, pineal gland area, and optic nerve meningioma. They are clinically silent entities, except for large ones, which can present with headaches, changes in personality status, paresis, or symptomatology according to their specific site and may cause edema of the surrounding brain tissue. Imaging findings include the presence of calcifications, the CSF cleft sign, hyperostosis of adjacent bone, dural tail, and white matter buckling sign. After i.v.c. injection, they enhance brightly and homogenously, except for large ones, which may exhibit necrotic areas or may be heavily calcified. Malignant or cystic variants demonstrate more heterogeneity and less intense enhancement. Sometimes, it is inevitable that the needed CT protocol cannot be performed, especially in the emergency department. In these cases, the radiologist must focus on the characteristic imaging features of the unenhanced lesion, as well as in previous examinations or a known lesion history, in order to come to the right report conclusion.

Keywords: computed tomography, emergency radiology, metastasis, tumor of skull base, abscess, primary brain tumors, meningioma, giant aneurysm of the anterior cerebral artery, olfactory neuroblastoma, interhemispheric meningioma

Procedia PDF Downloads 48
5368 Intensifying Approach for Separation of Bio-Butanol Using Ionic Liquid as Green Solvent: Moving Towards Sustainable Biorefinery

Authors: Kailas L. Wasewar

Abstract:

Biobutanol has been considered as a potential and alternative biofuel relative to the most popular biodiesel and bioethanol. End product toxicity is the major problems in commercialization of fermentation based process which can be reduce to some possible extent by removing biobutanol simultaneously. Several techniques have been investigated for removing butanol from fermentation broth such as stripping, adsorption, liquid–liquid extraction, pervaporation, and membrane solvent extraction. Liquid–liquid extraction can be performed with high selectivity and is possible to carry out inside the fermenter. Conventional solvents have few drawbacks including toxicity, loss of solvent, high cost etc. Hence alternative solvents must be explored for the same. Room temperature ionic liquids (RTILs) composed entirely of ions are liquid at room temperature having negligible vapor pressure, non-flammability, and tunable physiochemical properties for a particular application which term them as “designer solvents”. Ionic liquids (ILs) have recently gained much attention as alternatives for organic solvents in many processes. In particular, ILs have been used as alternative solvents for liquid–liquid extraction. Their negligible vapor pressure allows the extracted products to be separated from ILs by conventional low pressure distillation with the potential for saving energy. Morpholinium, imidazolium, ammonium, phosphonium etc. based ionic liquids have been employed for the separation biobutanol. In present chapter, basic concepts of ionic liquids and application in separation have been presented. Further, type of ionic liquids including, conventional, functionalized, polymeric, supported membrane, and other ionic liquids have been explored. Also the effect of various performance parameters on separation of biobutanol by ionic liquids have been discussed and compared for different cation and anion based ionic liquids. The typical methodology for investigation have been adopted such as contacting the equal amount of biobutanol and ionic liquids for a specific time say, 30 minutes to confirm the equilibrium. Further, biobutanol phase were analyzed using GC to know the concentration of biobutanol and material balance were used to find the concentration in ionic liquid.

Keywords: biobutanol, separation, ionic liquids, sustainability, biorefinery, waste biomass

Procedia PDF Downloads 70
5367 User-Controlled Color-Changing Textiles: From Prototype to Mass Production

Authors: Joshua Kaufman, Felix Tan, Morgan Monroe, Ayman Abouraddy

Abstract:

Textiles and clothing have been a staple of human existence for millennia, yet the basic structure and functionality of textile fibers and yarns has remained unchanged. While color and appearance are essential characteristics of a textile, an advancement in the fabrication of yarns that allows for user-controlled dynamic changes to the color or appearance of a garment has been lacking. Touch-activated and photosensitive pigments have been used in textiles, but these technologies are passive and cannot be controlled by the user. The technology described here allows the owner to control both when and in what pattern the fabric color-change takes place. In addition, the manufacturing process is compatible with mass-producing the user-controlled, color-changing yarns. The yarn fabrication utilizes a fiber spinning system that can produce either monofilament or multifilament yarns. For products requiring a more robust fabric (backpacks, purses, upholstery, etc.), larger-diameter monofilament yarns with a coarser weave are suitable. Such yarns are produced using a thread-coater attachment to encapsulate a 38-40 AWG metal wire inside a polymer sheath impregnated with thermochromic pigment. Conversely, products such as shirts and pants requiring yarns that are more flexible and soft against the skin comprise multifilament yarns of much smaller-diameter individual fibers. Embedding a metal wire in a multifilament fiber spinning process has not been realized to date. This research has required collaboration with Hills, Inc., to design a liquid metal-injection system to be combined with fiber spinning. The new system injects molten tin into each of 19 filaments being spun simultaneously into a single yarn. The resulting yarn contains 19 filaments, each with a tin core surrounded by a polymer sheath impregnated with thermochromic pigment. The color change we demonstrate is distinct from garments containing LEDs that emit light in various colors. The pigment itself changes its optical absorption spectrum to appear a different color. The thermochromic color-change is induced by a temperature change in the inner metal wire within each filament when current is applied from a small battery pack. The temperature necessary to induce the color change is near body temperature and not noticeable by touch. The prototypes already developed either use a simple push button to activate the battery pack or are wirelessly activated via a smart-phone app over Wi-Fi. The app allows the user to choose from different activation patterns of stripes that appear in the fabric continuously. The power requirements are mitigated by a large hysteresis in the activation temperature of the pigment and the temperature at which there is full color return. This was made possible by a collaboration with Chameleon International to develop a new, customized pigment. This technology enables a never-before seen capability: user-controlled, dynamic color and pattern change in large-area woven and sewn textiles and fabrics with wide-ranging applications from clothing and accessories to furniture and fixed-installation housing and business décor. The ability to activate through Wi-Fi opens up possibilities for the textiles to be part of the ‘Internet of Things.’ Furthermore, this technology is scalable to mass-production levels for wide-scale market adoption.

Keywords: activation, appearance, color, manufacturing

Procedia PDF Downloads 266
5366 Dual Thermoresponsive Polyzwitterionic Core-Shell Microgels and Study of Their Anti-Fouling Effect

Authors: P. Saha, R. Ganguly, N. K .Singha, A. Pich

Abstract:

Microgel, a smart class of material, has drawn attention in the past few years due to its response to external stimuli like temperature, pH, and ionic strength of the solution. Among them, one type of polymer becomes soluble, and the other becomes insoluble in water upon heating displaying upper critical solution temperature (UCST) (e.g., polysulfobetaine, PSB) and lower critical solution temperature (LCST) (e.g., poly(N-vinylcaprolactam, PVCL)) respectively. Polyzwitterions, electrically neutral polymers are biocompatible, biodegradable, and non-cytotoxic in nature, and presence of zwitterionic pendant group in the main backbone makes them stable against temperature and pH variations and strong hydration capability in salt solution promotes them to be used as interfacial bio-adhesion resistance material. Majority of zwitterionic microgels have been synthesized in mini- emulsion technique using free radical polymerization approach. Here, a new route to synthesize dual thermo-responsive PVCL microgels decorated with appreciable amount of zwitterionic PSB chains was developed by a purely water-based surfactant-free reversible addition–fragmentation chain transfer (RAFT) precipitation polymerization. PSB macro-RAFTs having different molecular weights were synthesized and utilized for surface-grafting with PVCL microgels varying the macro-RAFT concentration using N,N′-methylenebis(acrylamide) (BIS) as cross-linker. Increasing the PSB concentration in the PVCL microgels resulted in a linear increase in UCST but decrease in hydrodynamic radius due to strong intrachain coulombic attraction forces acting between the opposite charges present in the zwitterionic groups. Anti- fouling effect was observed on addition of BSA protein solution on the microgel-coated membrane surfaces as studied by fluorescence spectrophotoscopy.

Keywords: microgels, polyzwitterions, upper critical solution temperature-lower critical solution temperature, UCST-LCST, ionic crosslinking

Procedia PDF Downloads 102
5365 The Effect of Online Analyzer Malfunction on the Performance of Sulfur Recovery Unit and Providing a Temporary Solution to Reduce the Emission Rate

Authors: Hamid Reza Mahdipoor, Mehdi Bahrami, Mohammad Bodaghi, Seyed Ali Akbar Mansoori

Abstract:

Nowadays, with stricter limitations to reduce emissions, considerable penalties are imposed if pollution limits are exceeded. Therefore, refineries, along with focusing on improving the quality of their products, are also focused on producing products with the least environmental impact. The duty of the sulfur recovery unit (SRU) is to convert H₂S gas coming from the upstream units to elemental sulfur and minimize the burning of sulfur compounds to SO₂. The Claus process is a common process for converting H₂S to sulfur, including a reaction furnace followed by catalytic reactors and sulfur condensers. In addition to a Claus section, SRUs usually consist of a tail gas treatment (TGT) section to decrease the concentration of SO₂ in the flue gas below the emission limits. To operate an SRU properly, the flow rate of combustion air to the reaction furnace must be adjusted so that the Claus reaction is performed according to stoichiometry. Accurate control of the air demand leads to an optimum recovery of sulfur during the flow and composition fluctuations in the acid gas feed. Therefore, the major control system in the SRU is the air demand control loop, which includes a feed-forward control system based on predetermined feed flow rates and a feed-back control system based on the signal from the tail gas online analyzer. The use of online analyzers requires compliance with the installation and operation instructions. Unfortunately, most of these analyzers in Iran are out of service for different reasons, like the low importance of environmental issues and a lack of access to after-sales services due to sanctions. In this paper, an SRU in Iran was simulated and calibrated using industrial experimental data. Afterward, the effect of the malfunction of the online analyzer on the performance of SRU was investigated using the calibrated simulation. The results showed that an increase in the SO₂ concentration in the tail gas led to an increase in the temperature of the reduction reactor in the TGT section. This increase in temperature caused the failure of TGT and increased the concentration of SO₂ from 750 ppm to 35,000 ppm. In addition, the lack of a control system for the adjustment of the combustion air caused further increases in SO₂ emissions. In some processes, the major variable cannot be controlled directly due to difficulty in measurement or a long delay in the sampling system. In these cases, a secondary variable, which can be measured more easily, is considered to be controlled. With the correct selection of this variable, the main variable is also controlled along with the secondary variable. This strategy for controlling a process system is referred to as inferential control" and is considered in this paper. Therefore, a sensitivity analysis was performed to investigate the sensitivity of other measurable parameters to input disturbances. The results revealed that the output temperature of the first Claus reactor could be used for inferential control of the combustion air. Applying this method to the operation led to maximizing the sulfur recovery in the Claus section.

Keywords: sulfur recovery, online analyzer, inferential control, SO₂ emission

Procedia PDF Downloads 61
5364 Comparison between the Conventional Methods and PSO Based MPPT Algorithm for Photovoltaic Systems

Authors: Ramdan B. A. Koad, Ahmed F. Zobaa

Abstract:

Since the output characteristics of Photovoltaic (PV) system depends on the ambient temperature, solar radiation and load impedance, its maximum Power Point (MPP) is not constant. Under each condition PV module has a point at which it can produce its MPP. Therefore, a Maximum Power Point Tracking (MPPT) method is needed to uphold the PV panel operating at its MPP. This paper presents comparative study between the conventional MPPT methods used in (PV) system: Perturb and Observe (P&O), Incremental Conductance (IncCond), and Particle Swarm Optimization (PSO) algorithm for (MPPT) of (PV) system. To evaluate the study, the proposed PSO MPPT is implemented on a DC-DC converter and has been compared with P&O and INcond methods in terms of their tracking speed, accuracy and performance by using the Matlab tool Simulink. The simulation result shows that the proposed algorithm is simple, and is superior to the P&O and IncCond methods.

Keywords: photovoltaic systems, maximum power point tracking, perturb and observe method, incremental conductance, methods and practical swarm optimization algorithm

Procedia PDF Downloads 345
5363 Health Seeking Manners of Road Traffic Accident Victims: A Qualitative Study

Authors: Mohammad Mahbub Alam Talukder, Shahnewaz, Hasanat-E-Rabbi, Mohammed Nazrul Islam

Abstract:

Road traffic accident is a global problem which is severe in the developing countries like Bangladesh. In consequence, in developing countries road trauma has now been recognized as an increasing public health hazards and economic burning issue. And after road traffic accidents the lack of management and economic costs related with health seeking behavior have a disproportionate impact on lower income groups, thus contributing to the persistence of poverty in conjunction with disability. This cross sectional study, carried out during July 2012 to June 2013, aimed to explore health seeking decision and culture of handling the road traffic accident related victims, as taken from experiences of the poor disabled people of slum dwellers of Dhaka city. The present study has been designed based on qualitative techniques such as in-depth interview and case studies. Additionally, a survey questionnaire was used to collect the demographic characteristics of the study population (n=150) and to select participants purposely for in-depth interview (n=50) and case study (n=30). Content analysis of qualitative data was done through theme coding and matrix analysis of case study was done to use relevant verbatim. Most of the time the health seeking decision totally depended on the surrounded people of the accidental place, their knowledge, awareness and remaining facility and capacity regarding proper management of the victims. However, most of the cases the victims did not get any early treatment and it took 2-12 hours to get even the first aid because of distance, shortage of money, lack of availability of getting the aid, lack of mass awareness etc. Under the reality of discriminated and unaffordable health service provision better treatment could not turn out due to economic inability of the poor victims. To avoid the severe trauma, treatment delay must be reduced by providing first aid within very short time and to do so, mass awareness campaign is necessary for handing the victims. Moreover, necessary measures should be taken to ensure cost free health service provision to treat the chronic disabled condition of the road traffic accident related poor victims.

Keywords: accident, injury, disabled, qualitative, slum

Procedia PDF Downloads 343
5362 Fabrication of Electrospun Microbial Siderophore-Based Nanofibers: A Wound Dressing Material to Inhibit the Wound Biofilm Formation

Authors: Sita Lakshmi Thyagarajan

Abstract:

Nanofibers will leave no field untouched by its scientific innovations; the medical field is no exception. Electrospinning has proven to be an excellent method for the synthesis of nanofibers which, have attracted the interest for many biomedical applications. The formation of biofilms in wounds often leads to chronic infections that are difficult to treat with antibiotics. In order to minimize the biofilms and enhance the wound healing, preparation of potential nanofibers was focused. In this study, siderophore incorporated nanofibers were electrospun using biocompatible polymers onto the collagen scaffold and were fabricated into a biomaterial suitable for the inhibition of biofilm formation. The purified microbial siderophore was blended with Poly-L-lactide (PLLA) and poly (ethylene oxide) PEO in a suitable solvent. Fabrication of siderophore blended nanofibers onto the collagen surface was done using standard protocols. The fabricated scaffold was subjected to physical-chemical characterization. The results indicated that the fabrication processing parameters of nanofiberous scaffold was found to possess the characteristics expected of the potential scaffold with nanoscale morphology and microscale arrangement. The influence of Poly-L-lactide (PLLA) and poly (ethylene oxide) PEO solution concentration, applied voltage, tip-to-collector distance, feeding rate, and collector speed were studied. The optimal parameters such as the ratio of Poly-L-lactide (PLLA) and poly (ethylene oxide) PEO concentration, applied voltage, tip-to-collector distance, feeding rate, collector speed were finalized based on the trial and error experiments. The fibers were found to have a uniform diameter with an aligned morphology. The overall study suggests that the prepared siderophore entrapped nanofibers could be used as a potent tool for wound dressing material for inhibition of biofilm formation.

Keywords: biofilms, electrospinning, nano-fibers, siderophore, tissue engineering scaffold

Procedia PDF Downloads 110
5361 Simulation of Antimicrobial Resistance Gene Fate in Narrow Grass Hedges

Authors: Marzieh Khedmati, Shannon L. Bartelt-Hunt

Abstract:

Vegetative Filter Strips (VFS) are used for controlling the volume of runoff and decreasing contaminant concentrations in runoff before entering water bodies. Many studies have investigated the role of VFS in sediment and nutrient removal, but little is known about their efficiency for the removal of emerging contaminants such as antimicrobial resistance genes (ARGs). Vegetative Filter Strip Modeling System (VFSMOD) was used to simulate the efficiency of VFS in this regard. Several studies demonstrated the ability of VFSMOD to predict reductions in runoff volume and sediment concentration moving through the filters. The objectives of this study were to calibrate the VFSMOD with experimental data and assess the efficiency of the model in simulating the filter behavior in removing ARGs (ermB) and tylosin. The experimental data were obtained from a prior study conducted at the University of Nebraska (UNL) Rogers Memorial Farm. Three treatment factors were tested in the experiments, including manure amendment, narrow grass hedges and rainfall events. Sediment Delivery Ratio (SDR) was defined as the filter efficiency and the related experimental and model values were compared to each other. The VFS Model generally agreed with the experimental results and as a result, the model was used for predicting filter efficiencies when the runoff data are not available. Narrow Grass Hedges (NGH) were shown to be effective in reducing tylosin and ARGs concentration. The simulation showed that the filter efficiency in removing ARGs is different for different soil types and filter lengths. There is an optimum length for the filter strip that produces minimum runoff volume. Based on the model results increasing the length of the filter by 1-meter leads to higher efficiency but widening beyond that decreases the efficiency. The VFSMOD, which was proved to work well in estimation of VFS trapping efficiency, showed confirming results for ARG removal.

Keywords: antimicrobial resistance genes, emerging contaminants, narrow grass hedges, vegetative filter strips, vegetative filter strip modeling system

Procedia PDF Downloads 123
5360 Spatial Analysis of the Perception of Family Planning among Teenage Mothers in Nigeria

Authors: Mbuotidem Brendan, Nathanael Afolabi

Abstract:

Teenage pregnancy is a major health concern because of its association with high morbidity and mortality for both mother and child. In 2013, 23% of women in Nigeria, aged 15 - 19 yr have begun childbearing: 17% have had a child and 5% are pregnant with their first child. Reported differences across locations have been attributed to factors such as educational attainment and exposure to mass media. This study therefore seeks to determine the difference in the level of exposure among teenage mothers and older women of reproductive age in Nigeria. Over 12,000 women of reproductive age (18 – 49 yr) were interviewed across 8 states from the Northern and Southern region of Nigeria. The women were further segregated into two groups of 0 (women aged 18 – 20 yr who had children of their own) and 1 (women of reproductive age excluding teenage mothers). Data was collected via structured questionnaires on mobile devices using the open data kit platform. Initial data formatting and recoding was done using STATA 13 package. Initial analysis was also conducted using SPSS version 21 and the data points were mapped on QuantumGIS package. From the results of analyzed data obtained from the studied states, there were various mean ages of first births across the supported states. Though Akwa Ibom had one of the oldest mean ages (21.2 yr) at first birth and the lowest fertility rate of 3.9 births/woman according to the National Demographic Health Survey 2013, Akwa Ibom had the highest rate of teenage pregnancy (18.2%) across the respondents. Based on education, the respondents that had completed secondary school education (56.9%) made up the greatest cohorts of the teenage parents. This is counter indicative of the initial thinking that there is an inverse relationship between level of education and teenage pregnancy. Akwa Ibom, Bauchi and Delta states are states where respondents felt that contraceptive use is dangerous to health and they were the top 4 states that had a large proportion of teenage mothers. Similarly, across the states examined, all the women of reproductive age felt they could convince their spouses to use contraceptives, as using family planning does not cause women to be promiscuous. This study thus reveals that across the states studied, there was no marked variation in the perception of family planning between teenage parents and women of reproductive age. The study also highlights the need for future planning and exposure to family planning messages at secondary school level.

Keywords: adolescent, family planning, mass media, teenage mothers

Procedia PDF Downloads 167