Search results for: grid architecture framework
3771 Nelder-Mead Parametric Optimization of Elastic Metamaterials with Artificial Neural Network Surrogate Model
Authors: Jiaqi Dong, Qing-Hua Qin, Yi Xiao
Abstract:
Some of the most fundamental challenges of elastic metamaterials (EMMs) optimization can be attributed to the high consumption of computational power resulted from finite element analysis (FEA) simulations that render the optimization process inefficient. Furthermore, due to the inherent mesh dependence of FEA, minuscule geometry features, which often emerge during the later stages of optimization, induce very fine elements, resulting in enormously high time consumption, particularly when repetitive solutions are needed for computing the objective function. In this study, a surrogate modelling algorithm is developed to reduce computational time in structural optimization of EMMs. The surrogate model is constructed based on a multilayer feedforward artificial neural network (ANN) architecture, trained with prepopulated eigenfrequency data prepopulated from FEA simulation and optimized through regime selection with genetic algorithm (GA) to improve its accuracy in predicting the location and width of the primary elastic band gap. With the optimized ANN surrogate at the core, a Nelder-Mead (NM) algorithm is established and its performance inspected in comparison to the FEA solution. The ANNNM model shows remarkable accuracy in predicting the band gap width and a reduction of time consumption by 47%.Keywords: artificial neural network, machine learning, mechanical metamaterials, Nelder-Mead optimization
Procedia PDF Downloads 1283770 Performance Improvement of SOI-Tri Gate FinFET Transistor Using High-K Dielectric with Metal Gate
Authors: Fatima Zohra Rahou, A.Guen Bouazza, B. Bouazza
Abstract:
SOI TRI GATE FinFET transistors have emerged as novel devices due to its simple architecture and better performance: better control over short channel effects (SCEs) and reduced power dissipation due to reduced gate leakage currents. As the oxide thickness scales below 2 nm, leakage currents due to tunneling increase drastically, leading to high power consumption and reduced device reliability. Replacing the SiO2 gate oxide with a high-κ material allows increased gate capacitance without the associated leakage effects. In this paper, SOI TRI-GATE FinFET structure with use of high K dielectric materials (HfO2) and SiO2 dielectric are simulated using the 3-D device simulator Devedit and Atlas of TCAD Silvaco. The simulated results exhibits significant improvements in the performances of SOI TRI GATE FinFET with gate oxide HfO2 compared with conventional gate oxide SiO2 for the same structure. SOI TRI-GATE FinFET structure with the use of high K materials (HfO2) in gate oxide results into the increase in saturation current, threshold voltage, on-state current and Ion/Ioff ratio while off-state current, subthreshold slope and DIBL effect are decreased.Keywords: technology SOI, short-channel effects (SCEs), multi-gate SOI MOSFET, SOI-TRI Gate FinFET, high-K dielectric, Silvaco software
Procedia PDF Downloads 3473769 The Spatial Pattern of Economic Rents of an Airport Development Area: Lessons Learned from the Suvarnabhumi International Airport, Thailand
Authors: C. Bejrananda, Y. Lee, T. Khamkaew
Abstract:
With the rise of the importance of air transportation in the 21st century, the role of economics in airport planning and decision-making has become more important to the urban structure and land value around it. Therefore, this research aims to examine the relationship between an airport and its impacts on the distribution of urban land uses and land values by applying the Alonso’s bid rent model. The New Bangkok International Airport (Suvarnabhumi International Airport) was taken as a case study. The analysis was made over three different time periods of airport development (after the airport site was proposed, during airport construction, and after the opening of the airport). The statistical results confirm that Alonso’s model can be used to explain the impacts of the new airport only for the northeast quadrant of the airport, while proximity to the airport showed the inverse relationship with the land value of all six types of land use activities through three periods of time. It indicates that the land value for commercial land use is the most sensitive to the location of the airport or has the strongest requirement for accessibility to the airport compared to the residential and manufacturing land use. Also, the bid-rent gradients of the six types of land use activities have declined dramatically through the three time periods because of the Asian Financial Crisis in 1997. Therefore, the lesson learned from this research concerns about the reliability of the data used. The major concern involves the use of different areal units for assessing land value for different time periods between zone block (1995) and grid block (2002, 2009). As a result, this affect the investigation of the overall trends of land value assessment, which are not readily apparent. In addition, the next concern is the availability of the historical data. With the lack of collecting historical data for land value assessment by the government, some of data of land values and aerial photos are not available to cover the entire study area. Finally, the different formats of using aerial photos between hard-copy (1995) and digital photo (2002, 2009) made difficult for measuring distances. Therefore, these problems also affect the accuracy of the results of the statistical analyses.Keywords: airport development area, economic rents, spatial pattern, suvarnabhumi international airport
Procedia PDF Downloads 2743768 Utilization of Schnerr-Sauer Cavitation Model for Simulation of Cavitation Inception and Super Cavitation
Authors: Mohammadreza Nezamirad, Azadeh Yazdi, Sepideh Amirahmadian, Nasim Sabetpour, Amirmasoud Hamedi
Abstract:
In this study, the Reynolds-Stress-Navier-Stokes framework is utilized to investigate the flow inside the diesel injector nozzle. The flow is assumed to be multiphase as the formation of vapor by pressure drop is visualized. For pressure and velocity linkage, the coupled algorithm is used. Since the cavitation phenomenon inherently is unsteady, the quasi-steady approach is utilized for saving time and resources in the current study. Schnerr-Sauer cavitation model is used, which was capable of predicting flow behavior both at the initial and final steps of the cavitation process. Two different turbulent models were used in this study to clarify which one is more capable in predicting cavitation inception and super-cavitation. It was found that K-ε was more compatible with the Shnerr-Sauer cavitation model; therefore, the mentioned model is used for the rest of this study.Keywords: CFD, RANS, cavitation, fuel, injector
Procedia PDF Downloads 2093767 Experimental Study on Different Load Operation and Rapid Load-change Characteristics of Pulverized Coal Combustion with Self-preheating Technology
Authors: Hongliang Ding, Ziqu Ouyang
Abstract:
Under the basic national conditions that the energy structure is dominated by coal, it is of great significance to realize deep and flexible peak shaving of boilers in pulverized coal power plants, and maximize the consumption of renewable energy in the power grid, to ensure China's energy security and scientifically achieve the goals of carbon peak and carbon neutrality. With the promising self-preheating combustion technology, which had the potential of broad-load regulation and rapid response to load changes, this study mainly investigated the different load operation and rapid load-change characteristics of pulverized coal combustion. Four effective load-stabilization bases were proposed according to preheating temperature, coal gas composition (calorific value), combustion temperature (spatial mean temperature and mean square temperature fluctuation coefficient), and flue gas emissions (CO and NOx concentrations), on the basis of which the load-change rates were calculated to assess the load response characteristics. Due to the improvement of the physicochemical properties of pulverized coal after preheating, stable ignition and combustion conditions could be obtained even at a low load of 25%, with a combustion efficiency of over 97.5%, and NOx emission reached the lowest at 50% load, with the concentration of 50.97 mg/Nm3 (@6%O2). Additionally, the load ramp-up stage displayed higher load-change rates than the load ramp-down stage, with maximum rates of 3.30 %/min and 3.01 %/min, respectively. Furthermore, the driving force formed by high step load was conducive to the increase of load-change rate. The rates based on the preheating indicator attained the highest value of 3.30 %/min, while the rates based on the combustion indicator peaked at 2.71 %/min. In comparison, the combustion indicator accurately described the system’s combustion state and load changes, whereas the preheating indicator was easier to acquire, with a higher load-change rate, hence the appropriate evaluation strategy should depend on the actual situation. This study verified a feasible method for deep and flexible peak shaving of coal-fired power units, further providing basic data and technical supports for future engineering applications.Keywords: clean coal combustion, load-change rate, peak shaving, self-preheating
Procedia PDF Downloads 683766 Inviscid Steady Flow Simulation Around a Wing Configuration Using MB_CNS
Authors: Muhammad Umar Kiani, Muhammad Shahbaz, Hassan Akbar
Abstract:
Simulation of a high speed inviscid steady ideal air flow around a 2D/axial-symmetry body was carried out by the use of mb_cns code. mb_cns is a program for the time-integration of the Navier-Stokes equations for two-dimensional compressible flows on a multiple-block structured mesh. The flow geometry may be either planar or axisymmetric and multiply-connected domains can be modeled by patching together several blocks. The main simulation code is accompanied by a set of pre and post-processing programs. The pre-processing programs scriptit and mb_prep start with a short script describing the geometry, initial flow state and boundary conditions and produce a discretized version of the initial flow state. The main flow simulation program (or solver as it is sometimes called) is mb_cns. It takes the files prepared by scriptit and mb_prep, integrates the discrete form of the gas flow equations in time and writes the evolved flow data to a set of output files. This output data may consist of the flow state (over the whole domain) at a number of instants in time. After integration in time, the post-processing programs mb_post and mb_cont can be used to reformat the flow state data and produce GIF or postscript plots of flow quantities such as pressure, temperature and Mach number. The current problem is an example of supersonic inviscid flow. The flow domain for the current problem (strake configuration wing) is discretized by a structured grid and a finite-volume approach is used to discretize the conservation equations. The flow field is recorded as cell-average values at cell centers and explicit time stepping is used to update conserved quantities. MUSCL-type interpolation and one of three flux calculation methods (Riemann solver, AUSMDV flux splitting and the Equilibrium Flux Method, EFM) are used to calculate inviscid fluxes across cell faces.Keywords: steady flow simulation, processing programs, simulation code, inviscid flux
Procedia PDF Downloads 4293765 Listening to Voices: A Meaning-Focused Framework for Supporting People with Auditory Verbal Hallucinations
Authors: Amar Ghelani
Abstract:
People with auditory verbal hallucinations (AVH) who seek support from mental health services commonly report feeling unheard and invalidated in their interactions with social workers and psychiatric professionals. Current mental health training and clinical approaches have proven to be inadequate in addressing the complex nature of voice hearing. Childhood trauma is a key factor in the development of AVH and can render people more vulnerable to hearing both supportive and/or disturbing voices. Lived experiences of racism, poverty, and immigration are also associated with development of what is broadly classified as psychosis. Despite evidence affirming the influence of environmental factors on voice hearing, the Western biomedical system typically conceptualizes this experience as a symptom of genetically-based mental illnesses which requires diagnosis and treatment. Overemphasis on psychiatric medications, referrals, and directive approaches to people’s problems has shifted clinical interventions away from assessing and addressing problems directly related to AVH. The Maastricht approach offers voice hearers and mental health workers an alternative and respectful starting point for understanding and coping with voices. The approach was developed by voice hearers in partnership with mental health professionals and entails an innovative method to assess and create meaning from voice hearing and related life stressors. The objectives of the approach are to help people who hear voices: (1) understand the problems and/or people the voices may represent in their history, and (2) cope with distress and find solutions to related problems. The Maastricht approach has also been found to help voice hearers integrate emotional conflicts, reduce avoidance or fear associated with AVH, improve therapeutic relationships, and increase a sense of control over internal experiences. The proposed oral presentation will be guided by a recovery-oriented theoretical framework which suggests healing from psychological wounds occurs through social connections and community support systems. The presentation will start with a brainstorming exercise to identify participants pre-existing knowledge of the subject matter. This will lead into a literature review on the relations between trauma, intersectionality, and AVH. An overview of the Maastricht approach and review of research related to its therapeutic risks and benefits will follow. Participants will learn trauma-informed coping skills and questions which can help voice hearers make meaning from their experiences. The presentation will conclude with a review of resources and learning opportunities where participants can expand their knowledge of the Hearing Voices Movement and Maastricht approach.Keywords: Maastricht interview, recovery, therapeutic assessment, voice hearing
Procedia PDF Downloads 1143764 The Role of Law in the Transformation of Collective Identities in Nigeria
Authors: Henry Okechukwu Onyeiwu
Abstract:
Nigeria, with its rich tapestry of ethnicities, cultures, and religions, serves as a critical case study in understanding how law influences and shapes collective identities. This abstract delves into the historical context of legal systems in Nigeria, examining the colonial legacies that have influenced contemporary laws and how these laws interact with traditional practices and beliefs. This study examines the critical role of law in shaping and transforming collective identities in Nigeria, a nation characterized by its rich tapestry of ethnicities, cultures, and religions. The legal framework in Nigeria has evolved in response to historical, social, and political dynamics, influencing the way communities perceive themselves and interact with one another. This research highlights the interplay between law and collective identity, exploring how legal instruments, such as constitutions, statutes, and judicial rulings, have contributed to the formation, negotiation, and reformation of group identities over time. Moreover, contemporary legal debates surrounding issues such as citizenship, resource allocation, and communal conflicts further illustrate the law's role in identity formation. The legal recognition of different ethnic groups fosters a sense of belonging and collective identity among these groups, yet it simultaneously raises questions about inclusivity and equality. Laws concerning indigenous rights and affirmative action are essential in this discourse, as they reflect the necessity of balancing majority rule with minority rights—a challenge that Nigeria continues to navigate. By employing a multidisciplinary approach that integrates legal studies, sociology, and anthropology, the study analyses key historical milestones, such as colonial legal legacies, post-independence constitutional developments, and ongoing debates surrounding federalism and ethnic rights. It also investigates how laws affect social cohesion and conflict among Nigeria's diverse ethnic groups, as well as the role of law in promoting inclusivity and recognizing minority rights. Case studies are utilized to illustrate practical examples of legal transformations and their impact on collective identities in various Nigerian contexts, including land rights, religious freedoms, and ethnic representation in government. The findings reveal that while the law has the potential to unify disparate groups under a national identity, it can also exacerbate divisions when applied inequitably or favouring particular groups over others. Ultimately, this study aims to shed light on the dual nature of law as both a tool for transformation and a potential source of conflict in the evolution of collective identities in Nigeria. By understanding these dynamics, policymakers and legal practitioners can develop strategies to foster unity and respect for diversity in a complex societal landscape.Keywords: law, collective identity, Nigeria, ethnicity, conflict, inclusion, legal framework, transformation
Procedia PDF Downloads 263763 Equity Risk Premiums and Risk Free Rates in Modelling and Prediction of Financial Markets
Authors: Mohammad Ghavami, Reza S. Dilmaghani
Abstract:
This paper presents an adaptive framework for modelling financial markets using equity risk premiums, risk free rates and volatilities. The recorded economic factors are initially used to train four adaptive filters for a certain limited period of time in the past. Once the systems are trained, the adjusted coefficients are used for modelling and prediction of an important financial market index. Two different approaches based on least mean squares (LMS) and recursive least squares (RLS) algorithms are investigated. Performance analysis of each method in terms of the mean squared error (MSE) is presented and the results are discussed. Computer simulations carried out using recorded data show MSEs of 4% and 3.4% for the next month prediction using LMS and RLS adaptive algorithms, respectively. In terms of twelve months prediction, RLS method shows a better tendency estimation compared to the LMS algorithm.Keywords: adaptive methods, LSE, MSE, prediction of financial Markets
Procedia PDF Downloads 3363762 The Implications of Person-Organisation Spirituality Fit on Employees’ Ethical and Spiritual Leadership Behaviours: Insights from Jordan
Authors: Tamer Koburtay, Radi Haloub
Abstract:
Person-Organization fit theory concerns how people flourish in a workplace that is congruence with their values and other traits. This paper seeks to highlight the theoretical relevance that workplace spirituality may add to the existing theory development of the P-O fit. In specific, it aims to empirically test the emerged framework that encompasses how workplace and self-spirituality match may enhance the perceived P-O fit, and how such a fit can enhance both employees’ ethical behaviors (i.e., humanism and honesty) and spiritual leadership behaviors. Drawing on a survey of the private and public sectors in Jordan, the results reveal that increasing the match in workplace and employees’ spirituality positively enhances the perceived P-O fit. Further, ethical and spiritual behaviors were found to be positively linked with a higher P-O fit. The importance of this paper is by generating a concept (i.e., P-O spirituality fit) beyond the already vast literature on P-O fit.Keywords: ethical behavior, leadership, P-O fit, spirituality, leadership
Procedia PDF Downloads 1563761 Modeling Comfort by Thermal Inertia in Eco-Construction for Low-Income People in an Aqueous Environment in the Face of Sustainable Development in Sub-Saharan Africa; Case of the City of Kinshasa, DR Congo
Authors: Mbambu K. Shaloom, Biba Kalengo, Pierre Echard, Olivier Gilson, Tshiswaka Ngalula, Léonard Kabeya Mukeba Yakasham
Abstract:
In this 21st century, while design and eco-construction continue to be governed by considerations of functionality, safety, comfort and initial investment cost. Today, the principles of sustainable development lead us to think over longer time frames, to take into account new issues and the operating costs of green energy. DR Congo (sub-Saharan Africa) still suffers from the unusability of certain bio-sourced materials (such as bamboo, branches, etc.) and the lack of energy, i.e. 9% of the population has access to electricity and 21% of access to water. Ecoconstruction involves the energy performance of buildings which carry out a dynamic thermal simulation, which targets the different assumptions and conventional parameters (weather, occupancy, materials, thermal comfort, green energies, etc.). The objective of this article is to remedy the thermal, economic and technical artisanal problems in an aqueous environment in the city of Kinshasa. In order to establish a behavioral model to mitigate environmental impacts on architectural modifications and low-cost eco-construction through the approach of innovation and design thinking.Keywords: thermal comfort, bio-sourced material, eco-architecture, eco-construction, squatting, design thinking
Procedia PDF Downloads 873760 A 1.57ghz Mixer Design for GPS Receiver
Authors: Hamd Ahmed
Abstract:
During the Persian Gulf War in 1991s, The confederation forces were surprised when they were being shot at by friendly forces in Iraqi desert. As obvious was the fact that they were mislead due to the lack of proper guidance and technology resulting in unnecessary loss of life and bloodshed. This unforeseen incident along with many others led the US department of defense to open the doors of GPS. In the very beginning, this technology was for military use, but now it is being widely used and increasingly popular among the public due to its high accuracy and immeasurable significance. The GPS system simply consists of three segments, the space segment (the satellite), the control segment (ground control) and the user segment (receiver). This project work is about designing a 1.57GHZ mixer for triple conversion GPS receiver .The GPS Front-End receiver based on super heterodyne receiver which improves selectivity and image frequency. However the main principle of the super heterodyne receiver depends on the mixer. Many different types of mixers (single balanced mixer, Single Ended mixer, Double balanced mixer) can be used with GPS receiver, it depends on the required specifications. This research project will provide an overview of the GPS system and details about the basic architecture of the GPS receiver. The basic emphasis of this report in on investigating general concept of the mixer circuit some terms related to the mixer along with their definitions and present the types of mixer, then gives some advantages of using singly balanced mixer and its application. The focus of this report is on how to design mixer for GPS receiver and discussing the simulation results.Keywords: GPS , RF filter, heterodyne, mixer
Procedia PDF Downloads 3233759 Obstacles to Innovation for SMEs: Evidence from Germany
Authors: Natalia Strobel, Jan Kratzer
Abstract:
Achieving effective innovation is a complex task and during this process firms (especially SMEs) often face obstacles. However, research into obstacles to innovation focusing on SMEs is very scarce. In this study, we propose a theoretical framework for describing these obstacles to innovation and investigate their influence on the innovative performance of SMEs. Data were collected in 2013 through face-to-face interviews with executives of 49 technology SMEs from Germany. The semi-structured interviews were designed on the basis of scales for measuring innovativeness, financial/competitive performance and obstacles to innovation, next to purely open questions. We find that the internal obstacles lack the know-how, capacity overloading, unclear roles and tasks, as well as the external obstacle governmental bureaucracy negatively influence the innovative performance of SMEs. However, in contrast to prior findings this study shows that cooperation ties of firms might also negatively influence the innovative performance.Keywords: innovation, innovation process, obstacles, SME
Procedia PDF Downloads 3543758 The Process of Critical Care Nursing Resilience in Workplace Adversity
Authors: Jennifer Jackson
Abstract:
Critical care nurses are at risk for burnout when confronted with sustained workplace adversity, which stems from a variety of social, structural, and environmental factors. Researchers have suggested that nurses can become resilient and overcome workplace adversity to achieve positive outcomes. The purpose of this study is to learn more about critical care nurses’ experiences with workplace adversity, and their process of becoming resilient. The research question will be: what is the process of critical care nursing resilience in workplace adversity? In-depth interviews with critical care nurses will provide the data to inductively generate the grounded theory. The resultant grounded theory will provide a framework to inform nurses and managers in developing interventions to support critical care nurses in their workplace. By enhancing nursing resilience, burnout may be avoided, and nurse satisfaction and overall quality of care may be improved.Keywords: nursing, resilience, burnout, critical care
Procedia PDF Downloads 4873757 Automatic Calibration of Agent-Based Models Using Deep Neural Networks
Authors: Sima Najafzadehkhoei, George Vega Yon
Abstract:
This paper presents an approach for calibrating Agent-Based Models (ABMs) efficiently, utilizing Convolutional Neural Networks (CNNs) and Long Short-Term Memory (LSTM) networks. These machine learning techniques are applied to Susceptible-Infected-Recovered (SIR) models, which are a core framework in the study of epidemiology. Our method replicates parameter values from observed trajectory curves, enhancing the accuracy of predictions when compared to traditional calibration techniques. Through the use of simulated data, we train the models to predict epidemiological parameters more accurately. Two primary approaches were explored: one where the number of susceptible, infected, and recovered individuals is fully known, and another using only the number of infected individuals. Our method shows promise for application in other ABMs where calibration is computationally intensive and expensive.Keywords: ABM, calibration, CNN, LSTM, epidemiology
Procedia PDF Downloads 243756 Regression of Hand Kinematics from Surface Electromyography Data Using an Long Short-Term Memory-Transformer Model
Authors: Anita Sadat Sadati Rostami, Reza Almasi Ghaleh
Abstract:
Surface electromyography (sEMG) offers important insights into muscle activation and has applications in fields including rehabilitation and human-computer interaction. The purpose of this work is to predict the degree of activation of two joints in the index finger using an LSTM-Transformer architecture trained on sEMG data from the Ninapro DB8 dataset. We apply advanced preprocessing techniques, such as multi-band filtering and customizable rectification methods, to enhance the encoding of sEMG data into features that are beneficial for regression tasks. The processed data is converted into spike patterns and simulated using Leaky Integrate-and-Fire (LIF) neuron models, allowing for neuromorphic-inspired processing. Our findings demonstrate that adjusting filtering parameters and neuron dynamics and employing the LSTM-Transformer model improves joint angle prediction performance. This study contributes to the ongoing development of deep learning frameworks for sEMG analysis, which could lead to improvements in motor control systems.Keywords: surface electromyography, LSTM-transformer, spiking neural networks, hand kinematics, leaky integrate-and-fire neuron, band-pass filtering, muscle activity decoding
Procedia PDF Downloads 93755 [Keynote Talk]: Evidence Fusion in Decision Making
Authors: Mohammad Abdullah-Al-Wadud
Abstract:
In the current era of automation and artificial intelligence, different systems have been increasingly keeping on depending on decision-making capabilities of machines. Such systems/applications may range from simple classifiers to sophisticated surveillance systems based on traditional sensors and related equipment which are becoming more common in the internet of things (IoT) paradigm. However, the available data for such problems are usually imprecise and incomplete, which leads to uncertainty in decisions made based on traditional probability-based classifiers. This requires a robust fusion framework to combine the available information sources with some degree of certainty. The theory of evidence can provide with such a method for combining evidence from different (may be unreliable) sources/observers. This talk will address the employment of the Dempster-Shafer Theory of evidence in some practical applications.Keywords: decision making, dempster-shafer theory, evidence fusion, incomplete data, uncertainty
Procedia PDF Downloads 4253754 The Impact Of Türki̇ye’s Decision-making Mechanism On The Transformation In Türkiye-syria Relations (2002-2024)
Authors: Ibrahim Akkan
Abstract:
This study analyses the transformation of Türkiye's Syria policy between 2002 and 2024 and the impact of domestic political dynamics in this process. Since the collapse of the Ottoman Empire, Türkiye and Syria have had a tense relationship for a long time due to reasons such as border issues, water sharing, security concerns and the activities of terrorist organizations. However, the process that started with the Adana Agreement in 1998 gained momentum with the Justice and Development Party (Ak Party) coming to power in 2002 and a historical period of rapprochement began between the two countries. During this period, Türkiye adopted the concept of “zero problems with neighbors” in its foreign policy and deepened its strategic partnerships in the region. Turkish-Syrian relations also developed within this framework, the trade volume between the two countries increased and cooperation was strengthened through mutual visits and diplomatic agreements. However, the Arab Spring that started in 2011 was a sharp turning point in Turkish-Syrian relations. The harsh stance of the Bashar Assad administration against the popular uprisings in Syria caused Türkiye to take a stance against Assad and support opposition groups. This process led to the severing of diplomatic ties between the two countries and the gradual deterioration of relations until 2024. Türkiye directly intervened in the civil war in Syria after the Arab Spring and conducted military operations in northern Syria that highlighted security policies. The main purpose of this study is to examine the transformation in Türkiye's Syria policies between 2002 and 2024 and to analyze the role of domestic political dynamics in Türkiye in this transformation. The main research question of the study is how domestic political actors in Türkiye, especially decision-makers (leaders, governments, political parties), shape foreign policy. In this context, the extent to which the leadership of the Ak Party government is decisive in decision-making processes and how the impact of domestic dynamics on foreign policy emerges will be studied. In this study, how both the pressures of the international system and domestic political dynamics shape foreign policy will be analyzed using the theoretical framework of neoclassical realism. How decision-making processes are decisive in foreign policy will be examined through a case study specific to Türkiye-Syria relations. In addition, the strategic preferences of leaders such as Recep Tayyip Erdoğan and Ahmet Davutoğlu in foreign policy and how these preferences overlap with developments in domestic politics will be evaluated using the discourse analysis method. This study aims to make a new contribution to the literature by providing a comprehensive analysis of how domestic dynamics shape foreign policy in Türkiye-Syria relations.Keywords: decision-making mechanisms, foreign policy analysis, neoclassical realism, syria, türkiye
Procedia PDF Downloads 13753 Land Cover Remote Sensing Classification Advanced Neural Networks Supervised Learning
Authors: Eiman Kattan
Abstract:
This study aims to evaluate the impact of classifying labelled remote sensing images conventional neural network (CNN) architecture, i.e., AlexNet on different land cover scenarios based on two remotely sensed datasets from different point of views such as the computational time and performance. Thus, a set of experiments were conducted to specify the effectiveness of the selected convolutional neural network using two implementing approaches, named fully trained and fine-tuned. For validation purposes, two remote sensing datasets, AID, and RSSCN7 which are publicly available and have different land covers features were used in the experiments. These datasets have a wide diversity of input data, number of classes, amount of labelled data, and texture patterns. A specifically designed interactive deep learning GPU training platform for image classification (Nvidia Digit) was employed in the experiments. It has shown efficiency in training, validation, and testing. As a result, the fully trained approach has achieved a trivial result for both of the two data sets, AID and RSSCN7 by 73.346% and 71.857% within 24 min, 1 sec and 8 min, 3 sec respectively. However, dramatic improvement of the classification performance using the fine-tuning approach has been recorded by 92.5% and 91% respectively within 24min, 44 secs and 8 min 41 sec respectively. The represented conclusion opens the opportunities for a better classification performance in various applications such as agriculture and crops remote sensing.Keywords: conventional neural network, remote sensing, land cover, land use
Procedia PDF Downloads 3703752 An Overview of Posterior Fossa Associated Pathologies and Segmentation
Authors: Samuel J. Ahmad, Michael Zhu, Andrew J. Kobets
Abstract:
Segmentation tools continue to advance, evolving from manual methods to automated contouring technologies utilizing convolutional neural networks. These techniques have evaluated ventricular and hemorrhagic volumes in the past but may be applied in novel ways to assess posterior fossa-associated pathologies such as Chiari malformations. Herein, we summarize literature pertaining to segmentation in the context of this and other posterior fossa-based diseases such as trigeminal neuralgia, hemifacial spasm, and posterior fossa syndrome. A literature search for volumetric analysis of the posterior fossa identified 27 papers where semi-automated, automated, manual segmentation, linear measurement-based formulas, and the Cavalieri estimator were utilized. These studies produced superior data than older methods utilizing formulas for rough volumetric estimations. The most commonly used segmentation technique was semi-automated segmentation (12 studies). Manual segmentation was the second most common technique (7 studies). Automated segmentation techniques (4 studies) and the Cavalieri estimator (3 studies), a point-counting method that uses a grid of points to estimate the volume of a region, were the next most commonly used techniques. The least commonly utilized segmentation technique was linear measurement-based formulas (1 study). Semi-automated segmentation produced accurate, reproducible results. However, it is apparent that there does not exist a single semi-automated software, open source or otherwise, that has been widely applied to the posterior fossa. Fully-automated segmentation via such open source software as FSL and Freesurfer produced highly accurate posterior fossa segmentations. Various forms of segmentation have been used to assess posterior fossa pathologies and each has its advantages and disadvantages. According to our results, semi-automated segmentation is the predominant method. However, atlas-based automated segmentation is an extremely promising method that produces accurate results. Future evolution of segmentation technologies will undoubtedly yield superior results, which may be applied to posterior fossa related pathologies. Medical professionals will save time and effort analyzing large sets of data due to these advances.Keywords: chiari, posterior fossa, segmentation, volumetric
Procedia PDF Downloads 1063751 Faster, Lighter, More Accurate: A Deep Learning Ensemble for Content Moderation
Authors: Arian Hosseini, Mahmudul Hasan
Abstract:
To address the increasing need for efficient and accurate content moderation, we propose an efficient and lightweight deep classification ensemble structure. Our approach is based on a combination of simple visual features, designed for high-accuracy classification of violent content with low false positives. Our ensemble architecture utilizes a set of lightweight models with narrowed-down color features, and we apply it to both images and videos. We evaluated our approach using a large dataset of explosion and blast contents and compared its performance to popular deep learning models such as ResNet-50. Our evaluation results demonstrate significant improvements in prediction accuracy, while benefiting from 7.64x faster inference and lower computation cost. While our approach is tailored to explosion detection, it can be applied to other similar content moderation and violence detection use cases as well. Based on our experiments, we propose a "think small, think many" philosophy in classification scenarios. We argue that transforming a single, large, monolithic deep model into a verification-based step model ensemble of multiple small, simple, and lightweight models with narrowed-down visual features can possibly lead to predictions with higher accuracy.Keywords: deep classification, content moderation, ensemble learning, explosion detection, video processing
Procedia PDF Downloads 553750 The Properties of Risk-based Approaches to Asset Allocation Using Combined Metrics of Portfolio Volatility and Kurtosis: Theoretical and Empirical Analysis
Authors: Maria Debora Braga, Luigi Riso, Maria Grazia Zoia
Abstract:
Risk-based approaches to asset allocation are portfolio construction methods that do not rely on the input of expected returns for the asset classes in the investment universe and only use risk information. They include the Minimum Variance Strategy (MV strategy), the traditional (volatility-based) Risk Parity Strategy (SRP strategy), the Most Diversified Portfolio Strategy (MDP strategy) and, for many, the Equally Weighted Strategy (EW strategy). All the mentioned approaches were based on portfolio volatility as a reference risk measure but in 2023, the Kurtosis-based Risk Parity strategy (KRP strategy) and the Minimum Kurtosis strategy (MK strategy) were introduced. Understandably, they used the fourth root of the portfolio-fourth moment as a proxy for portfolio kurtosis to work with a homogeneous function of degree one. This paper contributes mainly theoretically and methodologically to the framework of risk-based asset allocation approaches with two steps forward. First, a new and more flexible objective function considering a linear combination (with positive coefficients that sum to one) of portfolio volatility and portfolio kurtosis is used to alternatively serve a risk minimization goal or a homogeneous risk distribution goal. Hence, the new basic idea consists in extending the achievement of typical risk-based approaches’ goals to a combined risk measure. To give the rationale behind operating with such a risk measure, it is worth remembering that volatility and kurtosis are expressions of uncertainty, to be read as dispersion of returns around the mean and that both preserve adherence to a symmetric framework and consideration for the entire returns distribution as well, but also that they differ from each other in that the former captures the “normal” / “ordinary” dispersion of returns, while the latter is able to catch the huge dispersion. Therefore, the combined risk metric that uses two individual metrics focused on the same phenomena but differently sensitive to its intensity allows the asset manager to express, in the context of an objective function by varying the “relevance coefficient” associated with the individual metrics, alternatively, a wide set of plausible investment goals for the portfolio construction process while serving investors differently concerned with tail risk and traditional risk. Since this is the first study that also implements risk-based approaches using a combined risk measure, it becomes of fundamental importance to investigate the portfolio effects triggered by this innovation. The paper also offers a second contribution. Until the recent advent of the MK strategy and the KRP strategy, efforts to highlight interesting properties of risk-based approaches were inevitably directed towards the traditional MV strategy and SRP strategy. Previous literature established an increasing order in terms of portfolio volatility, starting from the MV strategy, through the SRP strategy, arriving at the EQ strategy and provided the mathematical proof for the “equalization effect” concerning marginal risks when the MV strategy is considered, and concerning risk contributions when the SRP strategy is considered. Regarding the validity of similar conclusions when referring to the MK strategy and KRP strategy, the development of a theoretical demonstration is still pending. This paper fills this gap.Keywords: risk parity, portfolio kurtosis, risk diversification, asset allocation
Procedia PDF Downloads 653749 Efficiency Measurement of Indian Sugar Manufacturing Firms - a DEA Approach
Authors: Amit Kumar Dwivedi, Priyanko Ghosh
Abstract:
Data Envelopment analysis (DEA) has been used to calculate the technical and scale efficiency measures of the public and private sugar manufacturing firms of the Indian Sugar Industry (2006 to 2010). Within DEA framework, the input & Output oriented Variable Returns to Scale (VRS) & Constant Return to Scale (CRS) model is employed for the study of Decision making units (DMUs). A representative sample of 43 firms which account for major portion of the total market share is studied. The selection criterion for the inclusion of a firm in the analysis was the total sales of INR 5,000 million or more in the year 2010. After reviewing the literature it is found that no study has been conducted in the context of Indian sugar manufacturing firms in the Post-liberalization era which motivates us to initiate the study.Keywords: technical efficiency, Indian sugar manufacturing units, DEA, input output oriented
Procedia PDF Downloads 5423748 An Adaptive Distributed Incremental Association Rule Mining System
Authors: Adewale O. Ogunde, Olusegun Folorunso, Adesina S. Sodiya
Abstract:
Most existing Distributed Association Rule Mining (DARM) systems are still facing several challenges. One of such challenges that have not received the attention of many researchers is the inability of existing systems to adapt to constantly changing databases and mining environments. In this work, an Adaptive Incremental Mining Algorithm (AIMA) is therefore proposed to address these problems. AIMA employed multiple mobile agents for the entire mining process. AIMA was designed to adapt to changes in the distributed databases by mining only the incremental database updates and using this to update the existing rules in order to improve the overall response time of the DARM system. In AIMA, global association rules were integrated incrementally from one data site to another through Results Integration Coordinating Agents. The mining agents in AIMA were made adaptive by defining mining goals with reasoning and behavioral capabilities and protocols that enabled them to either maintain or change their goals. AIMA employed Java Agent Development Environment Extension for designing the internal agents’ architecture. Results from experiments conducted on real datasets showed that the adaptive system, AIMA performed better than the non-adaptive systems with lower communication costs and higher task completion rates.Keywords: adaptivity, data mining, distributed association rule mining, incremental mining, mobile agents
Procedia PDF Downloads 3933747 Does "R and D" Investment Drive Economic Growth? Evidence from Africa
Authors: Boopen Seetanah, R. V. Sannassee, Sheereen Fauzel, Robin Nunkoo
Abstract:
The bulk of research on the impact of research and development (R&D) has been carried out in developed economies where the intensity of R&D expenditure has been relatively high and stable for many years. However, there is a paucity of similar studies in developing countries. In this paper, we provide empirical estimates of the impact of R&D investment on economic growth in a developing African economy (Mauritius) where R&D expenditure intensity has been low initially, but rising, albeit moderately in recent years. Using a dynamic time series analysis over the period 1980 to 2014 in a Vector Autoregressive framework, R & D is shown to have a positive and significant effect on the economic progress of the island, although the impact is considerably less when compared to both other ingredients of growth and also to reported elasticities fromdeveloped economies . Interestingly, there is evidence of bicausality between R & D and growth. furthermore, R & D positively impacts on both domestic and foreign investment, suggesting the possibilities of indirect effects.Keywords: R & D, VECM, Africa, Mauritius
Procedia PDF Downloads 4383746 Diagnosis and Treatment of Sleep Disorders
Authors: Andrew Anis Fakhrey Mosaad
Abstract:
Introduction: There are many different types of sleep disorders, each with serious implications for a person's health and a large financial burden on society. Method: This review offers a framework based on the International Classification of Sleep Disorders to aid in the diagnosis and treatment of sleep disorders. Differentiating between primary and secondary insomnia is covered, along with pharmacological and nonpharmacological therapy options. Common abnormalities of the circadian rhythm are mentioned along with their therapies, such as light therapy and chronotherapy. This article discusses the identification and management of periodic limb movement disorder and restless legs syndrome. The therapy of upper airway resistance syndrome and obstructive sleep apnea are the main topics of discussion. Conclusion: The range of narcolepsy symptoms and results, as well as diagnostic procedures and treatment, are discussed. The causes, outcomes, and treatments of many types of insomnias, such as sleep terrors, somnambulism, and rapid eye movement (REM) behavior sleep disorders, are discussed.Keywords: diagnosis, treatment, sleep disorders, insomnia
Procedia PDF Downloads 623745 International Conference on Islam and Democracy – Religion and Political Stability in Indonesia
Authors: Mariel Encar H. Uy, Paula Marie G. Pacle
Abstract:
The purpose of this research is to present a Single Country Comparative Contextual Description Study of Strong Islamic Influences in Relation to the Politics of Republic of Indonesia. This paper recognizes that even the coalition of secular and moderate Islamic parties protect the minority rights of all the constituents, Islam is still the dominant religion among the other recognized religions in Indonesia (Christianity, Hinduism and Buddhism). In this study, it will also detail the involvement on the religions’ beliefs and techniques; participation of political actors, depending on what religion they belong and adhere to; the tensions whenever the government interferes with Islamists and other religions; the government’s solution or public policies implemented to maintain peace and order of Indonesia. This paper will develop a conceptual framework to describe how the Religion and Political Stability is interdependent with each other.Keywords: diversity of religion in indonesia, secularization in Indonesia, motivations of political actors, voter turnouts based on religion
Procedia PDF Downloads 3323744 Theoretical Approach to Kinetics of Transient Plasticity of Metals under Irradiation
Authors: Pavlo Selyshchev, Tetiana Didenko
Abstract:
Within the framework of the obstacle radiation hardening and the dislocation climb-glide model a theoretical approach is developed to describe peculiarities of transient plasticity of metal under irradiation. It is considered nonlinear dynamics of accumulation of point defects (vacancies and interstitial atoms). We consider metal under such stress and conditions of irradiation at which creep is determined by dislocation motion: dislocations climb obstacles and glide between obstacles. It is shown that the rivalry between vacancy and interstitial fluxes to dislocation leads to fractures of plasticity time dependence. Simulation and analysis of this phenomenon are performed. Qualitatively different regimes of transient plasticity under irradiation are found. The fracture time is obtained. The theoretical results are compared with the experimental ones.Keywords: climb and glide of dislocations, fractures of transient plasticity, irradiation, non-linear feed-back, point defects
Procedia PDF Downloads 2023743 High Resolution Image Generation Algorithm for Archaeology Drawings
Authors: Xiaolin Zeng, Lei Cheng, Zhirong Li, Xueping Liu
Abstract:
Aiming at the problem of low accuracy and susceptibility to cultural relic diseases in the generation of high-resolution archaeology drawings by current image generation algorithms, an archaeology drawings generation algorithm based on a conditional generative adversarial network is proposed. An attention mechanism is added into the high-resolution image generation network as the backbone network, which enhances the line feature extraction capability and improves the accuracy of line drawing generation. A dual-branch parallel architecture consisting of two backbone networks is implemented, where the semantic translation branch extracts semantic features from orthophotographs of cultural relics, and the gradient screening branch extracts effective gradient features. Finally, the fusion fine-tuning module combines these two types of features to achieve the generation of high-quality and high-resolution archaeology drawings. Experimental results on the self-constructed archaeology drawings dataset of grotto temple statues show that the proposed algorithm outperforms current mainstream image generation algorithms in terms of pixel accuracy (PA), structural similarity (SSIM), and peak signal-to-noise ratio (PSNR) and can be used to assist in drawing archaeology drawings.Keywords: archaeology drawings, digital heritage, image generation, deep learning
Procedia PDF Downloads 593742 Hybrid Lateral-Directional Robust Flight Control with Propulsive Systems
Authors: Alexandra Monteiro, K. Bousson, Fernando J. O. Moreira, Ricardo Reis
Abstract:
Fixed-wing flying vehicles are usually controlled by means of control surfaces such as elevators, ailerons, and rudders. The failure of these systems may lead to severe or even fatal crashes. These failures resulted in increased popularity for research activities on propulsion control in the last decades. The present work deals with a hybrid control architecture in which the propulsion-controlled vehicle maintains its traditional control surfaces, addressing the issue of robust lateral-directional dynamics control. The challenges stem from the parameter uncertainties in the stability and control derivatives and some unknown terms in the flight dynamics model. Two approaches are implemented and tested: linear quadratic regulation with robustness characteristics and H∞ control. The problem is centered on roll-yaw controller design with full state-feedback, which is able to deal with a standalone propulsion control mode as well as a hybrid mode combining both propulsion control and conventional control surface concepts while maintaining the original flight maneuverability characteristics. The results for both controllers emphasized very good control performances; however, the H∞ controller showed higher stabilization rates and robustness albeit with a slightly higher control magnitude than using the linear quadratic regulator.Keywords: robust propulsion control, h-infinity control, lateral-directional flight dynamics, parameter uncertainties
Procedia PDF Downloads 153