Search results for: solar cells and solar modules
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4781

Search results for: solar cells and solar modules

1031 SOCS3 Reverses Multidrug Resistance by Inhibiting MDR1 in Mammary Cell Carcinoma

Authors: S. Pradhan, D. Pradhan, G. Tripathy, T. Dasmohapatra

Abstract:

Suppressors of cytokine signalling (SOCS3), a newly indentified anti-apoptotic molecule is a downstream effecter of the receptor tyrosine kinase-Ras signalling pathway. Current study has uncovered that SOCS3 may have wide and imperative capacities, particularly because of its close correlation with malignant tumors. To investigate the impact of SOCS3 on MDR, we analyzed the expression of P-gp and SOCS3 by immune-histochemistry and found there was positive correlation between them. At that point we effectively interfered with RNA translation by the contamination of siRNA of SOCS3 into MCF7/ADM breast cancer cell lines through a lentivirus, and the expression of the target gene was significantly inhibited. After RNAi the drug resistance was reduced altogether and the expression of MDR1 mRNA and P-gp in MCF7/ADM cell lines demonstrated a significant decrease. Likewise the expression of P53 protein increased in a statistically significant manner (p ≤ 0.01) after RNAi exposure. Moreover, flowcytometry analysis uncovers that cell cycle and anti-apoptotic enhancing capacity of cells changed after RNAi treatment. These outcomes proposed SOCS3 may take part in breast cancer MDR by managing MDR1 and P53 expression, changing cell cycle and enhancing the anti-apoptotic ability.

Keywords: SOCS3gene, breast cancer, multidrug resistance, MDR1 gene, RNA interference

Procedia PDF Downloads 328
1030 Mental Health Diagnosis through Machine Learning Approaches

Authors: Md Rafiqul Islam, Ashir Ahmed, Anwaar Ulhaq, Abu Raihan M. Kamal, Yuan Miao, Hua Wang

Abstract:

Mental health of people is equally important as of their physical health. Mental health and well-being are influenced not only by individual attributes but also by the social circumstances in which people find themselves and the environment in which they live. Like physical health, there is a number of internal and external factors such as biological, social and occupational factors that could influence the mental health of people. People living in poverty, suffering from chronic health conditions, minority groups, and those who exposed to/or displaced by war or conflict are generally more likely to develop mental health conditions. However, to authors’ best knowledge, there is dearth of knowledge on the impact of workplace (especially the highly stressed IT/Tech workplace) on the mental health of its workers. This study attempts to examine the factors influencing the mental health of tech workers. A publicly available dataset containing more than 65,000 cells and 100 attributes is examined for this purpose. Number of machine learning techniques such as ‘Decision Tree’, ‘K nearest neighbor’ ‘Support Vector Machine’ and ‘Ensemble’, are then applied to the selected dataset to draw the findings. It is anticipated that the analysis reported in this study would contribute in presenting useful insights on the attributes contributing in the mental health of tech workers using relevant machine learning techniques.

Keywords: mental disorder, diagnosis, occupational stress, IT workplace

Procedia PDF Downloads 280
1029 Advantages of Sexual Reproduction in Aspergillus nidulans

Authors: Adel Omar Ashour, Paul S. Dyer

Abstract:

Aspergillus nidulans can reproduce by asexual or sexual means, producing green conidiospores or red-purple ascospores respectively. The latter one is produced in dark-purple globose ‘cleistothecia’ which are surrounded by Hülle cells. The species has a homothallic (self fertile) sexual breeding system. Given the extra metabolic costs associated with sexual compared to asexual reproduction it would be predicted that ascospore production would confer evolutionary benefits. However, due to the homothallic breeding system there is very rarely any increased genetic variation in ascospore offspring and traditionally conidia and ascospores are considered to be equally environmental resistant. We therefore examined in detail whether conidia and ascospores might exhibit as yet undetected differences in spore viability when subjected to certain environmental stressors. Spores from two strains of A. nidulans (comprising wild-type and KU mutants) were exposed to various levels of temperature (50-70°C for 30 min) and UV (350 nm for 10-60 min) stress. Results of experiments will be presented, including comparison of ‘D’ (decimal point reduction) values of conidia versus ascospores of A. nidulans. We detected that under certain exposure levels ascospores have significantly increased resistance compared to conidia. The increased environmental resistance of ascospores might be a key factor explaining the persistence of sexuality in this homothallic species, and reasons for differential survival are suggested.

Keywords: Aspergillus nidulans, asexual reproduction, conidia, ascospores, cleistothecia, d-value

Procedia PDF Downloads 351
1028 Stochastic Modeling and Productivity Analysis of a Flexible Manufacturing System

Authors: Mehmet Savsar, Majid Aldaihani

Abstract:

Flexible Manufacturing Systems (FMS) are used to produce a variety of parts on the same equipment. Therefore, their utilization is higher than traditional machining systems. Higher utilization, on the other hand, results in more frequent equipment failures and additional need for maintenance. Therefore, it is necessary to carefully analyze operational characteristics and productivity of FMS or Flexible Manufacturing Cells (FMC), which are smaller configuration of FMS, before installation or during their operation. Appropriate models should be developed to determine production rates based on operational conditions, including equipment reliability, availability, and repair capacity. In this paper, a stochastic model is developed for an automated FMC system, which consists of two machines served by two robots and a single repairman. The model is used to determine system productivity and equipment utilization under different operational conditions, including random machine failures, random repairs, and limited repair capacity. The results are compared to previous study results for FMC system with sufficient repair capacity assigned to each machine. The results show that the model will be useful for design engineers and operational managers to analyze performance of manufacturing systems at the design or operational stages.

Keywords: flexible manufacturing, FMS, FMC, stochastic modeling, production rate, reliability, availability

Procedia PDF Downloads 511
1027 [Keynote Talk]: Bioactive Cyclic Dipeptides of Microbial Origin in Discovery of Cytokine Inhibitors

Authors: Sajeli A. Begum, Ameer Basha, Kirti Hira, Rukaiyya Khan

Abstract:

Cyclic dipeptides are simple diketopiperazine derivatives being investigated by several scientists for their biological effects which include anticancer, antimicrobial, haematological, anticonvulsant, immunomodulatory effect, etc. They are potentially active microbial metabolites having been synthesized too, for developing into drug candidates. Cultures of Pseudomonas species have earlier been reported to produce cyclic dipeptides, helping in quorum sensing signals and bacterial–host colonization phenomena during infections, causing cell anti-proliferation and immunosuppression. Fluorescing Pseudomonas species have been identified to secrete lipid derivatives, peptides, pyrroles, phenazines, indoles, aminoacids, pterines, pseudomonic acids and some antibiotics. In the present work, results of investigation on the cyclic dipeptide metabolites secreted by the culture broth of Pseudomonas species as potent pro-inflammatory cytokine inhibitors are discussed. The bacterial strain was isolated from the rhizospheric soil of groundnut crop and identified as Pseudomonas aeruginosa by 16S rDNA sequence (GenBank Accession No. KT625586). Culture broth of this strain was prepared by inoculating into King’s B broth and incubating at 30 ºC for 7 days. The ethyl acetate extract of culture broth was prepared and lyophilized to get a dry residue (EEPA). Lipopolysaccharide (LPS)-induced ELISA assay proved the inhibition of tumor necrosis factor-alpha (TNF-α) secretion in culture supernatant of RAW 264.7 cells by EEPA (IC50 38.8 μg/mL). The effect of oral administration of EEPA on plasma TNF-α level in rats was tested by ELISA kit. The LPS mediated plasma TNF-α level was reduced to 45% with 125 mg/kg dose of EEPA. Isolation of the chemical constituents of EEPA through column chromatography yielded ten cyclic dipeptides, which were characterized using nuclear magnetic resonance and mass spectroscopic techniques. These cyclic dipeptides are biosynthesized in microorganisms by multifunctional assembly of non-ribosomal peptide synthases and cyclic dipeptide synthase. Cyclo (Gly-L-Pro) was found to be more potentially (IC50 value 4.5 μg/mL) inhibiting TNF-α production followed by cyclo (trans-4-hydroxy-L-Pro-L-Phe) (IC50 value 14.2 μg/mL) and the effect was equal to that of standard immunosuppressant drug, prednisolone. Further, the effect was analyzed by determining mRNA expression of TNF-α in LPS-stimulated RAW 264.7 macrophages using quantitative real-time reverse transcription polymerase chain reaction. EEPA and isolated cyclic dipeptides demonstrated diminution of TNF-α mRNA expression levels in a dose-dependent manner under the tested conditions. Also, they were found to control the expression of other pro-inflammatory cytokines like IL-1β and IL-6, when tested through their mRNA expression levels in LPS-stimulated RAW 264.7 macrophages under LPS-stimulated conditions. In addition, significant inhibition effect was found on Nitric oxide production. Further all the compounds exhibited weak toxicity to LPS-induced RAW 264.7 cells. Thus the outcome of the study disclosed the effectiveness of EEPA and the isolated cyclic dipeptides in down-regulating key cytokines involved in pathophysiology of autoimmune diseases.In another study led by the investigators, microbial cyclic dipeptides were found to exhibit excellent antimicrobial effect against Fusarium moniliforme which is an important causative agent of Sorghum grain mold disease. Thus, cyclic dipeptides are emerging small molecular drug candidates for various autoimmune diseases.

Keywords: cyclic dipeptides, cytokines, Fusarium moniliforme, Pseudomonas, TNF-alpha

Procedia PDF Downloads 205
1026 The Assessment of Nephrotoxic Effects of Peganum Harmala In Rat

Authors: Amal Yamani, Jaber Elgtou, Aziz Mohammed, Lazaar Jamila, Elachouri Mostafa

Abstract:

Peganum harmala used traditionally as an emenagogue and abortifacient agent in Morocco phytotherapy. Even thought its benefits effects, Peganum harmala remained severely toxic for the organism especially in strong doses. The present study was initiated to evaluate the nephrotoxic effects of aqueous extract of Peganum harmala seeds (PHS). The solution containing aqueous extract of PHS was administered orally by gavage at the dose of 2g/kg body weight during twenty days. Rats were used in this study, two groups were considered, a treated group received an extract of PHS at dose 2g/kg bodyweight and control group received an amount of tap water equivalent to the volume of the vehicle used for the dose of PHS extract. The data we collected showed that aqueous extracts of PHS administered during twenty days induced a significant changes in renal function expressed in decreases of diuresis (from 10 ± 0,58 to 5,33 ± 0,33 ml/24 hours) and the same profile for mean arterial blood pressure (from 125 ± 2,89 to 96,67 ± 6,01 mmHg). The histopathological study showed an alteration of kidney cells in treated group with regard the control group which is not affected. In conclusion: our results indicate that the aqueous extract of PHS induces toxicity may affect severely kidney function and causes renal histopathology.

Keywords: peganum harmala seeds, nephrotoxic, diuresi, histpathology, kidney

Procedia PDF Downloads 289
1025 Sequence Analysis of the Effect of HPV-16 E1 Variation on Cervical Carcinogenesis

Authors: Fern Baedyananda, Arkom Chaiwongkot, Somchai Niruthisard, Nakarin Kitkumthorn, Parvapan Bhattarakosol

Abstract:

High-risk human papillomavirus (HPV) infections cause transformation of the host cells by down-regulating and inhibiting host regulatory proteins such as p53 and pRb by overexpressing the viral oncoproteins E6 and E7. However, the E1 protein which is the only enzyme encoded by HPV has also been shown to cause DNA instability leading to the integration of the virus into the host genome and triggering carcinogenic events. A 63bp duplication in the E1 helicase region has been detected in European patients. However, the clinical prognosis of these patients is still controversial. This study was performed to determine the presence of the HPV-16 E1 63bp duplication in patient cervical samples in Thai women and determine the sequence of the variant in the Thai population. Detection of the HPV-16 E1 duplication in the helicase region was performed in 90 patient cell samples across normal, cervical intraepithelial neoplasia I-III, and squamous cervical carcinoma stages by PCR. The PCR products were purified and sequenced to determine the presence of duplication variants.The variant form was found in 10% of all CIN 1 patients. In this study, the presence of the 63 bp duplication variant in the Thai population was found to be present and was further characterized. Interestingly, all samples that exhibited the variant form of HPV-16 E1 were classified as CIN I. Presence of the variant, constricted to mild dysplasia signifies the importance of HPV-16 E1 in carcinogenesis.

Keywords: carcinogenesis, cervical cancer, human papillomavirus, HPV-16 E1

Procedia PDF Downloads 226
1024 Modeling of the Cellular Uptake of Rigid Nanoparticles: Investigating the Influence of the Adaptation of the Cell’s Mechanical Properties during Endocytosis

Authors: Sarah Iaquinta, Christophe Blanquart, Elena Ishow, Sylvain Freour, Frederic Jacquemin, Shahram Khazaie

Abstract:

Nanoparticles have recently emerged as a possible cancer treatment tool. Several formulations have been used to enhance the uptake of these nanoparticles by cancer cells and avoid their immediate clearance when administrated in vivo. Most of the previous studies focus on the investigation of the influence of the mechanical properties of the cell membrane and the particle. However, these studies do not account for the variation of adhesion and tension during the wrapping of the nanoparticle by the membrane. These couplings should be considered since the cell adapts to the interaction with the nanoparticle by, e.g., increasing the number of interactions (consequently leading to an increase of the cell membrane/nanoparticle adhesion) and by reorganizing its cytoskeleton, leading to the releasing of the tension of the cell membrane. The main contribution of this work is the proposal of a novel model for representing the cellular uptake of rigid circular nanoparticles based on an energetic model tailored to take into account the adaptation of the nanoparticle/cell membrane adhesion and of the membrane stress during wrapping. Several coupling models using sigmoidal functions are considered and compared. The study calculations revealed that the results considering constant parameters underestimated the final wrapping degree of the particle by up to 50%.

Keywords: adhesion, cellular adaptation, cellular uptake, mechanical properties, tension

Procedia PDF Downloads 204
1023 Biotech Processes to Recover Valuable Fraction from Buffalo Whey Usable in Probiotic Growth, Cosmeceutical, Nutraceutical and Food Industries

Authors: Alberto Alfano, Sergio D’ambrosio, Darshankumar Parecha, Donatella Cimini, Chiara Schiraldi.

Abstract:

The main objective of this study regards the setup of an efficient small-scale platform for the conversion of local renewable waste materials, such as whey, into added-value products, thereby reducing environmental impact and costs deriving from the disposal of processing waste products. The buffalo milk whey derived from the cheese-making process, called second cheese whey, is the main by-product of the dairy industry. Whey is the main and most polluting by-product obtained from cheese manufacturing consisting of lactose, lactic acid, proteins, and salts, making whey an added-value product. In Italy, and in particular, in the Campania region, soft cheese production needs a large volume of liquid waste, especially during late spring and summer. This project is part of a circular economy perspective focused on the conversion of potentially polluting and difficult to purify waste into a resource to be exploited, and it embodies the concept of the three “R”: reduce, recycle, and reuse. Special focus was paid to the production of health-promoting biomolecules and biopolymers, which may be exploited in different segments of the food and pharmaceutical industries. These biomolecules may be recovered through appropriate processes and reused in an attempt to obtain added value products. So, ultrafiltration and nanofiltration processes were performed to fractionate bioactive components starting from buffalo milk whey. In this direction, the present study focused on the implementation of a downstream process that converts waste generated from food and food processing industries into added value products with potential applications. Owing to innovative downstream and biotechnological processes, rather than a waste product may be considered a resource to obtain high added value products, such as food supplements (probiotics), cosmeceuticals, biopolymers, and recyclable purified water. Besides targeting gastrointestinal disorders, probiotics such as Lactobacilli have been reported to improve immunomodulation and protection of the host against infections caused by viral and bacterial pathogens. Interestingly, also inactivated microbial (probiotic) cells and their metabolic products, indicated as parabiotic and postbiotics, respectively, have a crucial role and act as mediators in the modulation of the host’s immune function. To boost the production of biomass (both viable and/or heat inactivated cells) and/or the synthesis of growth-related postbiotics, such as EPS, efficient and sustainable fermentation processes are necessary. Based on a “zero-waste” approach, wastes generated from local industries can be recovered and recycled to develop sustainable biotechnological processes to obtain probiotics as well as post and parabiotic, to be tested as bioactive compounds against gastrointestinal disorders. The results have shown it was possible to recover an ultrafiltration retentate with suitable characteristics to be used in skin dehydration, to perform films (i.e., packaging for food industries), or as a wound repair agent and a nanofiltration retentate to recover lactic acid and carbon sources (e.g., lactose, glucose..) used for microbial cultivation. On the side, the last goal is to obtain purified water that can be reused throughout the process. In fact, water reclamation and reuse provide a unique and viable opportunity to augment traditional water supplies, a key issue nowadays.

Keywords: biotech process, downstream process, probiotic growth, from waste to product, buffalo whey

Procedia PDF Downloads 60
1022 Early Cell Cultures Derived from Human Prostate Cancer Tissue Express Tissue-Specific Epithelial and Cancer Markers

Authors: Vladimir Ryabov, Mikhail Baryshevs, Mikhail Voskresenskey, Boris Popov

Abstract:

The human prostate gland (PG) samples were obtained from patients who had undergone radical prostatectomy for prostate cancer (PC) and used to extract total RNA and prepare the prostate stromal cell cultures (PSCC) and patients-derived organoids (PDO). Growth of the cell cultures was accessed under microscopic evaluation in transmitted light and the marker expression by reverse polymerase chain reaction (RT-PCR), immunofluorescence, and immunoblotting. Some PCR products from prostate tissue, PSCC, and PDO were cloned and sequenced. We found that the cells of early and late passages of PSCC and corresponding PDO expressed luminal (androgen receptor, AR; cytokeratin 18, CK18) and basal (CK5, p63) epithelial markers, the production of which decreased or disappeared in late PSCC and PDO. The PSCC and PDO of early passages from cancer tissue additionally produced cancer markers AMACR, TMPRSS2-ERG, and Ezh2. The expression of TMPRSS2-ERG fusion transcripts was verified by cloning and sequencing the PCR products. The results obtained suggest that early passages of PSCC might be used as a pre-clinical model for the evaluation of early markers of prostate cancer.

Keywords: localized prostate cancer, prostate epithelial markers, prostate cancer markers, AMACR, TMPRSS2-ERG, prostate stromal cell cultures, PDO

Procedia PDF Downloads 99
1021 Ultrasound Enhanced Release of Active Targeting Liposomes Used for Cancer Treatment

Authors: Najla M. Salkho, Vinod Paul, Pierre Kawak, Rute F. Vitor, Ana M. Martin, Nahid Awad, Mohammad Al Sayah, Ghaleb A. Husseini

Abstract:

Liposomes are popular lipid bilayer nanoparticles that are highly efficient in encapsulating both hydrophilic and hydrophobic therapeutic drugs. Liposomes promote a low risk controlled release of the drug avoiding the side effects of the conventional chemotherapy. One of the great potentials of liposomes is the ability to attach a wide range of ligands to their surface producing ligand-mediated active targeting of cancer tumour with limited adverse off-target effects. Ultrasound can also aid in the controlled and specified release of the drug from the liposomes by breaking it apart and releasing the drug in the specific location where the ultrasound is applied. Our research focuses on the synthesis of PEGylated liposomes (contain poly-ethylene glycol) encapsulated with the model drug calcein and studying the effect of low frequency ultrasound applied at different power densities on calcein release. In addition, moieties are attached to the surface of the liposomes for specific targeting of the cancerous cells which over-express the receptors of these moieties, ultrasound is then applied and the release results are compared with the moiety free liposomes. The results showed that attaching these moieties to the surface of the PEGylated liposomes not only enhance their active targeting but also stimulate calcein release from these liposomes.

Keywords: active targeting, liposomes, moieties, ultrasound

Procedia PDF Downloads 592
1020 Extractive Bioconversion of Polyhydroxyalkanoates (PHAs) from Ralstonia Eutropha Via Aqueous Two-Phase System-An Integrated Approach

Authors: Y. K. Leong, J. C. W. Lan, H. S. Loh, P. L. Show

Abstract:

Being biodegradable, non-toxic, renewable and have similar or better properties as commercial plastics, polyhydroxy alkanoates (PHAs) can be a potential game changer in the polymer industry. PHAs are the biodegradable polymer produced by bacteria, which are in interest as a sustainable alternative to petrochemical-derived plastics; however, its commercial value has significantly limited by high production and recovery cost of PHA. Aqueous two-phase system (ATPS) offers different chemical and physical environments, which contains about 80-90% water delivers an excellent environment for partitioning of cells, cell organelles and biologically active substances. Extractive bioconversion via ATPS allows the integration of PHA upstream fermentation and downstream purification process, which reduces production steps and time, thus lead to cost reduction. The ability of Ralstonia eutropha to grow under different ATPS conditions was investigated for its potential to be used in a bioconversion system. Changes in tie-line length (TLL) and a volume ratio (Vr) were shown to have an effect on PHA partition coefficient. High PHA recovery yield of 65% with a relatively high purity of 73% was obtained in PEG 6000/Sodium sulphate system with 42.6 wt/wt % TLL and 1.25 Vr. Extractive bioconversion via ATPS is an attractive approach for the combination of PHA production and recovery process.

Keywords: aqueous two-phase system, extractive bioconversion, polyhydroxy alkanoates, purification

Procedia PDF Downloads 301
1019 Towards Computational Fluid Dynamics Based Methodology to Accelerate Bioprocess Scale Up and Scale Down

Authors: Vishal Kumar Singh

Abstract:

Bioprocess development is a time-constrained activity aimed at harnessing the full potential of culture performance in an ambience that is not natural to cells. Even with the use of chemically defined media and feeds, a significant amount of time is devoted in identifying the apt operating parameters. In addition, the scale-up of these processes is often accompanied by loss of antibody titer and product quality, which further delays the commercialization of the drug product. In such a scenario, the investigation of this disparity of culture performance is done by further experimentation at a smaller scale that is representative of at-scale production bioreactors. These scale-down model developments are also time-intensive. In this study, a computation fluid dynamics-based multi-objective scaling approach has been illustrated to speed up the process transfer. For the implementation of this approach, a transient multiphase water-air system has been studied in Ansys CFX to visualize the air bubble distribution and volumetric mass transfer coefficient (kLa) profiles, followed by the design of experiment based parametric optimization approach to define the operational space. The proposed approach is completely in silico and requires minimum experimentation, thereby rendering a high throughput to the overall process development.

Keywords: bioprocess development, scale up, scale down, computation fluid dynamics, multi-objective, Ansys CFX, design of experiment

Procedia PDF Downloads 74
1018 Electrohydrodynamic Instability and Enhanced Mixing with Thermal Field and Polymer Addition Modulation

Authors: Dilin Chen, Kang Luo, Jian Wu, Chun Yang, Hongliang Yi

Abstract:

Electrically driven flows (EDF) systems play an important role in fuel cells, electrochemistry, bioseparation technology, fluid pumping, and microswimmers. The core scientific problem is multifield coupling, the further development of which depends on the exploration of nonlinear instabilities, force competing mechanisms, and energy budgets. In our study, two categories of electrostatic force-dominated phenomena, induced charge electrosmosis (ICEO) and ion conduction pumping are investigated while considering polymer rheological characteristics and heat gradients. With finite volume methods, the thermal modulation strategy of ICEO under the thermal buoyancy force is numerically analyzed, and the electroelastic instability turn associated with polymer addition is extended. The results reveal that the thermal buoyancy forces are sufficient to create typical thermogravitational convection in competition with electroconvective modes. Electroelastic instability tends to be promoted by weak electrical forces, and polymers effectively alter the unstable transition routes. Our letter paves the way for improved mixing and heat transmission in microdevices, as well as insights into the non-Newtonian nature of electrohydrodynamic dynamics.

Keywords: non-Newtonian fluid, electroosmotic flow, electrohydrodynamic, viscoelastic liquids, heat transfer

Procedia PDF Downloads 57
1017 Comparative Study of Antioxidant Activity in in vivo and in vitro Samples of Purple Greater Yam (Dioscorea alata L).

Authors: Sakinah Abdullah, Rosna Mat Taha

Abstract:

Antioxidants are compounds that protect cells against the damaging effects of reactive oxygen species such as singlet oxygen, superoxide, peroxyl radicals, and peroxynitrite which result in oxidative stress leading to cellular damage. Natural antioxidant are in high demand because of their potential in health promotion and disease prevention and their improved safety and consumer acceptability. Plants are rich sources of natural antioxidant. Dioscorea alata L. known as 'ubi badak' in Malaysia were well known for their antioxidant content, but this plant was seasonal. Thus, tissue culture technique was used to mass propagate this plant. In the present work, a comparative study between in vitro (from tissue culture) and in vivo (from intact plant) samples of Dioscorea alata L. for their antioxidant potential by 2,2-diphenil -1- picrylhydrazyl (DPPH) radical scavenging activity method and their total phenolic and flavonoid contents were carried out. All samples had better radical scavenging activity but in vivo samples had the strongest radical scavenging activity compared to in vitro samples. Furthermore, tubers from in vivo samples showed the greatest free radical scavenging effect and comparatively greater phenolic content than in vitro samples.

Keywords: Dioscorea alata, tissue culture, antioxidant, in vivo, in vitro, DPPH

Procedia PDF Downloads 456
1016 Effect of Phenytoin and Cyclosporine on Connective Tissue Enzymes in Gingival Fibroblasts of Adult and Children

Authors: V. Surena, B. Nazemisalman, F. Noghrehkar

Abstract:

Introduction: Gingival overgrowth (GO) is a common side effect involving users of antiepileptic, immunosuppressive and calcium channel blocker drugs. Cyclosporine and phenytoin are amongst the most widely used drugs associated with GO. Gingival fibroblasts seem to have a significant role in the production of certain enzymes after administration of the drugs contributing to GO. Previous studies have shown a higher prevalence of GO in children and adolescents. The aim of this study was to compare normal human gingival fibroblasts with those exposed to Cyclosporine or phenytoin in measuring the production levels of certain enzymes that could have a possible role in GO. Methods: samples were obtained from the gingival biopsies of seven adult and seven children and were cultured into plates. With the growth of fibroblast cells, they were treated with or without either Cyclosporine or phenytoin. Reverse transcriptase-polymerase chain reaction (RT-PCR) was used to determine the expressed levels of R-EGF, cathepsin B,L, Lysyl oxidase, COL1, TGF β1, MMP-1,2, and TIMP1. Results: according to RT-PCR analyses, the expressed levels of R-EGF, cathepsin B, L, Lysyl oxidase, COL1, TGF β1, MMP-1, 2 and TIMP1 were affected by Cyclosporine and phenytoin. TGF-β1, TIMP, Cathepsin B and EGF showed comparable values in the adult and pediatric groups. Conclusions: Different expressed levels of enzymes after treatment of the gingival fibroblasts of adults and pediatrics with phenytoin or Cyclosporine could be the reason for the higher severity of GO in children. More studies need to be performed on the pathogenesis of GO at different age groups.

Keywords: cyclosporine, fibroblasts, phenytoin, gingivae

Procedia PDF Downloads 263
1015 Preparation and Conductivity Measurements of LSM/YSZ Composite Solid Oxide Electrolysis Cell Anode Materials

Authors: Christian C. Vaso, Rinlee Butch M. Cervera

Abstract:

One of the most promising anode materials for solid oxide electrolysis cell (SOEC) application is the Sr-doped LaMnO3 (LSM) which is known to have a high electronic conductivity but low ionic conductivity. To increase the ionic conductivity or diffusion of ions through the anode, Yttria-stabilized Zirconia (YSZ), which has good ionic conductivity, is proposed to be combined with LSM to create a composite electrode and to obtain a high mixed ionic and electronic conducting anode. In this study, composite of lanthanum strontium manganite and YSZ oxide, La0.8Sr0.2MnO3/Zr0.92Y0.08O2 (LSM/YSZ), with different wt.% compositions of LSM and YSZ were synthesized using solid-state reaction. The obtained prepared composite samples of 60, 50, and 40 wt.% LSM with remaining wt.% of 40, 50, and 60, respectively for YSZ were fully characterized for its microstructure by using powder X-ray diffraction (XRD), Thermogravimetric analysis (TGA), Fourier transform infrared (FTIR), and Scanning electron microscope/Energy dispersive spectroscopy (SEM/EDS) analyses. Surface morphology of the samples via SEM analysis revealed a well-sintered and densified pure LSM, while a more porous composite sample of LSM/YSZ was obtained. Electrochemical impedance measurements at intermediate temperature range (500-700 °C) of the synthesized samples were also performed which revealed that the 50 wt.% LSM with 50 wt.% YSZ (L50Y50) sample showed the highest total conductivity of 8.27x10-1 S/cm at 600 oC with 0.22 eV activation energy.

Keywords: ceramics, microstructure, fuel cells, electrochemical impedance spectroscopy

Procedia PDF Downloads 238
1014 Development and Characterization of Hydroxyapatite Based Nanocomposites for Local Drug Delivery to Periodontal Pockets

Authors: Indu Lata Kanwar, Preeti K. Suresh

Abstract:

The aim of this study is to fabricate hydroxyapatite based nanocomposites for local drug delivery in periodontal pockets. Hydroxyapatite is chemically similar to the mineral component of bones and hard tissues in mammals. Synthetic biocompatibility and bioactivity with human teeth and bone, making it very attractive for biomedical applications. Nanocomposite is a multiphase solid material where one of the phases has one, two or three dimensions of less than 100 nanometres (nm), or structures having nano­scale repeat distances between the different phases that make up the material. Nanostructured calcium phosphate materials play an important role in the formation of hard tissues in nature. It is reported that calcium phosphates materials in nano-size can mimic the dimensions of constituent components of calcified tissues. Nano-sized materials offer improved performances compared with conventional materials due to their large surface-to-volume ratios. The specific biological properties of the nanocomposites, as well as their interaction with cells, include the use of bioactive molecules. The approach of periodontal tissue engineering is considered promising to restore bone defect through the use of engineered materials with the aim that they will prohibit the invasion of fibrous connective tissue and help repair the function during bone regeneration.

Keywords: bioactive, hydroxyapatite, nanocomposities, periondontal

Procedia PDF Downloads 317
1013 Biotransformation Process for the Enhanced Production of the Pharmaceutical Agents Sakuranetin and Genkwanin: Poised to be Potent Therapeuctic Drugs

Authors: Niranjan Koirala, Sumangala Darsandhari, Hye Jin Jung, Jae Kyung Sohng

Abstract:

Sakuranetin, an antifungal agent and genkwanin, an anti-inflammatory agent, are flavonoids with several potential pharmaceutical applications. To produce such valuable flavonoids in large quantity, an Escherichia coli cell factory has been created. E. coli harboring O-methyltransferase (SaOMT2) derived from Streptomyces avermitilis was employed for regiospecific methylation of naringenin and apigenin. In order to increase the production via biotransformation, metK gene was overexpressed and the conditions were optimized. The maximum yield of sakuranetin and genkwanin under optimized conditions was 197 µM and 170 µM respectively when 200 µM of naringenin and apigenin were supplemented in the separate cultures. Furthermore, sakuranetin was purified in large scale and used as a substrate for in vitro glycosylation by YjiC to produce glucose and galactose derivatives of sakuranetin for improved solubility. We also found that unlike naringenin, sakuranetin effectively inhibits α-melanocyte stimulating hormone (α-MSH)-stimulated melanogenesis in B16F10 melanoma cells. In addition, genkwanin more potently inhibited angiogenesis than apigenin. Based on our findings, we speculate that these compounds warrant further investigation in vivo as potential new therapeutic anti-carcinogenic, anti-melanogenic and anti-angiogenic agents.

Keywords: anti-carcinogenic, anti-melanogenic, glycosylation, methylation

Procedia PDF Downloads 605
1012 In vivo Evidence of Protective Effect of Hyparrhenia Hirta against Nitrate-Induced Genotoxicity

Authors: H. Bouaziz-Ketata, G. Ben Salah, Z. Aidi, C. Kallel, H. Kammoun, F. Fakhfakh, N. Zeghal

Abstract:

The present study was performed to evaluate the potential protective effect of Hyparrhenia hirta methanolic extract in NaNO3-induced genotoxic and hematotoxic effects. Male Wistar rats were randomly divided into three groups: a control group and two treated groups during 50 days with NaNO3 administered at a dose of 400 mg kg-1 bw either alone in drinking water or co-administered with Hyparrhenia hirta at a dose of 200 mg kg-1 bw. NaNO3 treatment showed a significant increase in the frequencies of total chromosomal aberrations, aberrant metaphases and micronucleus in bone-marrow cells. In parallel, the NaNO3-treated group showed a significant decrease in red blood cell count, hemoglobin and hematocrit and a significant increase in total white blood cell, in neutrophil and eosinophil counts. Platelet count, mean corpuscular volume, mean corpuscular hemoglobin, and mean corpuscular hemoglobin concentration remained unchanged in treated groups compared to those of controls. Hyparrhenia hirta methanolic extract appeared to be effective against genotoxic and hematotoxic changes induced by nitrate, as evidenced by the improvement of the markers cited above.

Keywords: Hyparrhenia hirta, sodium nitrate, erythrocytes, genotoxicity

Procedia PDF Downloads 251
1011 Effects of Cassia tora Seeds Extract on Type 2 Diabetes Induced Mice

Authors: Min-Ju Jo, Min-Young Um, Moonsung Choi, Sooim Shin

Abstract:

Type 2 diabetes (T2D) is characterized by insulin resistance, the inability of β-cell and the dysfunction of mitochondria. To characterize effects of Cassia tora extract on mitochondrial dysfunction related T2D, the reduced glutathione level, amount of mitochondrial complexes and activities of mitochondrial complexes were measured. Three groups of mice were modeled; a control group was fed a normal diet, a diabetic group was fed a diabetic diet high in fat and carbohydrates, and a third group was fed a diabetic diet + 70% ethanol extracted Cassia tora seeds for 12 weeks. The amount of mitochondria was determined by Bradford assay after isolation of mitochondria in liver from each group. During isolation of mitochondria, cytosolic fractions of the tissue were collected to measure the reduced glutathione level. Interestingly, high level of the reduced glutathione was observed in Cassia tora treated group and decreased activities of mitochondrial complexes in Cassia tora treated group compared to the diabetic diet group. It indicates that Cassia tora has the potential to increase the reduced form of glutathione functioned as an important antioxidant in cells, and to reduce mitochondrial metabolic compensatory mechanism.

Keywords: antioxidant, Cassia tora, diabetes, electron transport chain, glutathione, mitochondria, spectrophotometry

Procedia PDF Downloads 166
1010 Phytoplankton Community Structure in the Moroccan Coast of the Mediterranean Sea: Case Study of Saiidia, Three Forks Cape

Authors: H. Idmoussi, L. Somoue, O. Ettahiri, A. Makaoui, S. Charib, A. Agouzouk, A. Ben Mhamed, K. Hilmi, A. Errhif

Abstract:

The study on the composition, abundance, and distribution of phytoplankton was conducted along the Moroccan coast of the Mediterranean Sea (Saiidia - Three Forks Cape) in April 2018. Samples were collected at thirteen stations using Niskin bottles within two layers (surface and deep layers). The identification and enumeration of phytoplankton were carried out according to the Utermöhl method (1958). A total number of 54 phytoplankton species were identified over the entire survey area. Thirty-six species could be found both in the surface and the deep layers while eleven species were observed only in the surface layer and seven in the deep layer. The phytoplankton throughout the study area was dominated by diatoms represented mainly by Nitzschia sp., Pseudonitzschia sp., Chaetoceros sp., Cylindrotheca closterium, Leptocylindrus minimus, Leptocylindrus danicus, Dactyliosolen fragilissimus. Dinoflagellates were dominated by Gymnodinium sp., Scrippsiella sp., Gyrodinium spirale, Noctulica sp, Prorocentrum micans. Euglenophyceae, Silicoflagellates and Raphidophyceae were present in low numbers. Most of the phytoplankton were concentrated in the surface layer, particularly towards the Three Forks Cape (25200 cells·l⁻¹). Shannon species diversity (ranging from 2 and 4 Bits) and evenness index (broadly > 0.7) suggested that phytoplankton community is generally diversified and structured in the studied area.

Keywords: abundance, diversity, Mediterranean Sea, phytoplankton

Procedia PDF Downloads 149
1009 Experimental Lead Toxicity in Lohi Sheep: Risks and Impact on Edible Tissues

Authors: Muhammad Younus, Muhammad Sajid, Muti-ur-Rehman Khan, Aftab Ahmad Anjum, Muhammad Asif Idrees, Iahtasham Khan, Aman Ullah Khan, Sajid Umar, Raheela Akhtar

Abstract:

The present study was conducted to investigate the hazardous effects of lead on health and edible organs of Lohi sheep. The adult Lohi sheep (n=48) were randomly divided into two equal groups. The first group was administered lead acetate at dose of 70 mg/kg live body weight daily as 10% solution by oral route for a period of 90 days and the second group served as a negative control. Blood and tissue samples were collected at day 0, 30, 60 and 90 and analyzed for lead concentration by atomic absorption spectrophotometry. The kidney showed the highest lead concentration (p < 0.05) followed by liver and then muscle. Lead acetate treated sheep showed structural and behavioral changes during the last month of trial. Liver showed necrosis, hemorrhages and hyperactivation of macrophages. Kidney showed degenerative and necrotic changes in glomeruli and tubules and the characteristic intranuclear inclusion bodies in tubular epithelial cells on H and E staining. It was concluded that Lohi sheep is affected by lead intoxication at low dose for longer period and hence exhibits lead accumulation in edible tissues.

Keywords: Lohi sheep, lead acetate, edible tissue, histopathology

Procedia PDF Downloads 448
1008 Effect of Ultrasound on Carotenoids Extraction from Pepper and Process Optimization Using Response Surface Methodology (RSM)

Authors: Elham Mahdian, Reza Karazhian, Rahele Dehghan Tanha

Abstract:

Pepper (Capsicum annum L.) which belong to the family Solananceae, are known for their versatility as a vegetable crop and are consumed both as fresh vegetables or dehydrated for spices. Pepper is considered an excellent source of bioactive nutrients. Ascorbic acid, carotenoids and phenolic compounds are its main antioxidant constituents. Ultrasound assisted extraction is an inexpensive, simple and efficient alternative to conventional extraction techniques. The mechanism of action for ultrasound-assisted extraction are attributed to cavitations, mechanical forces and thermal impact, which result in disruption of cells walls, reduce particle size, and enhance mass transfer across cell membranes. In this study, response surface methodology was used to optimize experimental conditions for ultrasonic assisted extraction of carotenoid compounds from Chili peppers. Variables were included extraction temperatures at 3 levels (30, 40 and 50 °C), extraction times at 3 levels (10, 25 and 40 minutes) and power at 3 levels (30, 60 and 90 %). It was observed that ultrasound waves applied at temperature of 49°C, time of 10 minutes and power 89 % resulted to the highest carotenoids contents (lycopene and β-carotene), while the lowest value was recorded in the control. Thus, results showed that ultrasound waves have strong impact on extraction of carotenoids from pepper.

Keywords: carotenoids, optimization, pepper, response surface methodology

Procedia PDF Downloads 462
1007 PD-L1 Expression in Papillary Thyroid Carcinoma Arising Denovo or on Top of Autoimmune Thyroiditis

Authors: Dalia M. Abouelfadl, Noha N. Yassen, Marwa E. Shabana

Abstract:

Background: The evolution of immune therapy motivated many to study the relation between immune response and progression of cancer. Little is known about expression of PD-L1 (a newly evolving immunotherapeutic drug) in papillary thyroid carcinoma (PTC) arising de-novo and PTC arising on top of autoimmune thyroiditis (Hashimoto's (HT) and lymphocytic thyroiditis (LT)). The aim of this work is to study the alteration of expression of PD-L1 in PTCs arising from de-novo or on top of HT OR LT using immunohistochemistry and image analyser system. Method: 100 paraffin blocks for PTC cases were collected retrospectively for staining using PD-L1 rabbit monoclonal antibody (BIOCARE-ACI 3171 A, C). The antibody expression is measured digitally using Image Analyzer Leica Qwin 3000, and the membranous and cytoplasmic expression of PD-L1 in tumor cells was considered positive. The results were correlated with tumor grade, size, and LN status. Results: The study samples consisted of 41 cases of PTC arising De novo, 36 cases on top of HT, and 23 on top of LT. Expression of PD-L1 was highest among the PTC-HL group (25 case-69%) followed by PTC-TL group (14 case-60.8%) then de-novo PTC (19 case-46%) with P Value < 0.05. PD-L1 expression correlated with nodal metastasis and was not relevant to tumor size or grade. Conclusion: The severity of the immune response in tumor microenvironment directly influences PTC prognosis. The anti PD-L1 Ab can be a very successful therapeutic agent for PTC arising on top of HT.

Keywords: carcinoma, Hashimoto's, lymphocytic, papillary, PD-L1, thyroiditis

Procedia PDF Downloads 170
1006 Preliminary dosimetric Evaluation of a New Therapeutic 177LU Complex for Human Based on Biodistribution Data in Rats

Authors: H. Yousefnia, S. Zolghadri, A. Golabi Dezfuli

Abstract:

Tris (1,10-phenanthroline) lanthanum(III)] trithiocyanate is a new compound that has shown to stop DNA synthesis in CCRF-CEM and Ehrlich ascites cells leading to a cell cycle arrest in G0/G1. One other important property of the phenanthroline nucleus is its ability to act as a triplet-state photosensitizer especially in complexes with lanthanides. In Nowadays, the radiation dose assessment resource (RADAR) method is known as the most common method for absorbed dose calculation. 177Lu was produced by irradiation of a natural Lu2O3 target at a thermal neutron flux of approximately 4 × 1013 n/cm2•s. 177Lu-PL3 was prepared in the optimized condition. The radiochemical yield was checked by ITLC method. The biodistribution of the complex was investigated by intravenously injection to wild-type rats via their tail veins. In this study, the absorbed dose of 177Lu-PL3 to human organs was estimated by RADAR method. 177Lu was prepared with a specific activity of 2.6-3 GBq.mg-1 and radionuclide purity of 99.98 %. The 177Lu-PL3 complex can prepare with high radiochemical yield (> 99 %) at optimized conditions. The results show that liver and spleen have received the highest absorbed dose of 1.051 and 0.441 mSv/MBq, respectivley. The absorbed dose values for these two dose-limiting tissues suggest more biological studies special in tumor-bearing animals.

Keywords: internal dosimetry, Lutetium-177, radar, animals

Procedia PDF Downloads 368
1005 Visualization of Wave Propagation in Monocoupled System with Effective Negative Stiffness, Effective Negative Mass, and Inertial Amplifier

Authors: Abhigna Bhatt, Arnab Banerjee

Abstract:

A periodic system with only a single coupling degree of freedom is called a monocoupled system. Monocoupled systems with mechanisms like mass in the mass system generates effective negative mass, mass connected with rigid links generates inertial amplification, and spring-mass connected with a rigid link generateseffective negative stiffness. In this paper, the representative unit cell is introduced, considering all three mechanisms combined. Further, the dynamic stiffness matrix of the unit cell is constructed, and the dispersion relation is obtained by applying the Bloch theorem. The frequency response function is also calculated for the finite length of periodic unit cells. Moreover, the input displacement signal is given to the finite length of periodic structure and using inverse Fourier transform to visualize the wave propagation in the time domain. This visualization explains the sudden attenuation in metamaterial due to energy dissipation by an embedded resonator at the resonance frequency. The visualization created for wave propagation is found necessary to understand the insights of physics behind the attenuation characteristics of the system.

Keywords: mono coupled system, negative effective mass, negative effective stiffness, inertial amplifier, fourier transform

Procedia PDF Downloads 104
1004 Solution of Singularly Perturbed Differential Difference Equations Using Liouville Green Transformation

Authors: Y. N. Reddy

Abstract:

The class of differential-difference equations which have characteristics of both classes, i.e., delay/advance and singularly perturbed behaviour is known as singularly perturbed differential-difference equations. The expression ‘positive shift’ and ‘negative shift’ are also used for ‘advance’ and ‘delay’ respectively. In general, an ordinary differential equation in which the highest order derivative is multiplied by a small positive parameter and containing at least one delay/advance is known as singularly perturbed differential-difference equation. Singularly perturbed differential-difference equations arise in the modelling of various practical phenomena in bioscience, engineering, control theory, specifically in variational problems, in describing the human pupil-light reflex, in a variety of models for physiological processes or diseases and first exit time problems in the modelling of the determination of expected time for the generation of action potential in nerve cells by random synaptic inputs in dendrites. In this paper, we envisage the use of Liouville Green Transformation to find the solution of singularly perturbed differential difference equations. First, using Taylor series, the given singularly perturbed differential difference equation is approximated by an asymptotically equivalent singularly perturbation problem. Then the Liouville Green Transformation is applied to get the solution. Several model examples are solved, and the results are compared with other methods. It is observed that the present method gives better approximate solutions.

Keywords: difference equations, differential equations, singular perturbations, boundary layer

Procedia PDF Downloads 189
1003 The Effect of Tribulus Terresteris on Histomorphometrical Changes of Testis Induced by Ethanol Administration in Male Wistar Rats

Authors: Arash Esfandiari, Ebrahim Parsaei

Abstract:

The purpose of this research was to survey the effect of tribulus terresteris on histomorphometrical changes of testis induced by ethanol administration in male wistar rats. Fifteen male wistar rats divided into three groups: 1- control group (n=5). 2- Experimental group I (IP received 1 mg/gr Alcohole 20% for 30 days) (n=5). 3- Experimental group II (IP received 1 mg/gr Alcohole 20% for 30 days and IP received 100 mg/kg tribulus terresteris 15 days before received Alcohole for 45 days) (n=5). All procedures and care of the animals were conducted following protocols approved by the ethical committee (Iranian Society for the Prevention of cruelty to animal, and Iranian Veterinary Organization). Results showed that the thickness of the wall of seminiferous tubule, the weight of testis, the number of spermatogenic cells were decreased in experimental group I. In addition, all of these parameters were increased in experimental group II compared with experimental group I. These decrement of all of parameters in experimental group I with significant difference in comparison control group (p≤ 0.05). But all of parameters had increment in experimental group II with no significant difference compared with control group (p≥ 0.05) and significant difference with experimental group I (p≤ 0.05).It is concluded that tribulus terresteris may prevent from reducing the number of spermatogenic cell that has been created by the consumption of alcohole.

Keywords: ethanol, histomorphometric, testis, teribulus terresteris

Procedia PDF Downloads 598
1002 Methane Production from Biomedical Waste (Blood)

Authors: Fatima M. Kabbashi, Abdalla M. Abdalla, Hussam K. Hamad, Elias S. Hassan

Abstract:

This study investigates the production of renewable energy (biogas) from biomedical hazard waste (blood) and eco-friendly disposal. Biogas is produced by the bacterial anaerobic digestion of biomaterial (blood). During digestion process bacterial feeding result in breaking down chemical bonds of the biomaterial and changing its features, by the end of the digestion (biogas production) the remains become manure as known. That has led to the economic and eco-friendly disposal of hazard biomedical waste (blood). The samples (Whole blood, Red blood cells 'RBCs', Blood platelet and Fresh Frozen Plasma ‘FFP’) are collected and measured in terms of carbon to nitrogen C/N ratio and total solid, then filled in connected flasks (three flasks) using water displacement method. The results of trails showed that the platelet and FFP failed to produce flammable gas, but via a gas analyzer, it showed the presence of the following gases: CO, HC, CO₂, and NOX. Otherwise, the blood and RBCs produced flammable gases: Methane-nitrous CH₃NO (99.45%), which has a blue color flame and carbon dioxide CO₂ (0.55%), which has red/yellow color flame. Methane-nitrous is sometimes used as fuel for rockets, some aircraft and racing cars.

Keywords: renewable energy, biogas, biomedical waste, blood, anaerobic digestion, eco-friendly disposal

Procedia PDF Downloads 295