Search results for: Vector Processing
953 VR in the Middle School Classroom-An Experimental Study on Spatial Relations and Immersive Virtual Reality
Authors: Danielle Schneider, Ying Xie
Abstract:
Middle school science, technology, engineering, and math (STEM) teachers experience an exceptional challenge in the expectation to incorporate curricula that builds strong spatial reasoning skills on rudimentary geometry concepts. Because spatial ability is so closely tied to STEM students’ success, researchers are tasked to determine effective instructional practices that create an authentic learning environment within the immersive virtual reality learning environment (IVRLE). This study looked to investigate the effect of the IVRLE on middle school STEM students’ spatial reasoning skills as a methodology to benefit the STEM middle school students’ spatial reasoning skills. This experimental study was comprised of thirty 7th-grade STEM students divided into a treatment group that was engaged in an immersive VR platform where they engaged in building an object in the virtual realm by applying spatial processing and visualizing its dimensions and a control group that built the identical object using a desktop computer-based, computer-aided design (CAD) program. Before and after the students participated in the respective “3D modeling” environment, their spatial reasoning abilities were assessed using the Middle Grades Mathematics Project Spatial Visualization Test (MGMP-SVT). Additionally, both groups created a physical 3D model as a secondary measure to measure the effectiveness of the IVRLE. The results of a one-way ANOVA in this study identified a negative effect on those in the IVRLE. These findings suggest that with middle school students, virtual reality (VR) proved an inadequate tool to benefit spatial relation skills as compared to desktop-based CAD.Keywords: virtual reality, spatial reasoning, CAD, middle school STEM
Procedia PDF Downloads 85952 A Comprehensive Study and Evaluation on Image Fashion Features Extraction
Authors: Yuanchao Sang, Zhihao Gong, Longsheng Chen, Long Chen
Abstract:
Clothing fashion represents a human’s aesthetic appreciation towards everyday outfits and appetite for fashion, and it reflects the development of status in society, humanity, and economics. However, modelling fashion by machine is extremely challenging because fashion is too abstract to be efficiently described by machines. Even human beings can hardly reach a consensus about fashion. In this paper, we are dedicated to answering a fundamental fashion-related problem: what image feature best describes clothing fashion? To address this issue, we have designed and evaluated various image features, ranging from traditional low-level hand-crafted features to mid-level style awareness features to various current popular deep neural network-based features, which have shown state-of-the-art performance in various vision tasks. In summary, we tested the following 9 feature representations: color, texture, shape, style, convolutional neural networks (CNNs), CNNs with distance metric learning (CNNs&DML), AutoEncoder, CNNs with multiple layer combination (CNNs&MLC) and CNNs with dynamic feature clustering (CNNs&DFC). Finally, we validated the performance of these features on two publicly available datasets. Quantitative and qualitative experimental results on both intra-domain and inter-domain fashion clothing image retrieval showed that deep learning based feature representations far outweigh traditional hand-crafted feature representation. Additionally, among all deep learning based methods, CNNs with explicit feature clustering performs best, which shows feature clustering is essential for discriminative fashion feature representation.Keywords: convolutional neural network, feature representation, image processing, machine modelling
Procedia PDF Downloads 138951 Effect of Metarhizium robertsii in Rhipicephalus microplus hemocytes
Authors: Jessica P. Fiorotti, Maria C. Freitas, Caio J. B. Coutinho-Rodrigues, Mariana G. Camargo, Emily S. Mesquita, Amanda R. C. Corval, Ricardo O. B. Bitencourt, Allan F. Marciano, Diva D. Spadacci-Morena, Patricia S. Golo, Isabele C. Angelo, Vania R. E. P. Bittencourt
Abstract:
The bovine tick, Rhipicephalus microplus, is an arthropod of great importance in veterinary medicine leading to anemia, weight loss, animals' leather depreciation and also acting as a vector of many pathogens. In this way, the parasitism causes a loss of 3.24 billion dollars per year in Brazil. Knowingly, entomopathogenic fungi act as natural controller of some arthropods, acting mainly by active penetration through the cuticle. However, it can also act on the hemolymph and through the production of mycotoxins. Hemocytes are responsible for the cellular immune response and participate in the processes of phagocytosis, nodulation and encapsulation and may undergo changes when challenged by pathogens. The aim of the present study was to evaluate changes in R. microplus hemocytes after inoculation of Metarhizium robertsii using transmission electron microscopy. The isolate ARSEF 2575 and 200 engorged R. microplus females were used. The groups were divided into control, in which the females were inoculated with 5 μL of sterile distilled water solution and 0.1% Tween 80, and a group inoculated with 5 μL of fungal suspension at the concentration of 10⁷ conidia mL⁻¹. The experiment was performed in duplicate and each group contained 50 females. Twenty-four hours after fungal inoculation, hemolymph was collected through the cuticle dorsal surface perforation of the tick females. After collection, the hemolymph samples were centrifuged at 500 x g for 3 minutes at 4 °C, the plasma was discarded and the hemocyte pellet was resuspended in 50 μl PBS. The suspension material was fixed in 2% glutaraldehyde in Millonig buffer for three hours. After fixation, the material was centrifuged at 500 x g for 3 minutes, the supernatant was discarded and the cells were resuspended in a wash solution. Subsequently, the cells were post-fixed with 1% osmium tetroxide in phosphate buffer for one hour at room temperature and dehydrated in increasing concentrations of ethanol, and then embedded in Epon resin. The ultrathin sections were examined under the LEO EM 906E transmission electron microscopy at 80kV. The ultrastructural results revealed that.in control group, the cells were considered intact, in which the granulocytes were observed with granules of different electrodensities, intact mitochondria and cytoplasm without vacuolization. In addition, granulocytes showed plasma membrane projections similar to pseudopodia. Plasmatocytes presented as irregularly shaped cells, with the eccentric nucleus, agranular cytoplasm and some cells presented pseudopodia. Nevertheless, in the group exposed to the fungus, most of the cells presented in degeneration. The granulocytes found had fewer granules in the cytoplasm and more vacuoles. Plasmatocytes, after treatment, presented many vacuoles also in the cytoplasm and the lysosomes presented great amount of electrodense material in their interior. Thus, the results suggest that the fungus has a depressant action in the immune system of the tick, not only by the cell degranulation, but also suggesting that this leads to morphological changes in the hemocytes and may even trigger processes such as phagocytosis.Keywords: bovine tick, cellular defense, entomopathogenic fungi, immune response
Procedia PDF Downloads 188950 Assets Integrity Management in Oil and Gas Production Facilities through Corrosion Mitigation and Inspection Strategy: A Case Study of Sarir Oilfield
Authors: Iftikhar Ahmad, Youssef Elkezza
Abstract:
Sarir oilfield is in North Africa. It has facilities for oil and gas production. The assets of the Sarir oilfield can be divided into five following categories, namely: (i) well bore and wellheads; (ii) vessels such as separators, desalters, and gas processing facilities; (iii) pipelines including all flow lines, trunk lines, and shipping lines; (iv) storage tanks; (v) other assets such as turbines and compressors, etc. The nature of the petroleum industry recognizes the potential human, environmental and financial consequences that can result from failing to maintain the integrity of wellheads, vessels, tanks, pipelines, and other assets. The importance of effective asset integrity management increases as the industry infrastructure continues to age. The primary objective of assets integrity management (AIM) is to maintain assets in a fit-for-service condition while extending their remaining life in the most reliable, safe, and cost-effective manner. Corrosion management is one of the important aspects of successful asset integrity management. It covers corrosion mitigation, monitoring, inspection, and risk evaluation. External corrosion on pipelines, well bores, buried assets, and bottoms of tanks is controlled with a combination of coatings by cathodic protection, while the external corrosion on surface equipment, wellheads, and storage tanks is controlled by coatings. The periodic cleaning of the pipeline by pigging helps in the prevention of internal corrosion. Further, internal corrosion of pipelines is prevented by chemical treatment and controlled operations. This paper describes the integrity management system used in the Sarir oil field for its oil and gas production facilities based on standard practices of corrosion mitigation and inspection.Keywords: assets integrity management, corrosion prevention in oilfield assets, corrosion management in oilfield, corrosion prevention, inspection activities
Procedia PDF Downloads 85949 Study of Information Technology Support to Knowledge Sharing in Social Enterprises
Authors: Maria Granados
Abstract:
Information technology (IT) facilitates the management of knowledge in organisations through the effective leverage of collective experience and knowledge of employees. This supports information processing needs, as well as enables and facilitates sense-making activities of knowledge workers. The study of IT support for knowledge management (KM) has been carried out mainly in larger organisations where resources and competitive conditions can trigger the use of KM. However, there is still a lack of understanding on how IT can support the management of knowledge under different organisational settings influenced by: constant tensions between social and economic objectives, more focus on sustainability than competiveness, limited resources, and high levels of democratic participation and intrinsic motivations among employees. All these conditions are presented in Social Enterprises (SEs), which are normally micro and small businesses that trade to tackle social problems, improve communities, people’s life chances, and the environment. Thus, their importance to society and economies is increasing. However, there is still a need for more understanding of how these organisations operate, perform, innovate and scale-up. This knowledge is crucial to design and provide accurate strategies to enhance the sector and increase its impact and coverage. To obtain a conceptual and empirical understanding of how IT can facilitate KM in the particular organisational conditions of SEs, a quantitative study was conducted with 432 owners and senior members of SEs in UK, underpinned by 21 interviews. The findings demonstrated how IT was supporting more the recovery and storage of necessary information in SEs, and less the collaborative work and communication among enterprise members. However, it was established that SEs were using cloud solutions, web 2.0 tools, Skype and centralised shared servers to manage informally their knowledge. The possible impediments for SEs to support themselves more on IT solutions can be linked mainly to economic and human constraints. These findings elucidate new perspectives that can contribute not only to SEs and SE supporters, but also to other businesses.Keywords: social enterprises, knowledge management, information technology, collaboration, small firms
Procedia PDF Downloads 268948 Recovery of Au and Other Metals from Old Electronic Components by Leaching and Liquid Extraction Process
Authors: Tomasz Smolinski, Irena Herdzik-Koniecko, Marta Pyszynska, M. Rogowski
Abstract:
Old electronic components can be easily found nowadays. Significant quantities of valuable metals such as gold, silver or copper are used for the production of advanced electronic devices. Old useless electronic device slowly became a new source of precious metals, very often more efficient than natural. For example, it is possible to recover more gold from 1-ton personal computers than seventeen tons of gold ore. It makes urban mining industry very profitable and necessary for sustainable development. For the recovery of metals from waste of electronic equipment, various treatment options based on conventional physical, hydrometallurgical and pyrometallurgical processes are available. In this group hydrometallurgy processes with their relatively low capital cost, low environmental impact, potential for high metal recoveries and suitability for small scale applications, are very promising options. Institute of Nuclear Chemistry and Technology has great experience in hydrometallurgy processes especially focused on recovery metals from industrial and agricultural wastes. At the moment, urban mining project is carried out. The method of effective recovery of valuable metals from central processing units (CPU) components has been developed. The principal processes such as acidic leaching and solvent extraction were used for precious metals recovery from old processors and graphic cards. Electronic components were treated by acidic solution at various conditions. Optimal acid concentration, time of the process and temperature were selected. Precious metals have been extracted to the aqueous phase. At the next step, metals were selectively extracted by organic solvents such as oximes or tributyl phosphate (TBP) etc. Multistage mixer-settler equipment was used. The process was optimized.Keywords: electronic waste, leaching, hydrometallurgy, metal recovery, solvent extraction
Procedia PDF Downloads 135947 Simultaneous Saccharification and Fermentation for D-Lactic Acid Production from Dried Distillers Grains with Solubles
Authors: Nurul Aqilah Mohd Zaini, Afroditi Chatzifragkou, Dimitris Charalampopoulos
Abstract:
D-Lactic acid production is gaining increasing attention due to the thermostable properties of its polymer, Polylactic Acid (PLA). In this study, D-lactic acid was produced in microbial cultures using Lactobacillus coryniformis subsp. torquens as D-lactic acid producer and hydrolysates of Dried Distillers Grains with Solubles (DDGS) as fermentation substrate. Prior to fermentation, DDGS was first alkaline pretreated with 5% (w/v) NaOH, for 15 minutes (121oC/ ~16 psi). This led to the generation of DDGS solid residues, rich in carbohydrates and especially cellulose (~52%). The carbohydrate-rich solids were then subjected to enzymatic hydrolysis with Accellerase® 1500. For Separate Hydrolysis and Fermentation (SHF), enzymatic hydrolysis was carried out at 50oC for 24 hours, followed by fermentation of D-lactic acid at 37oC in controlled pH 6. The obtained hydrolysate contained 24 g/l glucose, 5.4 g/l xylose and 0.6 g/l arabinose. In the case of Simultaneous Saccharification and Fermentation (SSF), hydrolysis and fermentation were conducted in a single step process at 37oC in pH 5. The enzymatic hydrolysis of DGGS pretreated solids took place mostly during lag phase of L. coryniformis fermentation, with only a small amount of glucose consumed during the first 6 h. When exponential phase was started, glucose generation reduced as the microorganism started to consume glucose for D-lactic acid production. Higher concentrations of D-lactic acid were produced when SSF approach was applied, with 28 g/l D-lactic acid after 24 h of fermentation (84.5% yield). In contrast, 21.2 g/l D-lactic acid were produced when SHF was used. The optical pu rity of D-lactic acid produced from both experiments was 99.9%. Besides, approximately 2 g/l acetic acid was also generated due to lactic acid degradation after glucose depletion in SHF. SSF was proved an efficient towards DDGS ulilisation and D-lactic acid production, by reducing the overall processing time, yielding sufficient D-lactic acid concentrations without the generation of fermentation by-products.Keywords: DDGS, alkaline pretreatment, SSF, D-lactic acid
Procedia PDF Downloads 339946 Effect of a Polyherbal Gut Therapy Protocol in Changes of Gut and Behavioral Symptoms of Antibiotic Induced Dysbiosis of Autistic Babies
Authors: Dinesh K. S., D. R. C. V. Jayadevan
Abstract:
Autism is the most prevalent of a subset of the disorders organized under the umbrella of pervasive developmental disorders. After the publication of Andrew Wakefield's paper in lancet, many critiques deny this connection even without looking in to the matter. The British Medical Journal even put an editorial regarding this issue. BMJ 2010; 340:c1807. But ayurveda has ample of evidences to believe this connectivity. Dysbiosis, yeast growth of the gut, nutritional deficiencies, enzyme deficiencies, essential fatty acid deficiencies, Gastro esophageal reflux disease, indigestion, inflammatory bowel, chronic constipation & its cascade are few of them to note. The purpose of this paper is to present the observed changes in the behavioural symptoms of autistic babies after a gut management protocol which is a usual programme of our autism treatment plan especially after dysbiotic changes after antibiotic administration. Is there any correlation between changes (if significant) in gut symptoms and behavioral problems of autistic babies especially after a dysbiosis induced by antibiotics. Retrospective analysis of the case sheets of autistic patients admitted in Vaidyaratnam P.S.Varier Ayurveda College hospital, kottakkal,kerala, india from September 2010 are taken for the data processing. Autistic patients are used to come to this hospital as a part of their usual course of treatment. We investigated 40 cases diagnosed as autistic by clinical psychologists from different institutions who had dysbiosis induced by antibiotics. Significant change in gut symptoms before and after treatment p<0.05 in most of its components Significant change in behavioral symptoms before and after treatments p<0.05 in most of the components Correlation between gut symptoms change and behavioral symptoms changes after treatment is + 0.86. Conclusion : Selected Polyherbal Ayurveda treatment has significant role to play to make changes abnormal behaviors in autistic babies and has a positive correlation with changes in gut symptoms induced by dysbiosis of antibiotic intake.Keywords: ayurveda, autism, dysbiosis, antibiotic
Procedia PDF Downloads 627945 Another Beautiful Sounds: Building the Memory of Sound of Peddling in Beijing with Digital Technology
Authors: Dan Wang, Qing Ma, Xiaodan Wang, Tianjiao Qi
Abstract:
The sound of peddling in Beijing, also called “yo-heave-ho” or “cry of one's ware”, is a unique folk culture and usually found in Beijing hutong. For the civilians in Beijing, sound of peddling is part of their childhood. And for those who love the traditional culture of Beijing, it is an old song singing the local conditions and customs of the ancient city. For example, because of his great appreciation, the British poet Osbert Stewart once put sound of peddling which he had heard in Beijing as a street orchestra performance in the article named "Beijing's sound and color".This research aims to collect and integrate the voice/photo resources and historical materials of sound concerning peddling in Beijing by digital technology in order to protect the intangible cultural heritage and pass on the city memory. With the goal in mind, the next stage is to collect and record all the materials and resources based on the historical documents study and interviews with civilians or performers. Then set up a metadata scheme (which refers to the domestic and international standards such as "Audio Data Processing Standards in the National Library", DC, VRA, and CDWA, etc.) to describe, process and organize the sound of peddling into a database. In order to fully show the traditional culture of sound of peddling in Beijing, web design and GIS technology are utilized to establish a website and plan holding offline exhibitions and events for people to simulate and learn the sound of peddling by using VR/AR technology. All resources are opened to the public and civilians can share the digital memory through not only the offline experiential activities, but also the online interaction. With all the attempts, a multi-media narrative platform has been established to multi-dimensionally record the sound of peddling in old Beijing with text, images, audio, video and so on.Keywords: sound of peddling, GIS, metadata scheme, VR/AR technology
Procedia PDF Downloads 304944 Electrochemical Growth and Properties of Cu2O Nanostructures
Authors: A. Azizi, S. Laidoudi, G. Schmerber, A. Dinia
Abstract:
Cuprous oxide (Cu2O) is a well-known oxide semiconductor with a band gap of 2.1 eV and a natural p-type conductivity, which is an attractive material for device applications because of its abundant availability, non toxicity, and low production cost. It has a higher absorption coefficient in the visible region and the minority carrier diffusion length is also suitable for use as a solar cell absorber layer and it has been explored in junction with n type ZnO for photovoltaic applications. Cu2O nanostructures have been made by a variety of techniques; the electrodeposition method has emerged as one of the most promising processing routes as it is particularly provides advantages such as a low-cost, low temperature and a high level of purity in the products. In this work, Cu2O nanostructures prepared by electrodeposition from aqueous cupric sulfate solution with citric acid at 65°C onto a fluorine doped tin oxide (FTO) coated glass substrates were investigated. The effects of deposition potential on the electrochemical, surface morphology, structural and optical properties of Cu2O thin films were investigated. During cyclic voltammetry experiences, the potential interval where the electrodeposition of Cu2O is carried out was established. The Mott–Schottky (M-S) plot demonstrates that all the films are p-type semiconductors, the flat-band potential and the acceptor density for the Cu2O thin films are determined. AFM images reveal that the applied potential has a very significant influence on the surface morphology and size of the crystallites of thin Cu2O. The XRD measurements indicated that all the obtained films display a Cu2O cubic structure with a strong preferential orientation of the (111) direction. The optical transmission spectra in the UV-Visible domains revealed the highest transmission (75 %), and their calculated gap values increased from 1.93 to 2.24 eV, with increasing potentials.Keywords: Cu2O, electrodeposition, Mott–Schottky plot, nanostructure, optical properties, XRD
Procedia PDF Downloads 354943 Use of Machine Learning Algorithms to Pediatric MR Images for Tumor Classification
Authors: I. Stathopoulos, V. Syrgiamiotis, E. Karavasilis, A. Ploussi, I. Nikas, C. Hatzigiorgi, K. Platoni, E. P. Efstathopoulos
Abstract:
Introduction: Brain and central nervous system (CNS) tumors form the second most common group of cancer in children, accounting for 30% of all childhood cancers. MRI is the key imaging technique used for the visualization and management of pediatric brain tumors. Initial characterization of tumors from MRI scans is usually performed via a radiologist’s visual assessment. However, different brain tumor types do not always demonstrate clear differences in visual appearance. Using only conventional MRI to provide a definite diagnosis could potentially lead to inaccurate results, and so histopathological examination of biopsy samples is currently considered to be the gold standard for obtaining definite diagnoses. Machine learning is defined as the study of computational algorithms that can use, complex or not, mathematical relationships and patterns from empirical and scientific data to make reliable decisions. Concerning the above, machine learning techniques could provide effective and accurate ways to automate and speed up the analysis and diagnosis for medical images. Machine learning applications in radiology are or could potentially be useful in practice for medical image segmentation and registration, computer-aided detection and diagnosis systems for CT, MR or radiography images and functional MR (fMRI) images for brain activity analysis and neurological disease diagnosis. Purpose: The objective of this study is to provide an automated tool, which may assist in the imaging evaluation and classification of brain neoplasms in pediatric patients by determining the glioma type, grade and differentiating between different brain tissue types. Moreover, a future purpose is to present an alternative way of quick and accurate diagnosis in order to save time and resources in the daily medical workflow. Materials and Methods: A cohort, of 80 pediatric patients with a diagnosis of posterior fossa tumor, was used: 20 ependymomas, 20 astrocytomas, 20 medulloblastomas and 20 healthy children. The MR sequences used, for every single patient, were the following: axial T1-weighted (T1), axial T2-weighted (T2), FluidAttenuated Inversion Recovery (FLAIR), axial diffusion weighted images (DWI), axial contrast-enhanced T1-weighted (T1ce). From every sequence only a principal slice was used that manually traced by two expert radiologists. Image acquisition was carried out on a GE HDxt 1.5-T scanner. The images were preprocessed following a number of steps including noise reduction, bias-field correction, thresholding, coregistration of all sequences (T1, T2, T1ce, FLAIR, DWI), skull stripping, and histogram matching. A large number of features for investigation were chosen, which included age, tumor shape characteristics, image intensity characteristics and texture features. After selecting the features for achieving the highest accuracy using the least number of variables, four machine learning classification algorithms were used: k-Nearest Neighbour, Support-Vector Machines, C4.5 Decision Tree and Convolutional Neural Network. The machine learning schemes and the image analysis are implemented in the WEKA platform and MatLab platform respectively. Results-Conclusions: The results and the accuracy of images classification for each type of glioma by the four different algorithms are still on process.Keywords: image classification, machine learning algorithms, pediatric MRI, pediatric oncology
Procedia PDF Downloads 147942 Multi-Impairment Compensation Based Deep Neural Networks for 16-QAM Coherent Optical Orthogonal Frequency Division Multiplexing System
Authors: Ying Han, Yuanxiang Chen, Yongtao Huang, Jia Fu, Kaile Li, Shangjing Lin, Jianguo Yu
Abstract:
In long-haul and high-speed optical transmission system, the orthogonal frequency division multiplexing (OFDM) signal suffers various linear and non-linear impairments. In recent years, researchers have proposed compensation schemes for specific impairment, and the effects are remarkable. However, different impairment compensation algorithms have caused an increase in transmission delay. With the widespread application of deep neural networks (DNN) in communication, multi-impairment compensation based on DNN will be a promising scheme. In this paper, we propose and apply DNN to compensate multi-impairment of 16-QAM coherent optical OFDM signal, thereby improving the performance of the transmission system. The trained DNN models are applied in the offline digital signal processing (DSP) module of the transmission system. The models can optimize the constellation mapping signals at the transmitter and compensate multi-impairment of the OFDM decoded signal at the receiver. Furthermore, the models reduce the peak to average power ratio (PAPR) of the transmitted OFDM signal and the bit error rate (BER) of the received signal. We verify the effectiveness of the proposed scheme for 16-QAM Coherent Optical OFDM signal and demonstrate and analyze transmission performance in different transmission scenarios. The experimental results show that the PAPR and BER of the transmission system are significantly reduced after using the trained DNN. It shows that the DNN with specific loss function and network structure can optimize the transmitted signal and learn the channel feature and compensate for multi-impairment in fiber transmission effectively.Keywords: coherent optical OFDM, deep neural network, multi-impairment compensation, optical transmission
Procedia PDF Downloads 143941 The Effect of Porous Alkali Activated Material Composition on Buffer Capacity in Bioreactors
Authors: Girts Bumanis, Diana Bajare
Abstract:
With demand for primary energy continuously growing, search for renewable and efficient energy sources has been high on agenda of our society. One of the most promising energy sources is biogas technology. Residues coming from dairy industry and milk processing could be used in biogas production; however, low efficiency and high cost impede wide application of such technology. One of the main problems is management and conversion of organic residues through the anaerobic digestion process which is characterized by acidic environment due to the low whey pH (<6) whereas additional pH control system is required. Low buffering capacity of whey is responsible for the rapid acidification in biological treatments; therefore alkali activated material is a promising solution of this problem. Alkali activated material is formed using SiO2 and Al2O3 rich materials under highly alkaline solution. After material structure forming process is completed, free alkalis remain in the structure of materials which are available for leaching and could provide buffer capacity potential. In this research porous alkali activated material was investigated. Highly porous material structure ensures gradual leaching of alkalis during time which is important in biogas digestion process. Research of mixture composition and SiO2/Na2O and SiO2/Al2O ratio was studied to test the buffer capacity potential of alkali activated material. This research has proved that by changing molar ratio of components it is possible to obtain a material with different buffer capacity, and this novel material was seen to have considerable potential for using it in processes where buffer capacity and pH control is vitally important.Keywords: alkaline material, buffer capacity, biogas production, bioreactors
Procedia PDF Downloads 241940 Ensemble Methods in Machine Learning: An Algorithmic Approach to Derive Distinctive Behaviors of Criminal Activity Applied to the Poaching Domain
Authors: Zachary Blanks, Solomon Sonya
Abstract:
Poaching presents a serious threat to endangered animal species, environment conservations, and human life. Additionally, some poaching activity has even been linked to supplying funds to support terrorist networks elsewhere around the world. Consequently, agencies dedicated to protecting wildlife habitats have a near intractable task of adequately patrolling an entire area (spanning several thousand kilometers) given limited resources, funds, and personnel at their disposal. Thus, agencies need predictive tools that are both high-performing and easily implementable by the user to help in learning how the significant features (e.g. animal population densities, topography, behavior patterns of the criminals within the area, etc) interact with each other in hopes of abating poaching. This research develops a classification model using machine learning algorithms to aid in forecasting future attacks that is both easy to train and performs well when compared to other models. In this research, we demonstrate how data imputation methods (specifically predictive mean matching, gradient boosting, and random forest multiple imputation) can be applied to analyze data and create significant predictions across a varied data set. Specifically, we apply these methods to improve the accuracy of adopted prediction models (Logistic Regression, Support Vector Machine, etc). Finally, we assess the performance of the model and the accuracy of our data imputation methods by learning on a real-world data set constituting four years of imputed data and testing on one year of non-imputed data. This paper provides three main contributions. First, we extend work done by the Teamcore and CREATE (Center for Risk and Economic Analysis of Terrorism Events) research group at the University of Southern California (USC) working in conjunction with the Department of Homeland Security to apply game theory and machine learning algorithms to develop more efficient ways of reducing poaching. This research introduces ensemble methods (Random Forests and Stochastic Gradient Boosting) and applies it to real-world poaching data gathered from the Ugandan rain forest park rangers. Next, we consider the effect of data imputation on both the performance of various algorithms and the general accuracy of the method itself when applied to a dependent variable where a large number of observations are missing. Third, we provide an alternate approach to predict the probability of observing poaching both by season and by month. The results from this research are very promising. We conclude that by using Stochastic Gradient Boosting to predict observations for non-commercial poaching by season, we are able to produce statistically equivalent results while being orders of magnitude faster in computation time and complexity. Additionally, when predicting potential poaching incidents by individual month vice entire seasons, boosting techniques produce a mean area under the curve increase of approximately 3% relative to previous prediction schedules by entire seasons.Keywords: ensemble methods, imputation, machine learning, random forests, statistical analysis, stochastic gradient boosting, wildlife protection
Procedia PDF Downloads 290939 Use of Pheromones, Active Surveillance and Treated Cattle to Prevent the Establishment of the Tropical Bont Tick in Puerto Rico and the Americas
Authors: Robert Miller, Fred Soltero, Sandra Allan, Denise Bonilla
Abstract:
The Tropical Bont Tick (TBT), Amblyomma variegatum, was introduced to the Caribbean in the mid-1700s. Since it has spread throughout the Caribbean dispersed by cattle egrets (Bubulcus ibis). Tropical Bont Ticks vector many pathogens to livestock and humans. However, only the livestock diseases heartwater, Ehrlichia (Cowdria) ruminantium, and dermatophilosis, Dermatophilus congolensis, are associated with TBT in the Caribbean. African tick bite fever (Rickettsia africae) is widespread in Caribbean TBT but human cases are rare. The Caribbean Amblyomma Programme (CAP) was an effort led by the Food and Agricultural Organization to eradicate TBTs from participating islands. This 10-year effort successfully eradicated TBT from many islands. However, most are reinfested since its termination. Pheromone technology has been developed to aid in TBT control. Although not part of the CAP treatment scheme, this research established that pheromones in combination with pesticide greatly improves treatment efficiencies. Additionally, pheromone combined with CO₂ traps greatly improves active surveillance success. St. Croix has a history of TBT outbreaks. Passive surveillance detected outbreaks in 2016 and in May of 2021. Surveillance efforts are underway to determine the extent of TBT on St Croix. Puerto Rico is the next island in the archipelago and is at a greater risk of re-infestation due to active outbreaks in St Croix. Tropical Bont Ticks were last detected in Puerto Rico in the 1980s. The infestation started on the small Puerto Rican island of Vieques, the closest landmass to St Croix, and spread to the main island through cattle movements. This infestation was eradicated with the help of the Tropical Cattle Tick (TCT), Rhipicephalus (Boophilus) microplus, eradication program. At the time, large percentages of Puerto Rican cattle were treated for ticks along with the necessary material and manpower mobilized for the effort. Therefore, a shift of focus from the TCT to TBT prevented its establishment in Puerto Rico. Currently, no large-scale treatment of TCTs occurs in Puerto Rico. Therefore, the risk of TBT establishment is now greater than it was in the 1980s. From Puerto Rico, the risk of TBT movement to the American continent increases significantly. The establishment of TBTs in the Americas would cause $1.2 billion USD in losses to the livestock industry per year. The USDA Agricultural Research Service recently worked with the USDA Animal Health Inspection Service and the Puerto Rican Department of Agriculture to modernize the management of the TCT. This modernized program uses safer pesticides and has successfully been used to eradicate pesticide-susceptible and -resistant ticks throughout the island. The objective of this work is to prevent the infestation of Puerto Rico by TBTs by combining the current TCT management efforts with TBT surveillance in Vieques. The combined effort is designed to eradicate TCT from Vieques while using the treated cattle as trap animals for TBT using pheromone impregnated tail tags attached to treated animals. Additionally, active surveillance using CO₂-baited traps combined with pheromone will be used to actively survey the environment for free-living TBT. Knowledge gained will inform TBT control efforts in St. Croix.Keywords: Amblyomma variegatum, caribbean, eradication, Rhipicephalus (boophilus) microplus, pheromone
Procedia PDF Downloads 172938 Defect Correlation of Computed Tomography and Serial Sectioning in Additively Manufactured Ti-6Al-4V
Authors: Bryce R. Jolley, Michael Uchic
Abstract:
This study presents initial results toward the correlative characterization of inherent defects of Ti-6Al-4V additive manufacture (AM). X-Ray Computed Tomography (CT) defect data are compared and correlated with microscopic photographs obtained via automated serial sectioning. The metal AM specimen was manufactured out of Ti-6Al-4V virgin powder to specified dimensions. A post-contour was applied during the fabrication process with a speed of 1050 mm/s, power of 260 W, and a width of 140 µm. The specimen was stress relief heat-treated at 16°F for 3 hours. Microfocus CT imaging was accomplished on the specimen within a predetermined region of the build. Microfocus CT imaging was conducted with parameters optimized for Ti-6Al-4V additive manufacture. After CT imaging, a modified RoboMet. 3D version 2 was employed for serial sectioning and optical microscopy characterization of the same predetermined region. Automated montage capture with sub-micron resolution, bright-field reflection, 12-bit monochrome optical images were performed in an automated fashion. These optical images were post-processed to produce 2D and 3D data sets. This processing included thresholding and segmentation to improve visualization of defect features. The defects observed from optical imaging were compared and correlated with the defects observed from CT imaging over the same predetermined region of the specimen. Quantitative results of area fraction and equivalent pore diameters obtained via each method are presented for this correlation. It is shown that Microfocus CT imaging does not capture all inherent defects within this Ti-6Al-4V AM sample. Best practices for this correlative effort are also presented as well as the future direction of research resultant from this current study.Keywords: additive manufacture, automated serial sectioning, computed tomography, nondestructive evaluation
Procedia PDF Downloads 140937 Patient-Specific Design Optimization of Cardiovascular Grafts
Authors: Pegah Ebrahimi, Farshad Oveissi, Iman Manavi-Tehrani, Sina Naficy, David F. Fletcher, Fariba Dehghani, David S. Winlaw
Abstract:
Despite advances in modern surgery, congenital heart disease remains a medical challenge and a major cause of infant mortality. Cardiovascular prostheses are routinely used in surgical procedures to address congenital malformations, for example establishing a pathway from the right ventricle to the pulmonary arteries in pulmonary valvar atresia. Current off-the-shelf options including human and adult products have limited biocompatibility and durability, and their fixed size necessitates multiple subsequent operations to upsize the conduit to match with patients’ growth over their lifetime. Non-physiological blood flow is another major problem, reducing the longevity of these prostheses. These limitations call for better designs that take into account the hemodynamical and anatomical characteristics of different patients. We have integrated tissue engineering techniques with modern medical imaging and image processing tools along with mathematical modeling to optimize the design of cardiovascular grafts in a patient-specific manner. Computational Fluid Dynamics (CFD) analysis is done according to models constructed from each individual patient’s data. This allows for improved geometrical design and achieving better hemodynamic performance. Tissue engineering strives to provide a material that grows with the patient and mimic the durability and elasticity of the native tissue. Simulations also give insight on the performance of the tissues produced in our lab and reduce the need for costly and time-consuming methods of evaluation of the grafts. We are also developing a methodology for the fabrication of the optimized designs.Keywords: computational fluid dynamics, cardiovascular grafts, design optimization, tissue engineering
Procedia PDF Downloads 240936 The Quality Assessment of Seismic Reflection Survey Data Using Statistical Analysis: A Case Study of Fort Abbas Area, Cholistan Desert, Pakistan
Authors: U. Waqas, M. F. Ahmed, A. Mehmood, M. A. Rashid
Abstract:
In geophysical exploration surveys, the quality of acquired data holds significant importance before executing the data processing and interpretation phases. In this study, 2D seismic reflection survey data of Fort Abbas area, Cholistan Desert, Pakistan was taken as test case in order to assess its quality on statistical bases by using normalized root mean square error (NRMSE), Cronbach’s alpha test (α) and null hypothesis tests (t-test and F-test). The analysis challenged the quality of the acquired data and highlighted the significant errors in the acquired database. It is proven that the study area is plain, tectonically least affected and rich in oil and gas reserves. However, subsurface 3D modeling and contouring by using acquired database revealed high degrees of structural complexities and intense folding. The NRMSE had highest percentage of residuals between the estimated and predicted cases. The outcomes of hypothesis testing also proved the biasness and erraticness of the acquired database. Low estimated value of alpha (α) in Cronbach’s alpha test confirmed poor reliability of acquired database. A very low quality of acquired database needs excessive static correction or in some cases, reacquisition of data is also suggested which is most of the time not feasible on economic grounds. The outcomes of this study could be used to assess the quality of large databases and to further utilize as a guideline to establish database quality assessment models to make much more informed decisions in hydrocarbon exploration field.Keywords: Data quality, Null hypothesis, Seismic lines, Seismic reflection survey
Procedia PDF Downloads 162935 Kinetics of Phytochemicals and Antioxidant Activity during Thermal Treatment of Cape Gooseberry (Physalis peruviana L)
Authors: Mary-Luz Olivares-Tenorio, Ruud Verkerk, Matthijs Dekker, Martinus A. J. S. van Boekel
Abstract:
Cape gooseberry, the fruit of the plant Physalis peruviana L. has gained interest in research given its contents of promising health-promoting compounds like contents. The presence of carotenoids, ascorbic acid, minerals, polyphenols, vitamins and antioxidants. This project aims to study thermal stability of β-carotene, ascorbic acid, catechin and epicatechin and antioxidant activity in the matrix of the Cape Gooseberry. Fruits were obtained from a Colombian field in Cundinamarca. Ripeness stage was 4 (According to NTC 4580, corresponding to mature stage) at the moment of the experiment. The fruits have been subjected to temperatures of 40, 60, 80, 100 and 120°C for several times. β-Carotene, ascorbic acid, catechin and epicatechin content were assessed with HPLC and antioxidant activity with the DPPH method. β-Carotene was stable upon 100°C, and showed some degradation at 120°C. The same behavior was observed for epicatechin. Catechin increased during treatment at 40°C, at 60°C it remained stable and it showed degradation at 80°C, 100°C and 120°C that could be described by a second order kinetic model. Ascorbic acid was the most heat-sensitive of the analyzed compounds. It showed degradation at all studied temperatures, and could be described by a first order model. The activation energy for ascorbic acid degradation in cape gooseberry was 46.0 kJ/mol and its degradation rate coefficient at 100 °C was 6.53 x 10-3 s-1. The antioxidant activity declined for all studied temperatures. Results from this study showed that cape gooseberry is an important source of different health-promoting compounds and some of them are stable to heat. That makes this fruit a suitable raw material for processed products such as jam, juices and dehydrated fruit, giving the consumer a good intake of these compounds.Keywords: goldenberry, health-promoting compounds, phytochemical, processing, heat treatment
Procedia PDF Downloads 452934 Conducting Quality Planning, Assurance and Control According to GMP (Good Manufacturing Practices) Standards and Benchmarking Data for Kuwait Food Industries
Authors: Alaa Alateeqi, Sara Aldhulaiee, Sara Alibraheem, Noura Alsaleh
Abstract:
For the past few decades or so, Kuwait's local food industry has grown remarkably due to increase in demand for processed or semi processed food products in the market. It is important that the ever increasing food manufacturing/processing units maintain the required quality standards as per regional and to some extent international quality requirements. It has been realized that all Kuwait food manufacturing units should understand and follow the international standard practices, and moreover a set of guidelines must be set for quality assurance such that any new business in this area is aware of the minimum requirements. The current study has been undertaken to identify the gaps in Kuwait food industries in following the Good Manufacturing Practices (GMP) in terms of quality planning, control and quality assurance. GMP refers to Good Manufacturing Practices, which are a set of rules, laws or regulations that certify producing products within quality standards and ensuring that it is safe, pure and effective. The present study therefore reports about a ‘case study’ in a reputed food manufacturing unit in Kuwait; starting from assessment of the current practices followed by diagnosis, report of the diagnosis and road map and corrective measures for GMP implementation in the unit. The case study has also been able to identify the best practices and establish a benchmarking data for other companies to follow, through measuring the selected company's quality, policies, products and strategies and compare it with the established benchmarking data. A set of questionnaires and assessment mechanism has been established for companies to identify their ‘benchmarking score’ in relation to the number of non-conformities and conformities with the GMP standard requirements.Keywords: good manufacturing practices, GMP, benchmarking, Kuwait Food Industries, food quality
Procedia PDF Downloads 465933 Relative Entropy Used to Determine the Divergence of Cells in Single Cell RNA Sequence Data Analysis
Authors: An Chengrui, Yin Zi, Wu Bingbing, Ma Yuanzhu, Jin Kaixiu, Chen Xiao, Ouyang Hongwei
Abstract:
Single cell RNA sequence (scRNA-seq) is one of the effective tools to study transcriptomics of biological processes. Recently, similarity measurement of cells is Euclidian distance or its derivatives. However, the process of scRNA-seq is a multi-variate Bernoulli event model, thus we hypothesize that it would be more efficient when the divergence between cells is valued with relative entropy than Euclidian distance. In this study, we compared the performances of Euclidian distance, Spearman correlation distance and Relative Entropy using scRNA-seq data of the early, medial and late stage of limb development generated in our lab. Relative Entropy is better than other methods according to cluster potential test. Furthermore, we developed KL-SNE, an algorithm modifying t-SNE whose definition of divergence between cells Euclidian distance to Kullback–Leibler divergence. Results showed that KL-SNE was more effective to dissect cell heterogeneity than t-SNE, indicating the better performance of relative entropy than Euclidian distance. Specifically, the chondrocyte expressing Comp was clustered together with KL-SNE but not with t-SNE. Surprisingly, cells in early stage were surrounded by cells in medial stage in the processing of KL-SNE while medial cells neighbored to late stage with the process of t-SNE. This results parallel to Heatmap which showed cells in medial stage were more heterogenic than cells in other stages. In addition, we also found that results of KL-SNE tend to follow Gaussian distribution compared with those of the t-SNE, which could also be verified with the analysis of scRNA-seq data from another study on human embryo development. Therefore, it is also an effective way to convert non-Gaussian distribution to Gaussian distribution and facilitate the subsequent statistic possesses. Thus, relative entropy is potentially a better way to determine the divergence of cells in scRNA-seq data analysis.Keywords: Single cell RNA sequence, Similarity measurement, Relative Entropy, KL-SNE, t-SNE
Procedia PDF Downloads 339932 The Effect of Super-Plasticizer and Ultra-sonic Process on the Carbon Nano Tubes Dispersion in Combination with Nano Silica in Cement Composites to Enhance Its Mechanical Properties
Authors: M.S. El-Feky, Passant Youssef, Mohamed I. Serag
Abstract:
nowadays, nanotechnology is the main trend of research in different areas due to the new potential of using nanometer materials sized less than 100nm. Nanomaterials are needed in cement composites to act as bridging for Nano and micro-cracks to increase tensile strength, reduce the permeability of gases and water in concrete to solve corrosion problem, react with excess Calcium Hydroxide, produce additional C-S-H, act as filler materials to densify the cement matrix and increase its mechanical properties. The present study focuses on the effectiveness of super-plasticizers and ultrasonic processing on the dispersion of Carbon Nanotube at first in water and then in cement composites in combination with Nano silica to enhance the mechanical properties of cement composites. A qualitative analysis using a compressive strength test is conducted with a view to investigate the influence of different dispersion techniques on the mechanical properties of cement composites containing Carbon Nanotube (CNT) and Nano Silica (NS) particles with different percentages. In addition, micro-structural analysis was carried out to understand the surface morphology and microstructure of cement composites with different dosages of NS addition. The investigational study results showed that the combination of NS with a low amount of CNT had a positive effect on the hydration reaction; on the other hand, the combination of CNT and a high amount of NS had a negative effect on the hydration reaction. The compressive strength can be improved by optimum combination 0.02% CNT and 1% NS with gain in strength by 72% and 35% after 7 and 28 days compared to control samples; these results were with an agreement with the morphology structure of composites using microstructure analysis.Keywords: nano silica, dispersion, sonication, carbon nano tubes
Procedia PDF Downloads 145931 Analysis of Surface Hardness, Surface Roughness and near Surface Microstructure of AISI 4140 Steel Worked with Turn-Assisted Deep Cold Rolling Process
Authors: P. R. Prabhu, S. M. Kulkarni, S. S. Sharma, K. Jagannath, Achutha Kini U.
Abstract:
In the present study, response surface methodology has been used to optimize turn-assisted deep cold rolling process of AISI 4140 steel. A regression model is developed to predict surface hardness and surface roughness using response surface methodology and central composite design. In the development of predictive model, deep cold rolling force, ball diameter, initial roughness of the workpiece, and number of tool passes are considered as model variables. The rolling force and the ball diameter are the significant factors on the surface hardness and ball diameter and numbers of tool passes are found to be significant for surface roughness. The predicted surface hardness and surface roughness values and the subsequent verification experiments under the optimal operating conditions confirmed the validity of the predicted model. The absolute average error between the experimental and predicted values at the optimal combination of parameter settings for surface hardness and surface roughness is calculated as 0.16% and 1.58% respectively. Using the optimal processing parameters, the hardness is improved from 225 to 306 HV, which resulted in an increase in the near surface hardness by about 36% and the surface roughness is improved from 4.84µm to 0.252 µm, which resulted in decrease in the surface roughness by about 95%. The depth of compression is found to be more than 300µm from the microstructure analysis and this is in correlation with the results obtained from the microhardness measurements. Taylor Hobson Talysurf tester, micro Vickers hardness tester, optical microscopy and X-ray diffractometer are used to characterize the modified surface layer.Keywords: hardness, response surface methodology, microstructure, central composite design, deep cold rolling, surface roughness
Procedia PDF Downloads 418930 Characterization of Tailings From Traditional Panning of Alluvial Gold Ore (A Case Study of Ilesa - Southwestern Nigeria Goldfield Tailings Dumps)
Authors: Olaniyi Awe, Adelana R. Adetunji, Abraham Adeleke
Abstract:
Field observation revealed a lot of artisanal gold mining activities in Ilesa gold belt of southwestern Nigeria. The possibility of alluvial and lode gold deposits in commercial quantities around this location is very high, as there are many resident artisanal gold miners who have been mining and trading alluvial gold ore for decades and to date in the area. Their major process of solid gold recovery from its ore is by gravity concentration using the convectional panning method. This method is simple to learn and fast to recover gold from its alluvial ore, but its effectiveness is based on rules of thumb and the artisanal miners' experience in handling gold ore panning tool while processing the ore. Research samples from five alluvial gold ore tailings dumps were collected and studied. Samples were subjected to particle size analysis and mineralogical and elemental characterization using X-Ray Diffraction (XRD) and Particle-Induced X-ray Emission (PIXE) methods, respectively. The results showed that the tailings were of major quartz in association with albite, plagioclase, mica, gold, calcite and sulphide minerals. The elemental composition analysis revealed a 15ppm of gold concentration in particle size fraction of -90 microns in one of the tailings dumps investigated. These results are significant. It is recommended that heaps of panning tailings should be further reprocessed using other gold recovery methods such as shaking tables, flotation and controlled cyanidation that can efficiently recover fine gold particles that were previously lost into the gold panning tailings. The tailings site should also be well controlled and monitored so that these heavy minerals do not find their way into surrounding water streams and rivers, thereby causing health hazards.Keywords: gold ore, panning, PIXE, tailings, XRD
Procedia PDF Downloads 88929 Development of Highly Repellent Silica Nanoparticles Treatment for Protection of Bio-Based Insulation Composite Material
Authors: Nadia Sid, Alan Taylor, Marion Bourebrab
Abstract:
The construction sector is on the critical path to decarbonise the European economy by 2050. In order to achieve this objective it must enable reducing its CO2 emission by 90% and its energy consumption by as much as 50%. For this reason, a new class of low environmental impact construction materials named “eco-material” are becoming increasingly important in the struggle against climate change. A European funded collaborative project ISOBIO coordinated by TWI is aimed at taking a radical approach to the use of bio-based aggregates to create novel construction materials that are usable in high volume in using traditional methods, as well as developing markets such as exterior insulation of existing house stocks. The approach taken for this project is to use finely chopped material protected from bio-degradation through the use of functionalized silica nanoparticles. TWI is exploring the development of novel inorganic-organic hybrid nano-materials, to be applied as a surface treatment onto bio-based aggregates. These nanoparticles are synthesized by sol-gel processing and then functionalised with silanes to impart multifunctionality e.g. hydrophobicity, fire resistance and chemical bonding between the silica nanoparticles and the bio-based aggregates. This talk will illustrate the approach taken by TWI to design the functionalized silica nanoparticles by using a material-by-design approach. The formulation and synthesize process will be presented together with the challenges addressed by those hybrid nano-materials. The results obtained with regards to the water repellence and fire resistance will be displayed together with preliminary public results of the ISOBIO project. (This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 641927).Keywords: bio-sourced material, composite material, durable insulation panel, water repellent material
Procedia PDF Downloads 237928 Radon-222 Concentration and Potential Risk to Workers of Al-Jalamid Phosphate Mines, North Province, Saudi Arabia
Authors: El-Said. I. Shabana, Mohammad S. Tayeb, Maher M. T. Qutub, Abdulraheem A. Kinsara
Abstract:
Usually, phosphate deposits contain 238U and 232Th in addition to their decay products. Due to their different pathways in the environment, the 238U/232Th activity concentration ratio usually found to be greater than unity in phosphate sediments. The presence of these radionuclides creates a potential need to control exposure of workers in the mining and processing activities of the phosphate minerals in accordance with IAEA safety standards. The greatest dose to workers comes from exposure to radon, especially 222Rn from the uranium series, and has to be controlled. In this regard, radon (222Rn) was measured in the atmosphere (indoor and outdoor) of Al-Jalamid phosphate-mines working area using a portable radon-measurement instrument RAD7, in a purpose of radiation protection. Radon was measured in 61 sites inside the open phosphate mines, the phosphate upgrading facility (offices and rooms of the workers, and in some open-air sites) and in the dwellings of the workers residence-village that lies at about 3 km from the mines working area. The obtained results indicated that the average indoor radon concentration was about 48.4 Bq/m3. Inside the upgrading facility, the average outdoor concentrations were 10.8 and 9.7 Bq/m3 in the concentrate piles and crushing areas, respectively. It was 12.3 Bq/m3 in the atmosphere of the open mines. These values are comparable with the global average values. Based on the average values, the annual effective dose due to radon inhalation was calculated and risk estimates have been done. The average annual effective dose to workers due to the radon inhalation was estimated by 1.32 mSv. The potential excess risk of lung cancer mortality that could be attributed to radon, when considering the lifetime exposure, was estimated by 53.0x10-4. The results have been discussed in detail.Keywords: dosimetry, environmental monitoring, phosphate deposits, radiation protection, radon
Procedia PDF Downloads 271927 An Industrial Steady State Sequence Disorder Model for Flow Controlled Multi-Input Single-Output Queues in Manufacturing Systems
Authors: Anthony John Walker, Glen Bright
Abstract:
The challenge faced by manufactures, when producing custom products, is that each product needs exact components. This can cause work-in-process instability due to component matching constraints imposed on assembly cells. Clearing type flow control policies have been used extensively in mediating server access between multiple arrival processes. Although the stability and performance of clearing policies has been well formulated and studied in the literature, the growth in arrival to departure sequence disorder for each arriving job, across a serving resource, is still an area for further analysis. In this paper, a closed form industrial model has been formulated that characterizes arrival-to-departure sequence disorder through stable manufacturing systems under clearing type flow control policy. Specifically addressed are the effects of sequence disorder imposed on a downstream assembly cell in terms of work-in-process instability induced through component matching constraints. Results from a simulated manufacturing system show that steady state average sequence disorder in parallel upstream processing cells can be balanced in order to decrease downstream assembly system instability. Simulation results also show that the closed form model accurately describes the growth and limiting behavior of average sequence disorder between parts arriving and departing from a manufacturing system flow controlled via clearing policy.Keywords: assembly system constraint, custom products, discrete sequence disorder, flow control
Procedia PDF Downloads 177926 Co-Operation in Hungarian Agriculture
Authors: Eszter Hamza
Abstract:
The competitiveness of economic operators is based on interoperability, which is relatively low in Hungary. The development of co-operation is high priority in Common Agricultural Policy 2014-2020. The aim of the paper to assess co-operations in Hungarian agriculture, estimate the economic outputs and benefits of co-operations, based on statistical data processing and literature. Further objective is to explore the potential of agricultural co-operation with the help of interviews and questionnaire survey. The research seeks to answer questions as to what fundamental factors play role in the development of co-operation, and what are the motivations of the actors and the key success factors and pitfalls. The results were analysed using econometric methods. In Hungarian agriculture we can find several forms of co-operation: cooperatives, producer groups (PG) and producer organizations (PO), machinery cooperatives, integrator companies, product boards and interbranch organisations. Despite the several appearance of the agricultural co-operation, their economic weight is significantly lower in Hungary than in western European countries. Considering the agricultural importance, the integrator companies represent the most weight among the co-operations forms. Hungarian farmers linked to co-operations or organizations mostly in relation to procurement and sales. Less than 30 percent of surveyed farmers are members of a producer organization or cooperative. The trust level is low among farmers. The main obstacle to the development of formalized co-operation, is producers' risk aversion and the black economy in agriculture. Producers often prefer informal co-operation instead of long-term contractual relationships. The Hungarian agricultural co-operations are characterized by non-dynamic development, but slow qualitative change. For the future, one breakout point could be the association of producer groups and organizations, which in addition to the benefits of market concentration, in the dissemination of knowledge, advisory network operation and innovation can act more effectively.Keywords: agriculture, co-operation, producer organisation, trust level
Procedia PDF Downloads 394925 Dewatering of Brewery Sludge through the Use of Biopolymers
Authors: Audrey Smith, M. Saifur Rahaman
Abstract:
The waste crisis has become a global issue, forcing many industries to reconsider their disposal methods and environmental practices. Sludge is a form of waste created in many fields, which include water and wastewater, pulp and paper, as well as from breweries. The composition of this sludge differs between sources and can, therefore, have varying disposal methods or future applications. When looking at the brewery industry, it produces a significant amount of sludge with a high water content. In order to avoid landfilling, this waste can further be processed into a valuable material. Specifically, the sludge must undergo dewatering, a process which typically involves the addition of coagulants like aluminum sulfate or ferric chloride. These chemicals, however, limit the potential uses of the sludge since it will contain traces of metals. In this case, the desired outcome of the brewery sludge would be to produce animal feed; however, these conventional coagulants would add a toxic component to the sludge. The use of biopolymers like chitosan, which act as a coagulant, can be used to dewater brewery sludge while allowing it to be safe for animal consumption. Chitosan is also a by-product created by the shellfish processing industry and therefore reduces the environmental imprint since it involves using the waste from one industry to treat the waste from another. In order to prove the effectiveness of this biopolymer, experiments using jar-tests will be utilised to determine the optimal dosages and conditions, while variances of contaminants like ammonium will also be observed. The efficiency of chitosan can also be compared to other polysaccharides to determine which is best suited for this waste. Overall a significant separation has been achieved between the solid and liquid content of the waste during the coagulation-flocculation process when applying chitosan. This biopolymer can, therefore, be used to dewater brewery sludge such that it can be repurposed as animal feed. The use of biopolymers can also be applied to treat sludge from other industries, which can reduce the amount of waste produced and allow for more diverse options for reuse.Keywords: animal feed, biopolymer, brewery sludge, chitosan
Procedia PDF Downloads 156924 Functional Connectivity Signatures of Polygenic Depression Risk in Youth
Authors: Louise Moles, Steve Riley, Sarah D. Lichenstein, Marzieh Babaeianjelodar, Robert Kohler, Annie Cheng, Corey Horien Abigail Greene, Wenjing Luo, Jonathan Ahern, Bohan Xu, Yize Zhao, Chun Chieh Fan, R. Todd Constable, Sarah W. Yip
Abstract:
Background: Risks for depression are myriad and include both genetic and brain-based factors. However, relationships between these systems are poorly understood, limiting understanding of disease etiology, particularly at the developmental level. Methods: We use a data-driven machine learning approach connectome-based predictive modeling (CPM) to identify functional connectivity signatures associated with polygenic risk scores for depression (DEP-PRS) among youth from the Adolescent Brain and Cognitive Development (ABCD) study across diverse brain states, i.e., during resting state, during affective working memory, during response inhibition, during reward processing. Results: Using 10-fold cross-validation with 100 iterations and permutation testing, CPM identified connectivity signatures of DEP-PRS across all examined brain states (rho’s=0.20-0.27, p’s<.001). Across brain states, DEP-PRS was positively predicted by increased connectivity between frontoparietal and salience networks, increased motor-sensory network connectivity, decreased salience to subcortical connectivity, and decreased subcortical to motor-sensory connectivity. Subsampling analyses demonstrated that model accuracies were robust across random subsamples of N’s=1,000, N’s=500, and N’s=250 but became unstable at N’s=100. Conclusions: These data, for the first time, identify neural networks of polygenic depression risk in a large sample of youth before the onset of significant clinical impairment. Identified networks may be considered potential treatment targets or vulnerability markers for depression risk.Keywords: genetics, functional connectivity, pre-adolescents, depression
Procedia PDF Downloads 57