Search results for: imaging area
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9724

Search results for: imaging area

9394 An Activatable Theranostic for Targeted Cancer Therapy and Imaging

Authors: Sankarprasad Bhuniya, Sukhendu Maiti, Eun-Joong Kim, Hyunseung Lee, Jonathan L. Sessler, Kwan Soo Hong, Jong Seung Kim

Abstract:

A new theranostic strategy is described. It is based on the use of an “all in one” prodrug, namely the biotinylated piperazine-rhodol conjugate 4a. This conjugate, which incorporates the anticancer drug SN-38, undergoes self-immolative cleavage when exposed to biological thiols. This leads to the tumor-targeted release of the active SN-38 payload along with fluorophore 1a. This release is made selective as the result of the biotin functionality. Fluorophore 1a is 32-fold more fluorescent than prodrug 4a. It permits the delivery and release of the SN-38 payload to be monitored easily in vitro and in vivo, as inferred from cell studies and ex vivo analyses of mice xenografts derived HeLa cells, respectively. Prodrug 4a also displays anticancer activity in the HeLa cell murine xenograft tumor model. On the basis of these findings we suggest that the present strategy, which combines within a single agent the key functions of targeting, release, imaging, and treatment, may have a role to play in cancer diagnosis and therapy.

Keywords: theranostic, prodrug, cancer therapy, fluorescence

Procedia PDF Downloads 518
9393 Airborne SAR Data Analysis for Impact of Doppler Centroid on Image Quality and Registration Accuracy

Authors: Chhabi Nigam, S. Ramakrishnan

Abstract:

This paper brings out the analysis of the airborne Synthetic Aperture Radar (SAR) data to study the impact of Doppler centroid on Image quality and geocoding accuracy from the perspective of Stripmap mode of data acquisition. Although in Stripmap mode of data acquisition radar beam points at 90 degrees broad side (side looking), shift in the Doppler centroid is invariable due to platform motion. In-accurate estimation of Doppler centroid leads to poor image quality and image miss-registration. The effect of Doppler centroid is analyzed in this paper using multiple sets of data collected from airborne platform. Occurrences of ghost (ambiguous) targets and their power levels have been analyzed that impacts appropriate choice of PRF. Effect of aircraft attitudes (roll, pitch and yaw) on the Doppler centroid is also analyzed with the collected data sets. Various stages of the RDA (Range Doppler Algorithm) algorithm used for image formation in Stripmap mode, range compression, Doppler centroid estimation, azimuth compression, range cell migration correction are analyzed to find the performance limits and the dependence of the imaging geometry on the final image. The ability of Doppler centroid estimation to enhance the imaging accuracy for registration are also illustrated in this paper. The paper also tries to bring out the processing of low squint SAR data, the challenges and the performance limits imposed by the imaging geometry and the platform dynamics on the final image quality metrics. Finally, the effect on various terrain types, including land, water and bright scatters is also presented.

Keywords: ambiguous target, Doppler Centroid, image registration, Airborne SAR

Procedia PDF Downloads 197
9392 Medical Diagnosis of Retinal Diseases Using Artificial Intelligence Deep Learning Models

Authors: Ethan James

Abstract:

Over one billion people worldwide suffer from some level of vision loss or blindness as a result of progressive retinal diseases. Many patients, particularly in developing areas, are incorrectly diagnosed or undiagnosed whatsoever due to unconventional diagnostic tools and screening methods. Artificial intelligence (AI) based on deep learning (DL) convolutional neural networks (CNN) have recently gained a high interest in ophthalmology for its computer-imaging diagnosis, disease prognosis, and risk assessment. Optical coherence tomography (OCT) is a popular imaging technique used to capture high-resolution cross-sections of retinas. In ophthalmology, DL has been applied to fundus photographs, optical coherence tomography, and visual fields, achieving robust classification performance in the detection of various retinal diseases including macular degeneration, diabetic retinopathy, and retinitis pigmentosa. However, there is no complete diagnostic model to analyze these retinal images that provide a diagnostic accuracy above 90%. Thus, the purpose of this project was to develop an AI model that utilizes machine learning techniques to automatically diagnose specific retinal diseases from OCT scans. The algorithm consists of neural network architecture that was trained from a dataset of over 20,000 real-world OCT images to train the robust model to utilize residual neural networks with cyclic pooling. This DL model can ultimately aid ophthalmologists in diagnosing patients with these retinal diseases more quickly and more accurately, therefore facilitating earlier treatment, which results in improved post-treatment outcomes.

Keywords: artificial intelligence, deep learning, imaging, medical devices, ophthalmic devices, ophthalmology, retina

Procedia PDF Downloads 154
9391 Design Optimisation of Compound Parabolic Concentrator (CPC) for Improved Performance

Authors: R. Abd-Rahman, M. M. Isa, H. H. Goh

Abstract:

A compound parabolic concentrator (CPC) is a well known non-imaging concentrator that will concentrate the solar radiation onto receiver (PV cell). One of disadvantage of CPC is has tall and narrow height compared to its diameter entry aperture area. Therefore, for economic reason, a truncation had been done by removed from the top of the full height CPC. This is also will lead to the decreases of concentration ratio but it will be negligible. In this paper, the flux distribution of untruncated and truncated 2-D hollow compound parabolic trough concentrator (hCPTC) design is presented. The untruncated design has initial height, H=193.4mm with concentration ratio, C_(2-D)=4. This paper presents the optical simulation of compound parabolic trough concentrator using ray-tracing software TracePro. Results showed that, after the truncation, the height of CPC reduced 45% from initial height with the geometrical concentration ratio only decrease 10%. Thus, the cost of reflector and material dielectric usage can be saved especially at manufacturing site.

Keywords: compound parabolic trough concentrator, optical modelling, ray-tracing analysis, improved performance

Procedia PDF Downloads 438
9390 Area Efficient Carry Select Adder Using XOR Gate Design

Authors: Mahendrapal Singh Pachlaniya, Laxmi Kumre

Abstract:

The AOI (AND – OR- INVERTER) based design of XOR gate is proposed in this paper with less number of gates. This new XOR gate required four basic gates and basic gate include only AND, OR, Inverter (AOI). Conventional XOR gate required five basic gates. Ripple Carry Adder (RCA) used in parallel addition but propagation delay time is large. RCA replaced with Carry Select Adder (CSLA) to reduce propagation delay time. CSLA design with dual RCA considering carry = ‘0’ and carry = ‘1’, so it is not an area efficient adder. To make area efficient, modified CSLA is designed with single RCA considering carry = ‘0’ and another RCA considering carry = ‘1’ replaced with Binary to Excess 1 Converter (BEC). Now replacement of conventional XOR gate by new design of XOR gate in modified CSLA reduces much area compared to regular CSLA and modified CSLA.

Keywords: CSLA, BEC, XOR gate, area efficient

Procedia PDF Downloads 340
9389 Mapping Iron Content in the Brain with Magnetic Resonance Imaging and Machine Learning

Authors: Gabrielle Robertson, Matthew Downs, Joseph Dagher

Abstract:

Iron deposition in the brain has been linked with a host of neurological disorders such as Alzheimer’s, Parkinson’s, and Multiple Sclerosis. While some treatment options exist, there are no objective measurement tools that allow for the monitoring of iron levels in the brain in vivo. An emerging Magnetic Resonance Imaging (MRI) method has been recently proposed to deduce iron concentration through quantitative measurement of magnetic susceptibility. This is a multi-step process that involves repeated modeling of physical processes via approximate numerical solutions. For example, the last two steps of this Quantitative Susceptibility Mapping (QSM) method involve I) mapping magnetic field into magnetic susceptibility and II) mapping magnetic susceptibility into iron concentration. Process I involves solving an ill-posed inverse problem by using regularization via injection of prior belief. The end result from Process II highly depends on the model used to describe the molecular content of each voxel (type of iron, water fraction, etc.) Due to these factors, the accuracy and repeatability of QSM have been an active area of research in the MRI and medical imaging community. This work aims to estimate iron concentration in the brain via a single step. A synthetic numerical model of the human head was created by automatically and manually segmenting the human head on a high-resolution grid (640x640x640, 0.4mm³) yielding detailed structures such as microvasculature and subcortical regions as well as bone, soft tissue, Cerebral Spinal Fluid, sinuses, arteries, and eyes. Each segmented region was then assigned tissue properties such as relaxation rates, proton density, electromagnetic tissue properties and iron concentration. These tissue property values were randomly selected from a Probability Distribution Function derived from a thorough literature review. In addition to having unique tissue property values, different synthetic head realizations also possess unique structural geometry created by morphing the boundary regions of different areas within normal physical constraints. This model of the human brain is then used to create synthetic MRI measurements. This is repeated thousands of times, for different head shapes, volume, tissue properties and noise realizations. Collectively, this constitutes a training-set that is similar to in vivo data, but larger than datasets available from clinical measurements. This 3D convolutional U-Net neural network architecture was used to train data-driven Deep Learning models to solve for iron concentrations from raw MRI measurements. The performance was then tested on both synthetic data not used in training as well as real in vivo data. Results showed that the model trained on synthetic MRI measurements is able to directly learn iron concentrations in areas of interest more effectively than other existing QSM reconstruction methods. For comparison, models trained on random geometric shapes (as proposed in the Deep QSM method) are less effective than models trained on realistic synthetic head models. Such an accurate method for the quantitative measurement of iron deposits in the brain would be of important value in clinical studies aiming to understand the role of iron in neurological disease.

Keywords: magnetic resonance imaging, MRI, iron deposition, machine learning, quantitative susceptibility mapping

Procedia PDF Downloads 110
9388 Adapting an Accurate Reverse-time Migration Method to USCT Imaging

Authors: Brayden Mi

Abstract:

Reverse time migration has been widely used in the Petroleum exploration industry to reveal subsurface images and to detect rock and fluid properties since the early 1980s. The seismic technology involves the construction of a velocity model through interpretive model construction, seismic tomography, or full waveform inversion, and the application of the reverse-time propagation of acquired seismic data and the original wavelet used in the acquisition. The methodology has matured from 2D, simple media to present-day to handle full 3D imaging challenges in extremely complex geological conditions. Conventional Ultrasound computed tomography (USCT) utilize travel-time-inversion to reconstruct the velocity structure of an organ. With the velocity structure, USCT data can be migrated with the “bend-ray” method, also known as migration. Its seismic application counterpart is called Kirchhoff depth migration, in which the source of reflective energy is traced by ray-tracing and summed to produce a subsurface image. It is well known that ray-tracing-based migration has severe limitations in strongly heterogeneous media and irregular acquisition geometries. Reverse time migration (RTM), on the other hand, fully accounts for the wave phenomena, including multiple arrives and turning rays due to complex velocity structure. It has the capability to fully reconstruct the image detectable in its acquisition aperture. The RTM algorithms typically require a rather accurate velocity model and demand high computing powers, and may not be applicable to real-time imaging as normally required in day-to-day medical operations. However, with the improvement of computing technology, such a computational bottleneck may not present a challenge in the near future. The present-day (RTM) algorithms are typically implemented from a flat datum for the seismic industry. It can be modified to accommodate any acquisition geometry and aperture, as long as sufficient illumination is provided. Such flexibility of RTM can be conveniently implemented for the application in USCT imaging if the spatial coordinates of the transmitters and receivers are known and enough data is collected to provide full illumination. This paper proposes an implementation of a full 3D RTM algorithm for USCT imaging to produce an accurate 3D acoustic image based on the Phase-shift-plus-interpolation (PSPI) method for wavefield extrapolation. In this method, each acquired data set (shot) is propagated back in time, and a known ultrasound wavelet is propagated forward in time, with PSPI wavefield extrapolation and a piece-wise constant velocity model of the organ (breast). The imaging condition is then applied to produce a partial image. Although each image is subject to the limitation of its own illumination aperture, the stack of multiple partial images will produce a full image of the organ, with a much-reduced noise level if compared with individual partial images.

Keywords: illumination, reverse time migration (RTM), ultrasound computed tomography (USCT), wavefield extrapolation

Procedia PDF Downloads 53
9387 Probing Neuron Mechanics with a Micropipette Force Sensor

Authors: Madeleine Anthonisen, M. Hussain Sangji, G. Monserratt Lopez-Ayon, Margaret Magdesian, Peter Grutter

Abstract:

Advances in micromanipulation techniques and real-time particle tracking with nanometer resolution have enabled biological force measurements at scales relevant to neuron mechanics. An approach to precisely control and maneuver neurite-tethered polystyrene beads is presented. Analogous to an Atomic Force Microscope (AFM), this multi-purpose platform is a force sensor with imaging acquisition and manipulation capabilities. A mechanical probe composed of a micropipette with its tip fixed to a functionalized bead is used to incite the formation of a neurite in a sample of rat hippocampal neurons while simultaneously measuring the tension in said neurite as the sample is pulled away from the beaded tip. With optical imaging methods, a force resolution of 12 pN is achieved. Moreover, the advantages of this technique over alternatives such as AFM, namely ease of manipulation which ultimately allows higher throughput investigation of the mechanical properties of neurons, is demonstrated.

Keywords: axonal growth, axonal guidance, force probe, pipette micromanipulation, neurite tension, neuron mechanics

Procedia PDF Downloads 337
9386 The Social Area Disclosure to Reduce Conflicts between Community and the State: A Case of Mahakan Fortress, Bangkok

Authors: Saowapa Phaithayawat

Abstract:

The purposes of this study are 1) to study the over 20-year attempt of Mahakan fort community to negotiate with Bangkok Metropolitan Administration (BMA) to remain in their residential area belonging to the state, and 2) to apply the new social and cultural dimension between the state and the community as an alternative for local participation in keeping their residential area. This is a qualitative research, and the findings reveal that the community claimed their ancestors’ right as owners of this piece of land for over 200 years. The community, therefore, requested to take part in the preservation of land, culture and local intellect and the area management in terms of being a learning resource on the cultural road in Rattanakosin Island. However, BMA imposed the law concerning the community area relocation in Rattanakosin Island. The result of law enforcement led to the failure of the area relocation, and the hard hit on physical structure of the area including the overall deterioration of the cultural road renovated in the year 1982, the 200 years’ celebration of Bangkok. The enforcement of law by the state required the move of the community, and the landscape improvement based on the capital city plan. However, this enforcement resulted in the unending conflicts between the community and the state, and the solution of this problem was unclear. At the same time the community has spent a long time opposing the state’s action, and preparing themselves by administrating the community behind Mahakan fortress with community administrative committee under the suggestion of external organization by registering all community members, providing funds for community administration. At the meantime the state lacked the continuation of the enforcement due to political problem and BMA’s administration problem. It is, therefore, suggested that an alternative solution to this problem lie at the negotiation between the state and the community with the purpose of the collaboration between the two to develop the area under the protective law of each side.

Keywords: Pom-Mahakan community, reduction of conflicts, social area disclosure, residential area

Procedia PDF Downloads 294
9385 Design and Manufacture Detection System for Patient's Unwanted Movements during Radiology and CT Scan

Authors: Anita Yaghobi, Homayoun Ebrahimian

Abstract:

One of the important tools that can help orthopedic doctors for diagnose diseases is imaging scan. Imaging techniques can help physicians in see different parts of the body, including the bones, muscles, tendons, nerves, and cartilage. During CT scan, a patient must be in the same position from the start to the end of radiation treatment. Patient movements are usually monitored by the technologists through the closed circuit television (CCTV) during scan. If the patient makes a small movement, it is difficult to be noticed by them. In the present work, a simple patient movement monitoring device is fabricated to monitor the patient movement. It uses an electronic sensing device. It continuously monitors the patient’s position while the CT scan is in process. The device has been retrospectively tested on 51 patients whose movement and distance were measured. The results show that 25 patients moved 1 cm to 2.5 cm from their initial position during the CT scan. Hence, the device can potentially be used to control and monitor patient movement during CT scan and Radiography. In addition, an audible alarm situated at the control panel of the control room is provided with this device to alert the technologists. It is an inexpensive, compact device which can be used in any CT scan machine.

Keywords: CT scan, radiology, X Ray, unwanted movement

Procedia PDF Downloads 440
9384 Analysis of Enhanced Built-up and Bare Land Index in the Urban Area of Yangon, Myanmar

Authors: Su Nandar Tin, Wutjanun Muttitanon

Abstract:

The availability of free global and historical satellite imagery provides a valuable opportunity for mapping and monitoring the year by year for the built-up area, constantly and effectively. Land distribution guidelines and identification of changes are important in preparing and reviewing changes in the ground overview data. This study utilizes Landsat images for thirty years of information to acquire significant, and land spread data that are extremely valuable for urban arranging. This paper is mainly introducing to focus the basic of extracting built-up area for the city development area from the satellite images of LANDSAT 5,7,8 and Sentinel 2A from USGS in every five years. The purpose analyses the changing of the urban built-up area according to the year by year and to get the accuracy of mapping built-up and bare land areas in studying the trend of urban built-up changes the periods from 1990 to 2020. The GIS tools such as raster calculator and built-up area modelling are using in this study and then calculating the indices, which include enhanced built-up and bareness index (EBBI), Normalized difference Built-up index (NDBI), Urban index (UI), Built-up index (BUI) and Normalized difference bareness index (NDBAI) are used to get the high accuracy urban built-up area. Therefore, this study will point out a variable approach to automatically mapping typical enhanced built-up and bare land changes (EBBI) with simple indices and according to the outputs of indexes. Therefore, the percentage of the outputs of enhanced built-up and bareness index (EBBI) of the sentinel-2A can be realized with 48.4% of accuracy than the other index of Landsat images which are 15.6% in 1990 where there is increasing urban expansion area from 43.6% in 1990 to 92.5% in 2020 on the study area for last thirty years.

Keywords: built-up area, EBBI, NDBI, NDBAI, urban index

Procedia PDF Downloads 131
9383 Application of Compressed Sensing and Different Sampling Trajectories for Data Reduction of Small Animal Magnetic Resonance Image

Authors: Matheus Madureira Matos, Alexandre Rodrigues Farias

Abstract:

Magnetic Resonance Imaging (MRI) is a vital imaging technique used in both clinical and pre-clinical areas to obtain detailed anatomical and functional information. However, MRI scans can be expensive, time-consuming, and often require the use of anesthetics to keep animals still during the imaging process. Anesthetics are commonly administered to animals undergoing MRI scans to ensure they remain still during the imaging process. However, prolonged or repeated exposure to anesthetics can have adverse effects on animals, including physiological alterations and potential toxicity. Minimizing the duration and frequency of anesthesia is, therefore, crucial for the well-being of research animals. In recent years, various sampling trajectories have been investigated to reduce the number of MRI measurements leading to shorter scanning time and minimizing the duration of animal exposure to the effects of anesthetics. Compressed sensing (CS) and sampling trajectories, such as cartesian, spiral, and radial, have emerged as powerful tools to reduce MRI data while preserving diagnostic quality. This work aims to apply CS and cartesian, spiral, and radial sampling trajectories for the reconstruction of MRI of the abdomen of mice sub-sampled at levels below that defined by the Nyquist theorem. The methodology of this work consists of using a fully sampled reference MRI of a female model C57B1/6 mouse acquired experimentally in a 4.7 Tesla MRI scanner for small animals using Spin Echo pulse sequences. The image is down-sampled by cartesian, radial, and spiral sampling paths and then reconstructed by CS. The quality of the reconstructed images is objectively assessed by three quality assessment techniques RMSE (Root mean square error), PSNR (Peak to Signal Noise Ratio), and SSIM (Structural similarity index measure). The utilization of optimized sampling trajectories and CS technique has demonstrated the potential for a significant reduction of up to 70% of image data acquisition. This result translates into shorter scan times, minimizing the duration and frequency of anesthesia administration and reducing the potential risks associated with it.

Keywords: compressed sensing, magnetic resonance, sampling trajectories, small animals

Procedia PDF Downloads 46
9382 Effectiveness of Multi-Business Core Development Policy in Tokyo Metropolitan Area

Authors: Takashi Nakamura

Abstract:

In the Tokyo metropolitan area, traffic congestion and long commute times are caused by overconcentration in the central area. To resolve these problems, a core business city development policy was adopted in 1988. The core business cities, which include Yokohama, Chiba, Saitama, Tachikawa, and others, have designated business facilities accumulation districts where assistance measures are applied. Focusing on Yokohama city, this study investigates the trends in the number of offices, employees, and commuters at 2001 and 2012 Economic Census, as well as the average commute time in the Tokyo metropolitan area from 2005 to 2015 Metropolitan Transportation Census. Surveys were administered in 2001 and 2012 Economic Census to participants who worked in Yokohama, according to their distribution in the city's 1,757 subregions. Four main findings emerged: (1) The number of offices increased in Yokohama when the number of offices decreased in the Tokyo metropolitan area overall. Additionally, the number of employees at Yokohama increased. (2) The number of commuters to Tokyo's central area increased from Saitama prefecture, Tokyo Tama area, and Tokyo central area. However, it decreased from other areas. (3) The average commute time in the Tokyo metropolitan area was 67.7 minutes in 2015, a slight decrease from 2005 and 2010. (4) The number of employees at business facilities accumulation districts in Yokohama city increased greatly.

Keywords: core business city development policy, commute time, number of employees, Yokohama city, distribution of employees

Procedia PDF Downloads 122
9381 Assessing the Accessibility to Primary Percutaneous Coronary Intervention

Authors: Tzu-Jung Tseng, Pei-Hsuen Han, Tsung-Hsueh Lu

Abstract:

Background: Ensuring patients with ST-elevation myocardial infarction (STEMI) access to hospitals that could perform percutaneous coronary intervention (PCI) in time is an important concern of healthcare managers. One commonly used the method to assess the coverage of population access to PCI hospital is the use GIS-estimated linear distance (crow's fly distance) between the district centroid and the nearest PCI hospital. If the distance is within a given distance (such as 20 km), the entire population of that district is considered to have appropriate access to PCI. The premise of using district centroid to estimate the coverage of population resident in that district is that the people live in the district are evenly distributed. In reality, the population density is not evenly distributed within the administrative district, especially in rural districts. Fortunately, the Taiwan government released basic statistical area (on average 450 population within the area) recently, which provide us an opportunity to estimate the coverage of population access to PCI services more accurate. Objectives: We aimed in this study to compare the population covered by a give PCI hospital according to traditional administrative district versus basic statistical area. We further examined if the differences between two geographic units used would be larger in a rural area than in urban area. Method: We selected two hospitals in Tainan City for this analysis. Hospital A is in urban area, hospital B is in rural area. The population in each traditional administrative district and basic statistical area are obtained from Taiwan National Geographic Information System, Ministry of Internal Affairs. Results: Estimated population live within 20 km of hospital A and B was 1,515,846 and 323,472 according to traditional administrative district and was 1,506,325 and 428,556 according to basic statistical area. Conclusion: In urban area, the estimated access population to PCI services was similar between two geographic units. However, in rural areas, the access population would be overestimated.

Keywords: accessibility, basic statistical area, modifiable areal unit problem (MAUP), percutaneous coronary intervention (PCI)

Procedia PDF Downloads 436
9380 New Ethanol Method for Soft Tissue Imaging in Micro-CT

Authors: Matej Patzelt, Jan Dudak, Frantisek Krejci, Jan Zemlicka, Vladimir Musil, Jitka Riedlova, Viktor Sykora, Jana Mrzilkova, Petr Zach

Abstract:

Introduction: Micro-CT is well used for examination of bone structures and teeth. On the other hand visualization of the soft tissues is still limited. The goal of our study was to create a new fixation method for soft tissue imaging in micro-CT. Methodology: We used organs of 18 mice - heart, lungs, kidneys, liver and brain, which we fixated in ethanol after meticulous preparation. We fixated organs in different concentrations of ethanol and for different period of time. We used three types of ethanol concentration - 97%, 50% and ascending ethanol concentration (25%, 50%, 75%, 97% each for 12 hours). Fixated organs were scanned after 72 hours, 168 hours and 336 hours period of fixation. We scanned all specimens in micro-CT MARS (Medipix All Resolution System). Results: Ethanol method provided contrast enhancement in all studied organs in all used types of fixation. Fixation in 97% ethanol provided very fast fixation and the contrast among the tissues was visible already after 72 hours of fixation. Fixation for the period of 168 and 336 hours gave better details, especially in lung tissue, where alveoli were visualized. On the other hand, this type of fixation caused organs to petrify. Fixation in 50% ethanol provided best results in 336 hours fixation, details were visualized better than in 97% ethanol and samples were not as hard as in fixation in 97% ethanol. Best results were obtained in fixation in ascending ethanol concentration. All organs were visualized in great details, best-visualized organ was heart, where trabeculae and valves were visible. In this type of fixation, organs stayed soft for whole time. Conclusion: New ethanol method is a great option for soft tissue fixation as well as the method for enhancing contrast among tissues in organs. The best results were obtained with fixation of the organs in ascending ethanol concentration, the best visualized organ was the heart.

Keywords: x-ray imaging, small animals, ethanol, ex-vivo

Procedia PDF Downloads 302
9379 Series "H154M" as a Unit Area of the Region between the Lines and Curves

Authors: Hisyam Hidayatullah

Abstract:

This world events consciously or not realize everything has a pattern, until the events of the universe according to the Big Bang theory of the solar system which makes so regular in the rotation. The author would like to create a results curve area between the quadratic function y=kx2 and line y=ka2 using GeoGebra application version 4.2. This paper can provide a series that is no less interesting with Fourier series, so that will add new material about the series can be calculated with sigma notation. In addition, the ranks of the unique natural numbers of extensive changes in established areas. Finally, this paper provides analytical and geometric proof of the vast area in between the lines and curves that give the area is formed by y=ka2 dan kurva y=kx2, x-axis, line x=√a and x=-√a make a series of numbers for k=1 and a ∈ original numbers. ∑_(i=0)^n=(4n√n)/3=0+4/3+(8√2)/3+4√3+⋯+(4n√n)/3. The author calls the series “H154M”.

Keywords: sequence, series, sigma notation, application GeoGebra

Procedia PDF Downloads 352
9378 Analysis of Heat Exchanger Area of Two Stage Cascade Refrigeration System Using Taguchi

Authors: A. D. Parekh

Abstract:

The present work describes relative contributions of operating parameters on required heat transfer area of three heat exchangers viz. evaporator, condenser and cascade condenser of two stage R404A-R508B cascade refrigeration system using Taguchi method. The operating parameters considered in present study includes (1) condensing temperature of high temperature cycle and low temperature cycle (2) evaporating temperature of low temperature cycle (3) degree of superheating in low temperature cycle (4) refrigerating effect. Heat transfer areas of three heat exchangers are studied with variation of above operating parameters and also optimum working levels of each operating parameter has been obtained for minimum heat transfer area of each heat exchanger using Taguchi method. The analysis using Taguchi method reveals that evaporating temperature of low temperature cycle and refrigerating effect contribute relatively largely on the area of evaporator. Condenser area is mainly influenced by both condensing temperature of high temperature cycle and refrigerating effect. Area of cascade condenser is mainly affected by refrigerating effect and the effects of other operating parameters are minimal.

Keywords: cascade refrigeration system, Taguchi method, heat transfer area, ANOVA, optimal solution

Procedia PDF Downloads 312
9377 Toxic Heavy Metal Accumulation by Algerian Malva sylvestris L. Depending on Location Variation

Authors: Souhila Terfi, Fatma Hassaine-Sadi

Abstract:

In the present study, wet digestion with HCl and HNO3 mixture was used to extract the heavy metals (copper (Cu), chromium (Cr), zinc (Zn), lead (Pb) and cadmium (Cd)) from the leaves, the stems and the roots of Malva sylvestris L., which were subsequently analyzed by AAS. The samples (soil and parts of species) were collected from different sites: the industrial area (IA) (Rouiba), the rubbish dump area (RDA) (Boudouaou), the residential area (RA) with large open fields and construction activities (Blida), the Montaigne area (MA) (Chrea) and the high plateau area (HPA) (Berouaguia). The study showed differences in metal concentrations according to the analysed parts and the different sampling locations. In the contaminated site of the industrial area (IA), high content of the toxic heavy metals (Cd: 3.18 µg/g DW and Pb: 34.48 µg/g DW) were found in the leaves of Malva sylvestris L. This finding suggests that the consumers of this species could be exposed to a risk associated with this higher level of these toxic metals. It was found that Malva sylvestris L. is rich by Zn and Cu in some sites, which are considered to be the essential elements for the human health. The obtained results with the control site (Montaigne area) suggest that this species can be applicable in both the health and food, feasible alternatives as medicinal plant without any risk.

Keywords: Malva sylvestris L., toxic heavy metal, medicinal plant, impact on human health

Procedia PDF Downloads 334
9376 Analysis of Heat Exchanger Area of Two Stage Cascade Refrigeration System Using Taguchi Methodology

Authors: A. D. Parekh

Abstract:

The present work describes relative contributions of operating parameters on required heat transfer area of three heat exchangers viz. evaporator, condenser and cascade condenser of two stage R404A-R508B cascade refrigeration system using Taguchi method. The operating parameters considered in present study includes (1) condensing temperature of high temperature cycle and low temperature cycle (2) evaporating temperature of low temperature cycle (3) degree of superheating in low temperature cycle (4) refrigerating effect. Heat transfer areas of three heat exchangers are studied with variation of above operating parameters and also optimum working levels of each operating parameter has been obtained for minimum heat transfer area of each heat exchanger using Taguchi method. The analysis using Taguchi method reveals that evaporating temperature of low temperature cycle and refrigerating effect contribute relatively largely on the area of evaporator. Condenser area is mainly influenced by both condensing temperature of high temperature cycle and refrigerating effect. Area of cascade condenser is mainly affected by refrigerating effect and the effects of other operating parameters are minimal.

Keywords: cascade refrigeration system, Taguchi method, heat transfer area, ANOVA, optimal solution

Procedia PDF Downloads 363
9375 Is the Addition of Computed Tomography with Angiography Superior to a Non-Contrast Neuroimaging Only Strategy for Patients with Suspected Stroke or Transient Ischemic Attack Presenting to the Emergency Department?

Authors: Alisha M. Ebrahim, Bijoy K. Menon, Eddy Lang, Shelagh B. Coutts, Katie Lin

Abstract:

Introduction: Frontline emergency physicians require clear and evidence-based approaches to guide neuroimaging investigations for patients presenting with suspected acute stroke or transient ischemic attack (TIA). Various forms of computed tomography (CT) are currently available for initial investigation, including non-contrast CT (NCCT), CT angiography head and neck (CTA), and CT perfusion (CTP). However, there is uncertainty around optimal imaging choice for cost-effectiveness, particularly for minor or resolved neurological symptoms. In addition to the cost of CTA and CTP testing, there is also a concern for increased incidental findings, which may contribute to the burden of overdiagnosis. Methods: In this cross-sectional observational study, analysis was conducted on 586 anonymized triage and diagnostic imaging (DI) reports for neuroimaging orders completed on patients presenting to adult emergency departments (EDs) with a suspected stroke or TIA from January-December 2019. The primary outcome of interest is the diagnostic yield of NCCT+CTA compared to NCCT alone for patients presenting to urban academic EDs with Canadian Emergency Department Information System (CEDIS) complaints of “symptoms of stroke” (specifically acute stroke and TIA indications). DI reports were coded into 4 pre-specified categories (endorsed by a panel of stroke experts): no abnormalities, clinically significant findings (requiring immediate or follow-up clinical action), incidental findings (not meeting prespecified criteria for clinical significance), and both significant and incidental findings. Standard descriptive statistics were performed. A two-sided p-value <0.05 was considered significant. Results: 75% of patients received NCCT+CTA imaging, 21% received NCCT alone, and 4% received NCCT+CTA+CTP. The diagnostic yield of NCCT+CTA imaging for prespecified clinically significant findings was 24%, compared to only 9% in those who received NCCT alone. The proportion of incidental findings was 30% in the NCCT only group and 32% in the NCCT+CTA group. CTP did not significantly increase the yield of significant or incidental findings. Conclusion: In this cohort of patients presenting with suspected stroke or TIA, an NCCT+CTA neuroimaging strategy had a higher diagnostic yield for clinically significant findings than NCCT alone without significantly increasing the number of incidental findings identified.

Keywords: stroke, diagnostic yield, neuroimaging, emergency department, CT

Procedia PDF Downloads 80
9374 Reduction of Plants Biodiversity in Hyrcanian Forest by Coal Mining Activities

Authors: Mahsa Tavakoli, Seyed Mohammad Hojjati, Yahya Kooch

Abstract:

Considering that coal mining is one of the important industrial activities, it may cause damages to environment. According to the author’s best knowledge, the effect of traditional coal mining activities on plant biodiversity has not been investigated in the Hyrcanian forests. Therefore, in this study, the effect of coal mining activities on vegetation and tree diversity was investigated in Hyrcanian forest, North Iran. After filed visiting and determining the mine, 16 plots (20×20 m2) were established by systematic-randomly (60×60 m2) in an area of 4 ha (200×200 m2-mine entrance placed at center). An area adjacent to the mine was not affected by the mining activity, and it is considered as the control area. In each plot, the data about trees such as number and type of species were recorded. The biodiversity of vegetation cover was considered 5 square sub-plots (1 m2) in each plot. PAST software and Ecological Methodology were used to calculate Biodiversity indices. The value of Shannon Wiener and Simpson diversity indices for tree cover in control area (1.04±0.34 and 0.62±0.20) was significantly higher than mining area (0.78±0.27 and 0.45±0.14). The value of evenness indices for tree cover in the mining area was significantly lower than that of the control area. The value of Shannon Wiener and Simpson diversity indices for vegetation cover in the control area (1.37±0.06 and 0.69±0.02) was significantly higher than the mining area (1.02±0.13 and 0.50±0.07). The value of evenness index in the control area was significantly higher than the mining area. Plant communities are a good indicator of the changes in the site. Study about changes in vegetation biodiversity and plant dynamics in the degraded land can provide necessary information for forest management and reforestation of these areas.

Keywords: vegetation biodiversity, species composition, traditional coal mining, Caspian forest

Procedia PDF Downloads 159
9373 Monitoring of Wound Healing Through Structural and Functional Mechanisms Using Photoacoustic Imaging Modality

Authors: Souradip Paul, Arijit Paramanick, M. Suheshkumar Singh

Abstract:

Traumatic injury is the leading worldwide health problem. Annually, millions of surgical wounds are created for the sake of routine medical care. The healing of these unintended injuries is always monitored based on visual inspection. The maximal restoration of tissue functionality remains a significant concern of clinical care. Although minor injuries heal well with proper care and medical treatment, large injuries negatively influence various factors (vasculature insufficiency, tissue coagulation) and cause poor healing. Demographically, the number of people suffering from severe wounds and impaired healing conditions is burdensome for both human health and the economy. An incomplete understanding of the functional and molecular mechanism of tissue healing often leads to a lack of proper therapies and treatment. Hence, strong and promising medical guidance is necessary for monitoring the tissue regeneration processes. Photoacoustic imaging (PAI), is a non-invasive, hybrid imaging modality that can provide a suitable solution in this regard. Light combined with sound offers structural, functional and molecular information from the higher penetration depth. Therefore, molecular and structural mechanisms of tissue repair will be readily observable in PAI from the superficial layer and in the deep tissue region. Blood vessel formation and its growth is an essential tissue-repairing components. These vessels supply nutrition and oxygen to the cell in the wound region. Angiogenesis (formation of new capillaries from existing blood vessels) contributes to new blood vessel formation during tissue repair. The betterment of tissue healing directly depends on angiogenesis. Other optical microscopy techniques can visualize angiogenesis in micron-scale penetration depth but are unable to provide deep tissue information. PAI overcomes this barrier due to its unique capability. It is ideally suited for deep tissue imaging and provides the rich optical contrast generated by hemoglobin in blood vessels. Hence, an early angiogenesis detection method provided by PAI leads to monitoring the medical treatment of the wound. Along with functional property, mechanical property also plays a key role in tissue regeneration. The wound heals through a dynamic series of physiological events like coagulation, granulation tissue formation, and extracellular matrix (ECM) remodeling. Therefore tissue elasticity changes, can be identified using non-contact photoacoustic elastography (PAE). In a nutshell, angiogenesis and biomechanical properties are both critical parameters for tissue healing and these can be characterized in a single imaging modality (PAI).

Keywords: PAT, wound healing, tissue coagulation, angiogenesis

Procedia PDF Downloads 83
9372 Thermal Image Segmentation Method for Stratification of Freezing Temperatures

Authors: Azam Fazelpour, Saeed R. Dehghani, Vlastimil Masek, Yuri S. Muzychka

Abstract:

The study uses an image analysis technique employing thermal imaging to measure the percentage of areas with various temperatures on a freezing surface. An image segmentation method using threshold values is applied to a sequence of image recording the freezing process. The phenomenon is transient and temperatures vary fast to reach the freezing point and complete the freezing process. Freezing salt water is subjected to the salt rejection that makes the freezing point dynamic and dependent on the salinity at the phase interface. For a specific area of freezing, nucleation starts from one side and end to another side, which causes a dynamic and transient temperature in that area. Thermal cameras are able to reveal a difference in temperature due to their sensitivity to infrared radiance. Using Experimental setup, a video is recorded by a thermal camera to monitor radiance and temperatures during the freezing process. Image processing techniques are applied to all frames to detect and classify temperatures on the surface. Image processing segmentation method is used to find contours with same temperatures on the icing surface. Each segment is obtained using the temperature range appeared in the image and correspond pixel values in the image. Using the contours extracted from image and camera parameters, stratified areas with different temperatures are calculated. To observe temperature contours on the icing surface using the thermal camera, the salt water sample is dropped on a cold surface with the temperature of -20°C. A thermal video is recorded for 2 minutes to observe the temperature field. Examining the results obtained by the method and the experimental observations verifies the accuracy and applicability of the method.

Keywords: ice contour boundary, image processing, image segmentation, salt ice, thermal image

Procedia PDF Downloads 295
9371 Micro-CT Assessment of Fracture Healing in Androgen-Deficient Osteoporosis Model

Authors: Ahmad N. Shuid, Azri Jalil, Sabarul A. Mokhtar, Mohd F. Khamis, Norliza Muhammad

Abstract:

Micro-CT provides a 3-D image of fracture callus, which can be used to calculate quantitative parameters. In this study, micro-CT was used to assess the fracture healing of orchidectomised rats, an androgen-deficient osteoporosis model. The effect of testosterone (hormone replacement) on fracture healing was also assessed with micro-CT. The rats were grouped into orchidectomised-control (ORX), sham-operated (SHAM), and orchidectomised; and injected with testosterone intramuscularly once weekly (TEN). Treatment duration was six weeks. The fracture was induced and fixed with plates and screws in the right tibia of all the rats. An in vitro micro-CT was used to scan the fracture callus area which consisted of 100 axial slices above and below fracture line. The analysis has shown that micro-CT was able to detect a significant difference in the fracture healing rate of ORX and TEN groups. In conclusion, micro-CT can be used to assess fracture healing in androgen-deficient osteoporosis. This imaging tool can be used to test agents that influence fracture healing in the androgen-deficient model.

Keywords: androgen, fracture, orchidectomy, osteoporosis

Procedia PDF Downloads 522
9370 Subjective versus Objective Assessment for Magnetic Resonance (MR) Images

Authors: Heshalini Rajagopal, Li Sze Chow, Raveendran Paramesran

Abstract:

Magnetic Resonance Imaging (MRI) is one of the most important medical imaging modality. Subjective assessment of the image quality is regarded as the gold standard to evaluate MR images. In this study, a database of 210 MR images which contains ten reference images and 200 distorted images is presented. The reference images were distorted with four types of distortions: Rician Noise, Gaussian White Noise, Gaussian Blur and DCT compression. The 210 images were assessed by ten subjects. The subjective scores were presented in Difference Mean Opinion Score (DMOS). The DMOS values were compared with four FR-IQA metrics. We have used Pearson Linear Coefficient (PLCC) and Spearman Rank Order Correlation Coefficient (SROCC) to validate the DMOS values. The high correlation values of PLCC and SROCC shows that the DMOS values are close to the objective FR-IQA metrics.

Keywords: medical resonance (MR) images, difference mean opinion score (DMOS), full reference image quality assessment (FR-IQA)

Procedia PDF Downloads 437
9369 Community Development and Preservation of Heritage in Igbo Area of Nigeria

Authors: Elochukwu A. Nwankwo, Matthias U. Agboeze

Abstract:

Many heritage sites abound in the shores of Nigeria with enormous tourism potentials. Heritage sites do not only depict the cultural and historical transmutation of people but also functions in the image design and promotion of a locality. This reveals the unique role of heritage sites to structural development of an area. Heritage sites have of recent been a victim of degradation and social abuse arising from seasonal ignorance; hence minimizing its potentials to the socio-economic development of an area. This paper is emphasizing on the adoption of community development approaches in heritage preservation in Igbo area. Its modalities, applications, challenges and prospect were discussed. Such understanding will serve as a catalyst in aiding general restoration and preservation of heritage sites in Nigeria and other African states.

Keywords: heritage resources, community development, preservation, sustainable development, approaches

Procedia PDF Downloads 289
9368 Estimation of Aquifer Properties Using Pumping Tests: Case Study of Pydibhimavaram Industrial Area, Srikakulam, India

Authors: G. Venkata Rao, P. Kalpana, R. Srinivasa Rao

Abstract:

Adequate and reliable estimates of aquifer parameters are of utmost importance for proper management of vital groundwater resources. At present scenario the ground water is polluted because of industrial waste disposed over the land and the contaminants are transported in the aquifer from one area to another area which is depending on the characteristics of the aquifer and contaminants. To know the contaminant transport, the accurate estimation of aquifer properties is highly needed. Conventionally, these properties are estimated through pumping tests carried out on water wells. The occurrence and movement of ground water in the aquifer are characteristically defined by the aquifer parameters. The pumping (aquifer) test is the standard technique for estimating various hydraulic properties of aquifer systems, viz, transmissivity (T), hydraulic conductivity (K), storage coefficient (S) etc., for which the graphical method is widely used. The study area for conducting pumping test is Pydibheemavaram Industrial area near the coastal belt of Srikulam, AP, India. The main objective of the present work is to estimate the aquifer properties for developing contaminant transport model for the study area.

Keywords: aquifer, contaminant transport, hydraulic conductivity, industrial waste, pumping test

Procedia PDF Downloads 424
9367 A Preliminary Study on Factors Determining the Success of High Conservation Value Area in Oil Palm Plantations

Authors: Yanto Santosa, Rozza Tri Kwatrina

Abstract:

High Conservation Value (HCV) is an area with conservation function within oil palm plantation. Despite the important role of HCV area in biodiversity conservation and various studies on HCV, there was a lack of research studying the factors determining its success. A preliminary study was conducted to identify the determinant factor of HCV that affected the diversity. Line transect method was used to calculate the species diversity of butterfly, birds, mammals, and herpetofauna species as well as their richness. Specifically for mammals, camera traps were also used. The research sites comprised of 12 HCV areas in 3 provinces of Indonesia (Central Kalimantan, Riau, and Palembang). The relationship between the HCV biophysical factor with the species number and species diversity for each wildlife class was identified using Chi-Square analysis with Cross tab (contingency table). Results of the study revealed that species diversity varied by research locations. Four factors determining the success of HCV area in relations to the number and diversity of wildlife species are land cover types for mammals, the width of area and distance to rivers for birds, and distance to settlements for butterflies.

Keywords: wildlife diversity, oil palm plantation, high conservation value area, ecological factors

Procedia PDF Downloads 129
9366 Study of the Economic Development of Border Areas Malinau District

Authors: Indri Nilam Sari, Aris Subagiyo, Nindya Sari

Abstract:

Malinau Regency border area is an area which is based on the RTRWN and the development priority. But, in real border area Malinau Regency placed as backyard from Indonesian area and caused development lag that is fairly large compared by town area in Malinau Regency. This research aimed to know the condition of the gap in the Malinau Regency border and its influence on the development of the border region as well as knowing the problems related to the economy development of society in the area of the border district of Malinau. Methods of analysis are used in namely descriptive analysis that represent analysis of land use and analysis of movement activities of the population, level analysis facility and infrastructure, economy analysis that represent top commodity determination analysis (LQ and Growth Share) and accessibility. The results of the study showed that the condition of the Malinau Regency border come within the gap as seen from the contributions of infrastructure repair facilities and accessibility advocates, communities, scattered seed commodities come within the borders and human resources with the condition of the most Upstream Bahau town in the backwaters of the town more. There are a few problems that cause the condition area of the border experiencing inequality, lack of human resources, poor infrastructure, lack of accessibility and low levels of security so that it brings development recommendations was the development of the flagship commodities and infrastructure as well as supporting community economic infrastructure, as well as human resources.

Keywords: border, economy, development, Malinau

Procedia PDF Downloads 431
9365 Assessment of the Response of Seismic Refraction Tomography and Resistivity Imaging to the Same Geologic Environment: A Case Study of Zaria Basement Complex in North Central Nigeria

Authors: Collins C. Chiemeke, I. B. Osazuwa, S. O. Ibe, G. N. Egwuonwu, C. D. Ani, E. C. Chii

Abstract:

The study area is Zaria, located in the basement complex of northern Nigeria. The rock type forming the major part of the Zaria batholith is granite. This research work was carried out to compare the responses of seismic refraction tomography and resistivity tomography in the same geologic environment and under the same conditions. Hence, the choice of the site that has a visible granitic outcrop that extends across a narrow stream channel and is flanked by unconsolidated overburden, a neutral profile that was covered by plain overburden and a site with thick lateritic cover became necessary. The results of the seismic and resistivity tomography models reveals that seismic velocity and resistivity does not always simultaneously increase with depth, but their responses in any geologic environment are determined by changes in the mechanical and chemical content of the rock types rather than depth.

Keywords: environment, resistivity, response, seismic, velocity

Procedia PDF Downloads 328