Search results for: concentrations of different gases
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3234

Search results for: concentrations of different gases

2904 Evaluation of Biochemical Changes in Some Liver Functions and Anti-Oxidant Parameters in Wistar Rats Exposed to Benzene

Authors: Ezomoh O. Olubunmi, Chukwuma S. Anakwe, Bekewei Progress, Prohp The Prophet

Abstract:

Benzene is a volatile organic compound that is recognised as carcinogenic to humans. The objective of the current investigation was to ascertain the impact of the administration of benzene at varying concentrations on the livers of Wistar rats. The 40 adult female Wistar rats were divided into 10 groups, each consisting of four rats. For 28 days, Group 1 received distilled water, while Groups 2 to 10 were administered 0.04,0.06,0.08,0.2,0.4,0.6,0.8,1.0, and 1.2 ml/kg body weight of analytical grade benzene. Blood samples were obtained through cardiac puncture for liver function assessment, while the animals in groups 1 to 5 were euthanised after the 28th day under chloroform anaesthesia. The animals in groups 6 to 10 died midway through the study period. Antioxidant analysis was conducted on liver tissues that were collected and homogenised. The results indicated a substantial (p<0.05), dose-dependent increase in serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), and alkaline phosphatase (ALP) activities as a result of benzene exposure. Additionally, benzene resulted in a substantial reduction in the activities of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) in liver tissue, as well as an increase in malondialdehyde (MDA) concentrations, and this effect was dose-dependent. These findings emphasise the hepatotoxic effects of benzene, even at concentrations that are relatively low.

Keywords: benzene, alanine aminotransferase, aspartate aminotransferase, alkaline phosphate, antioxidants, superoxide dismutase, catalase, glutathione peroxidase

Procedia PDF Downloads 21
2903 Sider Bee Honey: Antitumor Effect in Some Experimental Tumor Cell Lines

Authors: Aliaa M. Issa, Mahmoud N. ElRouby, Sahar A. S. Ahmad, Mahmoud M. El-Merzabani

Abstract:

Sider honey is a type of honey produced by bees feeding on the nectar of Sider tree, Ziziphus spina-christi (L) Desf . Honey is an effective agent for preventing, inhibiting and treating the growth of human and animal cancer cell lines in vitro and in vivo. The aim of the present study was to evaluate the impact of different dilutions from crude Sider honey and different duration times of exposure on the growth of six tumor cell lines (human cervical cancer cell line, HeLa; human hepatocellular carcinoma cell line, HepG-2; human larynx carcinoma cell line, Hep-2; brain tumor cell line, U251) as well as one animal cancerous cell line (Ehrlich ascites carcinoma cells line, EAC) and one normal cell line, Homo sapiens, human, (WISH) CCL-25. Different concentrations and treatment durations with Sider honey were tested on the growth of several cancer cell lines types. Histopathological changes in the tumor masses, animal survival, apoptosis and necrosis of the used cancer cell lines (using flow cytometry) were evaluated. Sider honey was administers either to the tumor mass itself by intratumoral injection or via drinking water. One-way ANOVA test was used for the analysis of (the means + standard error) of the optical density obtained from the Elisa reader and flow cytometry. The study revealed that different concentrations of Sider honey affected the growth patterns of all the studied cancer cell lines as well as their histopathological changes, and it depended on the cell line nature and the concentration of honey used. It is obvious that the relative animal survival percentage (bearing Ehrlich ascites carcinoma, EAC cells) was proportionally increased with the increase in the used honey concentrations. The study of apoptosis and necrosis using the flow cytometry technique emphasized the viability results. In conclusion, Sider honey was effective as antitumor agent, in the used concentrations.

Keywords: antitumor, honey, sider, tumor cell lines

Procedia PDF Downloads 537
2902 Progressive Changes in Physico-Chemical Constituent of Rainwater: A Case Study at Oyoko, a Rural Community in Ghana

Authors: J. O. Yeboah, K Aboraa, K. Kodom

Abstract:

The chemical and physical characteristics of rainwater harvested from a typical rooftop were progressively studied. The samples of rainwater collected were analyzed for pH, major ion concentrations, TDS, turbidity, conductivity. All the physicochemical constituents fell within the WHO guideline limits at some points as rainfall progresses except the pH. All the components of rainwater quality measured during the study showed higher concentrations during the early stages of rainfall and reduce as time progresses. There was a downward trend in terms of pH as rain progressed, with 18% of the samples recording pH below the WHO limit of 6.5-8.0. It was observed that iron concentration was above the WHO threshold value of 0.3 mg/l on occasions of heavy rains. The results revealed that most of physicochemical characteristics of rainwater samples were generally below the WHO threshold, as such, the rainwater characteristics showed satisfactory conditions in terms of physicochemical constituents.

Keywords: conductivity, pH, physicochemical, rainwater quality, TDS

Procedia PDF Downloads 268
2901 Daily Variations of Polycyclic Aromatic Hydrocarbons (PAHs) in Industrial Sites in an Suburban Area of Sour El Ghozlane, Algeria

Authors: Sidali Khedidji, Noureddine Yassaa, Riad Ladji

Abstract:

In this study, n-alkanes which are hazardous for the environment and human health were investigated in Sour El Ghozlane suburban atmosphere at a sampling point from April 2013 to Mai 2013. Ambient concentration measurements of n-Alkanes were carried out at a regional study of the cement industry in Sour El Ghozlane. During sampling, the airborne particulate matter was enriched onto PTFE filters by using a two medium volume samplers with or without a size-selective inlet for PM10 and TSP were used and each sampling period lasted approximately 24 h. The organic compounds were characterized using gas chromatography coupled with mass spectrometric detection (GC-MS). Total concentrations for n-Alkanes recorded in Sour El Ghozlane suburban ranged from 42 to 69 ng m-3. Gravimeter method was applied to the black smoke concentration data for Springer seasons. The 24 h average concentrations of n-alkanes contain the PM10 and TSP of Sour El Ghozlane suburban atmosphere were found in the range 0.50–7.06 ng/m3 and 0.29–6.97 ng/m3, respectively, in the sampling period. Meteorological factors, such as (relative humidity and temperature) were typically found to be affecting PMs, especially PM10. Air temperature did not seem to be significantly affecting TSP and PM10 mass concentrations. The guide value fixed by the European Community, 40 μg/m3 was not to exceed 35 days, was exceeded in some samples. However, it should be noted that the value limit fixed by the Algerian regulations 80 μg/m3 has been exceeded in 1 sampler during the period study.

Keywords: n-alkanes, PM10, TSP, particulate matter, cement industry

Procedia PDF Downloads 393
2900 Effect of Different Salt Concentrations and Temperatures on Seed Germination and Seedling Characters in Safflower (Carthamus tinctorius L.) Genotypes

Authors: Rahim Ada, Zamari Temory, Hasan Dalgic

Abstract:

Germination and seedling responses of seven safflower seed genotypes (Dinçer, Remzibey, Black Sun2 cultivars and A19, F4, I1, J19 lines) to different salinity concentrations (0, 5, 10, and 20 g l-1) and temperatures (10 and 20 oC) evaluated in Completely Randomized Factorial Designs in Department of Field Crops of Selcuk University, Konya, Turkey. Seeds in the control (distilled water) had at 10 and 20 oC the highest germination percentage (93.88 and 94.32 %), shoot length (4.60 and 8.72 cm), root length (4.27 and 6.54 cm), shoot dry weight (22.37 mg and 25.99 mg), and root dry weight (2.22 and 2.47 mg). As the salt concentration increased, values of all characters were decreased. In this experiment, in 20 g l-1 salt concentration found germination percentage (21.28 and 26.66 %), shoot (1.32 and 1.35 cm) and root length (1.04 and 1.10 cm), shoot (8.05 mg and 7.49 mg) and root dry weight (0.83 and 0.98 mg) at 10, and 20 oC.

Keywords: safflower, NaCl, temperature, shoot and root length, salt concentration

Procedia PDF Downloads 285
2899 Evaluation of Toxicity of Some Fungicides Against the Pathogen Fusarium sp.

Authors: M. Djekoun, H. Berrebah, M. R. Djebar

Abstract:

Fusarium wilt attacks the plants of major economic interest including wheat. This disease causes many problems for farmers and economic loss resulting are often very heavy. Chemical control is currently one of the most effective ways to fight against these diseases. In this study, the efficacy of three fungicides (tebuconazole, thiram and fludioxonil - difenoconazole mixture) was tested, in vitro, on the phytopathogenic Fusarium sp. isolated from seeds of wheat. The active ingredients were tested at different concentrations: 0.06, 1.39, 2.79, 5.58, and 11.16 mg/l for tebuconazole, 0.035, 0.052, 0.105, 0.21, and 0.42 mg/l for thiram and finally, for the mixture fludioxonil- difenoconazole 4 concentrations were tested : 0.05, 0.1, 0.5, and 1 mg/l. Toxicity responses were expressed as the effective concentration, which inhibits mycelial growth by 50%, (EC50). Of the three selected fungicides, thirame proved to be the most effective with EC50 value of the order of 0,15 mg/l followed by the mixture of fludioxonil- difenoconazole with 0,27 mg/l and finally tebuconazole with a value of 3.79 mg/l.

Keywords: Fusarium sp, thiram, tebuconazole, fludioxonil, difenoconazole, EC50

Procedia PDF Downloads 544
2898 Metal Contents in Bird Feathers (Columba livia) from Mt Etna Volcano: Volcanic Plume Contribution and Biological Fractionation

Authors: Edda E. Falcone, Cinzia Federico, Sergio Bellomo, Lorenzo Brusca, Manfredi Longo, Walter D’Alessandro

Abstract:

Although trace metals are an essential element for living beings, they can become toxic at high concentrations. Their potential toxicity is related not only to the total content in the environment but mostly upon their bioavailability. Volcanoes are important natural metal emitters and they can deeply affect the quality of air, water and soils, as well as the human health. Trace metals tend to accumulate in the tissues of living organisms, depending on the metal contents in food, air and water and on the exposure time. Birds are considered as bioindicators of interest, because their feathers directly reflects the metals uptake from the blood. Birds are exposed to the atmospheric pollution through the contact with rainfall, dust, and aerosol, and they accumulate metals over the whole life cycle. We report on the first data combining the rainfall metal content in three different areas of Mt Etna, variably fumigated by the volcanic plume, and the metal contents in the feathers of pigeons, collected in the same areas. Rainfall samples were collected from three rain gauges placed at different elevation on the Eastern flank of the volcano, the most exposed to airborne plume, filtered, treated with HNO₃ Suprapur-grade and analyzed for Fe, Cr, Co, Ni, Se, Zn, Cu, Sr, Ba, Cd and As by ICP-MS technique, and major ions by ion chromatography. Feathers were collected from single individuals, in the same areas where the rain gauges were installed. Additionally, some samples were collected in an urban area, poorly interested by the volcanic plume. The samples were rinsed in MilliQ water and acetone, dried at 50°C until constant weight and digested in a mixture of 2:1 HNO₃ (65%) - H₂O₂ (30%) Suprapur-grade for 25-50 mg of sample, in a bath at near-to-boiling temperature. The solutions were diluted up to 20 ml prior to be analyzed by ICP-MS. The rainfall samples most contaminated by the plume were collected at close distance from the summit craters (less than 6 km), and show lower pH values and higher concentrations for all analyzed metals relative to those from the sites at lower elevation. Analyzed samples are enriched in both metals directly emitted by the volcanic plume and transported by acidic gases (SO₂, HCl, HF), and metals leached from the airborne volcanic ash. Feathers show different patterns in the different sites related to the exposure to natural or anthropogenic pollutants. They show abundance ratios similar to rainfall for lithophile elements (Ba, Sr), whereas are enriched in Zn and Se, known for their antioxidant properties, probably as adaptive response to oxidative stress induced by toxic metal exposure. The pigeons revealed a clear heterogeneity of metal uptake in the different parts of the volcano, as an effect of volcanic plume impact. Additionally, some physiological processes can modify the fate of some metals after uptake and this offer some insights for translational studies.

Keywords: bioindicators, environmental pollution, feathers, trace metals, volcanic plume

Procedia PDF Downloads 143
2897 Selective Solvent Extraction of Co from Ni and Mn through Outer-Sphere Interactions

Authors: Korban Oosthuizen, Robert C. Luckay

Abstract:

Due to the growing popularity of electric vehicles and the importance of cobalt as part of the cathode material for lithium-ion batteries, demand for this metal is on the rise. Recycling of the cathode materials by means of solvent extraction is an attractive means of recovering cobalt and easing the pressure on limited natural resources. In this study, a series of straight chain and macrocyclic diamine ligands were developed for the selective recovery of cobalt from the solution containing nickel and manganese by means of solvent extraction. This combination of metals is the major cathode material used in electric vehicle batteries. The ligands can be protonated and function as ion-pairing ligands targeting the anionic [CoCl₄]²⁻, a species which is not observed for Ni or Mn. Selectivity for Co was found to be good at very high chloride concentrations and low pH. Longer chains or larger macrocycles were found to enhance selectivity, and linear chains on the amide side groups also resulted in greater selectivity over the branched groups. The cation of the chloride salt used for adjusting chloride concentrations seems to play a major role in extraction through salting-out effects. The ligands developed in this study show good selectivity for Co over Ni and Mn but require very high chloride concentrations to function. This research does, however, open the door for further investigations into using diamines as solvent extraction ligands for the recovery of cobalt from spent lithium-ion batteries.

Keywords: hydrometallurgy, solvent extraction, cobalt, lithium-ion batteries

Procedia PDF Downloads 78
2896 Seasonal Variation of the Unattached Fraction and Equilibrium Factor of ²²²Rn, ²²⁰Rn

Authors: Rajan Jakhu, Rohit Mehra

Abstract:

Radon (²²²Rn) and its decay products are the major sources of natural radiation exposure to general population. The activity concentrations of radon, thoron gasses, and their unattached and attached short-lived progeny in indoor environment of the Jaipur and Ajmer districts of Rajasthan had been calculated via passive measurements using the Pinhole cup dosimeter, deposition based progeny sensors (DRPS/DTPS) and wire mesh capped (DRPS/DTPS) progeny sensors. The results of this study revealed that radon and thoron concentrations (CRn, CTn) are highest in the winter season. The variation of the radon and its decay products are observed to vary seasonally, but these environmental parameters seem not to be affecting the thoron and its decay product concentrations in a regular manner. The average values of the radon and its decay products are maximum in winter and minimum in summer. The equilibrium factor for radon is observed to be 0.50, 0.47 and 0.49 in winter, rainy and summer seasons. The annual average value of the unattached fraction of the radon progeny comes out to be 0.34. On the other hand, the average value of thoron (²²⁰Rn) concentration and its equilibrium factor in the studied area comes to be 74, 39, 45 Bq m⁻³ and 0.07, 0.11, 0.07 respectively for the winter, rainy and summer seasons with the annual average value of the unattached fraction of about 0.18. The annual average radiological dose from exposure to indoor radon and thoron progeny comes out to be 0.88 and 0.78 mSv.

Keywords: equilibrium factor, radon, seasonal variation, thoron, unattached fraction

Procedia PDF Downloads 311
2895 Induction of Different Types of Callus and Somatic Embryogenesis in Various Explants of Taraxacum Kok-Saghyz Rodin

Authors: Kairat Uteulin, Azhar Iskakova, Serik Mukhambetzhanov, Bayan Yesbolayeva, Gabit Bari, Aslan Zheksenbai, Kabyl Zhambakin, Chingis Dzhabykbayev, Vladimir Piven, Izbasar Rakhimbaiev

Abstract:

To explore the potential for in vitro rapid regeneration of Russian dandelion (Taraxacum kok-saghyz Rodin), different concentrations of 6-Benzylaminopurine (BAP), 2,4-Dichlorophenoxyacetic acid (2.4-D) and BAP combined with Indole-3-acetic acid (IAA) were evaluated for their effects on the induction of somatic embryos from leaf, seed stem and root explants. Different explants were cultured on MS medium supplemented with various concentrations (0, 0.5, 1, 1.5, 2, 2.5 and 3 mg/l) of each kind of hormone. Callus induction percentage, fresh weight, color and texture of the callus were assessed after 14 and 28 days of culture. The optimum medium for the proliferation of embryogenic calli from leaf and root explants was MS supplemented with 2.5 mg/L BAP and 0.5 mg/L 2.4-D. Concentrations of 2.5 mg/L BAP and 1.5 mg/L IAA also had a remarkable effect on root and stem explants. The best concentration to produce callus from stem explants was 0.5 mg/L BAP and 1 mg/L IAA. Results of mean comparison showed that BAP and 2.4-D were more effective on different explants than BAP and IAA. Results of the double staining method proved that somatic embryogenesis occurred in the most concentrations of BAP and 2.4-D. Under microscopic observations, the different developmental stages of the embryos (globular, heart, torpedo and cotyledonary) were revealed together in callus cells, indicating that the most tested hormone combinations were effective for somatic embryogenesis formation in this species. Seed explants formed torpedo and cotyledonary stages faster than leaf and root explants in the most combinations. Most calli from seed explants were cream colored and friable, while calli were compact and light green from leaf and root explants. Some combinations gave direct regeneration and (3 mg/L BAP and 2 mg/L IAA) in seed explants and (0.5 mg/L BAP and 2.5 mg/L IAA) in leaf explants had the highest number of shoots with average of 21 and 27 shoots per callus. The developed protocol established the production of different callus types from seed, leaf, and root explants and plant regeneration through somatic embryogenesis.

Keywords: taraxacum kok-saghyz Rodin, callus, somatic embryogenesis

Procedia PDF Downloads 372
2894 Concentrations of Some Metallic Trace Elements in Twelve Sludge Incineration Ashes

Authors: Lotfi Khiari, Antoine Karam, Claude-Alla Joseph, Marc Hébert

Abstract:

The main objective of incineration of sludge generated from municipal or agri-food waste treatment plant is to reduce the volume of sludge to be disposed of as a solid or liquid waste, whilst concentrating or destroying potentially harmful volatile substances. In some cities in Canada and United States of America (USA), a large amount of sludge is incinerated, which entails a loss of organic matter and water leading to phosphorus, potassium and some metallic trace element (MTE) accumulation in ashes. The purpose of this study was to evaluate the concentration of potentially hazardous MTE such as cadmium (Cd), lead (Pb) and mercury (Hg) in twelve sludge incineration ash samples obtained from municipal wastewater and other food processing waste treatments from Canada and USA. The average, maximum, and minimum values of MTE in ashes were calculated for each city individually and all together. The trace metal concentration values were compared to the literature reported values. The concentrations of MTE in ashes vary widely depending on the sludge origins and treatment options. The concentrations of MTE in ashes were found the range of 0.1-6.4 mg/kg for Cd; 13-286 mg/kg for Pb and 0.1-0.5 mg/kg for Hg. On average, the following order of metal concentration in ashes was observed: Pb > Cd > Hg. Results show that metal contents in most ashes were similar to MTE levels in synthetic inorganic fertilizers and many fertilizing residual materials. Consequently, the environmental effects of MTE content of these ashes would be low.

Keywords: biosolids, heavy metals, recycling, sewage sludge

Procedia PDF Downloads 380
2893 Municipal Solid Waste Management Using Life Cycle Assessment Approach: Case Study of Maku City, Iran

Authors: L. Heidari, M. Jalili Ghazizade

Abstract:

This paper aims to determine the best environmental and economic scenario for Municipal Solid Waste (MSW) management of the Maku city by using Life Cycle Assessment (LCA) approach. The functional elements of this study are collection, transportation, and disposal of MSW in Maku city. Waste composition and density, as two key parameters of MSW, have been determined by field sampling, and then, the other important specifications of MSW like chemical formula, thermal energy and water content were calculated. These data beside other information related to collection and disposal facilities are used as a reliable source of data to assess the environmental impacts of different waste management options, including landfills, composting, recycling and energy recovery. The environmental impact of MSW management options has been investigated in 15 different scenarios by Integrated Waste Management (IWM) software. The photochemical smog, greenhouse gases, acid gases, toxic emissions, and energy consumption of each scenario are measured. Then, the environmental indices of each scenario are specified by weighting these parameters. Economic costs of scenarios have been also compared with each other based on literature. As final result, since the organic materials make more than 80% of the waste, compost can be a suitable method. Although the major part of the remaining 20% of waste can be recycled, due to the high cost of necessary equipment, the landfill option has been suggested. Therefore, the scenario with 80% composting and 20% landfilling is selected as superior environmental and economic scenario. This study shows that, to select a scenario with practical applications, simultaneously environmental and economic aspects of different scenarios must be considered.

Keywords: IWM software, life cycle assessment, Maku, municipal solid waste management

Procedia PDF Downloads 238
2892 Shooting Gas Cylinders to Prevent Their Explosion in Fire

Authors: Jerzy Ejsmont, Beata Świeczko-Żurek, Grzegorz Ronowski

Abstract:

Gas cylinders in general and particularly cylinders containing acetylene constitute a great potential danger for fire and rescue services involved in salvage operations. Experiments show that gas cylinders with acetylene, oxygen, hydrogen, CNG, LPG or CO2 may blow after short exposition to heat with very destructive effect as fragments of blown cylinder may fly even several hundred meters. In the case of acetylene, the explosion may occur also several hours after the cylinder is cooled down. One of the possible neutralization procedures that in many cases may be used to prevent explosions is shooting dangerous cylinders by rifle bullets. This technique is used to neutralize acetylene cylinders in a few European countries with great success. In Poland research project 'BLOW' was launched in 2014 with the aim to investigate phenomena related to fire influence on industrial and home used cylinders and to evaluate usefulness of the shooting technique. All together over 100 gas cylinders with different gases were experimentally tested at the military blasting grounds and in shelters. During the experiments cylinder temperature and pressure were recorded. In the case of acetylene that is subjected to thermal decomposition also concentration of hydrogen was monitored. Some of the cylinders were allowed to blow and others were shot by snipers. It was observed that shooting hot cylinders has never created more dangerous situations than letting the cylinders to explode spontaneously. In a great majority of cases cylinders that were punctured by bullets released gas in a more or less violent but relatively safe way. The paper presents detailed information about experiments and presents particularities of behavior of cylinders containing different gases. Extensive research was also done in order to select bullets that may be safely and efficiently used to puncture different cylinders. The paper shows also results of those experiments as well as gives practical information related to techniques that should be used during shooting.

Keywords: fire, gas cylinders, neutralization, shooting

Procedia PDF Downloads 260
2891 Effects of Some Fungicides on Mycelial Growth of Fusarium spp.

Authors: M. Djekoun, H. Berrebah, M. R. Djebar

Abstract:

Fusarium wilt is destructive disease of cereal crops with small grains. It affects yields but also the quality of the crop and economic losses arising are often very heavy. Chemical control is currently one of the most effective ways to fight against these diseases. In this study, the efficacy of three fungicides (tebuconazole, thiram, and fludioxonil-difenoconazole mixture) was tested. In vitro, on the phytopathogenic Fusarium spp. isolated from seeds of wheat. The active ingredients were tested at different concentrations: 0.06, 1.39, 2.79, 5.58, and 11.16 mg/l for tebuconazole, 0.035, 0.052, 0.105, 0.21, and 0.42 mg/l for thiram and finally, for the mixture fludioxonil-difenoconazole 4 concentrations were tested: 0.05, 0.1, 0.5 and 1 mg/l. Toxicity responses were expressed as effective concentration, which inhibits mycelial growth by 50%, (EC50). Of the three selected fungicides, thirame proved to be the most effective with EC50 value of the order of 0,15 mg/l followed by the mixture of fludioxonil-difenoconazole with 0,27mg/l and finally tebuconazole with a value of 3.79 mg/l.

Keywords: Fusarium spp., thiram, tebuconazole, fludioxonil, difenoconazole, percentage of inhibition, EC50

Procedia PDF Downloads 366
2890 Male Oreochromis mossambica as Indicator for Water Pollution with Trace Elements in Relation to Condition Factor from Pakistan

Authors: Muhammad Naeem, Syed M. Moeen-ud-Din Raheel, Muhammad Arshad, Muhammad Naeem Qaisar, Muhammad Khalid, Muhammad Zubair Ahmed, Muhammad Ashraf

Abstract:

Iron, Copper, Cadmium, Zinc, Manganese, Chromium levels were estimated to study the risk of trace elements on human consumption. The area of collection was Dera Ghazi Khan, Pakistan and was evaluated by means of flame atomic absorption spectrophotometer. The standards find in favor of the six heavy metals were in accordance with the threshold edge concentrations on behalf of fish meat obligatory by European and other international normative. Regressions were achieved for both size (length and weight) and condition factor with concentrations of metal present in the fish body.

Keywords: Oreochromis mossambica, toxic analysis, body size, condition factor

Procedia PDF Downloads 584
2889 Removal of Nutrients from Sewage Using Algal Photo-Bioreactor

Authors: Purnendu Bose, Jyoti Kainthola

Abstract:

Due to recent advances in illumination technology, artificially illuminated algal-bacterial photo bioreactors are now a potentially feasible option for simultaneous and comprehensive organic carbon and nutrients removal from secondary treated domestic sewage. The experiments described herein were designed to determine the extent of nutrient uptake in photo bioreactors through algal assimilation. Accordingly, quasi steady state data on algal photo bioreactor performance was obtained under 20 different conditions. Results indicated that irrespective of influent N and P levels, algal biomass recycling resulted in superior performance of algal photo bioreactors in terms of both N and P removals. Further, both N and P removals were positively related to the growth of algal biomass in the reactor. Conditions in the reactor favouring greater algal growth also resulted in greater N and P removals. N and P removals were adversely impacted in reactors with low algal concentrations due to the inability of the algae to grow fast enough under the conditions provided. Increasing algal concentrations in reactors over a certain threshold value through higher algal biomass recycling was also not fruitful, since algal growth slowed under such conditions due to reduced light availability due to algal ‘self-shading’. It was concluded that N removals greater than 80% at high influent N concentrations is not possible with the present reactor configuration. Greater than 80% N removals may however be possible in similar reactors if higher light intensity is provided. High P removal is possible only if the influent N: P ratio in the reactor is aligned closely with the algal stoichiometric requirements for P.

Keywords: nutrients, algae, photo, bioreactor

Procedia PDF Downloads 212
2888 Geoclimatic Influences on the Constituents and Antioxidant Activity of Extracts from the Fruit of Arbutus unedo L.

Authors: Khadidja Bouzid, Fouzia Benali Toumi, Mohamed Bouzouina

Abstract:

We made a comparison between the total phenolic content, concentrations of flavonoids and antioxidant activity of four different extracts (butanol, ethyl acetate, chloroform, water) of Arbutus unedo L. fruit (Ericacea) of El Marsa and Terni area. The total phenolic content in the extracts was determined using the Folin-Ciocalteu reagent and it ranged between 26.57 and 48.23 gallic acid equivalents mg/g of dry weight of extract. The concentrations of flavonoids in plant extracts varied from 17.98 to 56.84 catechin equivalents mg/g. The antioxidant activity was analyzed in vitro using the DPPH reagent; among all extracts, ethyl acetate fraction from El Marsa area showed the highest antioxidant activity.

Keywords: antioxidant activity, Arbutus unedo L., fruit flavonoids, phenols, Western Algeria

Procedia PDF Downloads 454
2887 The Oxidative Damage Marker for Sodium Formate Exposure on Lymphocytes

Authors: Malinee Pongsavee

Abstract:

Sodium formate is the chemical substance used for food additive. Catalase is the important antioxidative enzyme in protecting the cell from oxidative damage by reactive oxygen species (ROS). The resultant level of oxidative stress in sodium formatetreated lymphocytes was investigated. The sodium formate concentrations of 0.05, 0.1, 0.2, 0.4 and 0.6 mg/mL were treated in human lymphocytes for 12 hours. After 12 treated hours, catalase activity change was measured in sodium formate-treated lymphocytes. The results showed that the sodium formate concentrations of 0.4 and 0.6 mg/mL significantly decreased catalase activities in lymphocytes (P < 0.05). The change of catalase activity in sodium formate-treated lymphocytes may be the oxidative damage marker for detect sodium formate exposure in human.

Keywords: sodium formate, catalase activity, oxidative damage marker, toxicity

Procedia PDF Downloads 481
2886 Comparative Analysis of Benzene, Toluene, Ethylbenzene, and Xylene Concentrations at Roadside and Urban Background Sites in Leicester and Lagos Using Thermal Desorption-Gas Chromatography-Mass Spectrometry

Authors: Emmanuel Bernard, Rebecca L. Cordell, Akeem A. Abayomi, Rose Alani, Paul S. Monks

Abstract:

This study investigates the prevalence and extent of BTEX (Benzene, Toluene, Ethylbenzene, and Xylene) contamination in Leicester, United Kingdom, and Lagos, Nigeria, through field measurements at roadside (RS) and urban background (UB) sites. Using thermal desorption gas chromatography mass spectrometry (TD-GC-MS), BTEX concentrations were quantified. In Leicester, the average RS concentration was 24.9 ± 8.9 μg/m³, and the UB concentration was 12.7 ± 5.7 μg/m³. In Lagos, the RS concentration was significantly higher at 106 ± 39.3 μg/m³, and the UB concentration was 20.1 ± 8.9 μg/m³. The RS concentration in Lagos was approximately 4.3 times higher than in Leicester, while the UB concentration was about 1.6 times higher. These disparities are attributed to differences in road infrastructure, traffic regulation compliance, fuel and oil quality, and local activities. In Leicester, the highest UB concentration (20.5 ± 1.7 μg/m³) was at Knighton Village, near the heavily polluted RS Wigston roundabout. In Lagos, the highest concentration (172.1 ± 12.2 μg/m³) was at Ojuelegba, a major transportation hub. Correlation analysis revealed strong positive relationships between the concentrations of BTEX compounds in both cities, suggesting common sources such as vehicular emissions and industrial activities. The ratios of toluene to benzene (T:B) and m/p xylene to ethylbenzene (m/p X:E) were analysed to infer source contributions and the photochemical age of air masses. The T:B ratio in Leicester ranged from 0.44 to 0.71, while in Lagos, it ranged from 1.36 to 2.17. The m/p X:E ratio in Leicester ranged from 2.11 to 2.19, like other UK cities, while in Lagos, it ranged from 1.65 to 2.32, indicating relatively fresh emissions. This study highlights significant differences in BTEX concentrations between Leicester and Lagos, emphasizing the need for tailored pollution control strategies to address the specific sources and conditions in different urban environments.

Keywords: BTEX contamination, urban air quality, thermal desorption GC-MS, roadside emissions, urban background sites, vehicular emissions, pollution control strategies

Procedia PDF Downloads 46
2885 Performance Evaluation of the CSAN Pronto Point-of-Care Whole Blood Analyzer for Regular Hematological Monitoring During Clozapine Treatment

Authors: Farzana Esmailkassam, Usakorn Kunanuvat, Zahraa Mohammed Ali

Abstract:

Objective: The key barrier in Clozapine treatment of treatment-resistant schizophrenia (TRS) includes frequent bloods draws to monitor neutropenia, the main drug side effect. WBC and ANC monitoring must occur throughout treatment. Accurate WBC and ANC counts are necessary for clinical decisions to halt, modify or continue clozapine treatment. The CSAN Pronto point-of-care (POC) analyzer generates white blood cells (WBC) and absolute neutrophils (ANC) through image analysis of capillary blood. POC monitoring offers significant advantages over central laboratory testing. This study evaluated the performance of the CSAN Pronto against the Beckman DxH900 Hematology laboratory analyzer. Methods: Forty venous samples (EDTA whole blood) with varying concentrations of WBC and ANC as established on the DxH900 analyzer were tested in duplicates on three CSAN Pronto analyzers. Additionally, both venous and capillary samples were concomitantly collected from 20 volunteers and assessed on the CSAN Pronto and the DxH900 analyzer. The analytical performance including precision using liquid quality controls (QCs) as well as patient samples near the medical decision points, and linearity using a mix of high and low patient samples to create five concentrations was also evaluated. Results: In the precision study for QCs and whole blood, WBC and ANC showed CV inside the limits established according to manufacturer and laboratory acceptability standards. WBC and ANC were found to be linear across the measurement range with a correlation of 0.99. WBC and ANC from all analyzers correlated well in venous samples on the DxH900 across the tested sample ranges with a correlation of > 0.95. Mean bias in ANC obtained on the CSAN pronto versus the DxH900 was 0.07× 109 cells/L (95% L.O.A -0.25 to 0.49) for concentrations <4.0 × 109 cells/L, which includes decision-making cut-offs for continuing clozapine treatment. Mean bias in WBC obtained on the CSAN pronto versus the DxH900 was 0.34× 109 cells/L (95% L.O.A -0.13 to 0.72) for concentrations <5.0 × 109 cells/L. The mean bias was higher (-11% for ANC, 5% for WBC) at higher concentrations. The correlations between capillary and venous samples showed more variability with mean bias of 0.20 × 109 cells/L for the ANC. Conclusions: The CSAN pronto showed acceptable performance in WBC and ANC measurements from venous and capillary samples and was approved for clinical use. This testing will facilitate treatment decisions and improve clozapine uptake and compliance.

Keywords: absolute neutrophil counts, clozapine, point of care, white blood cells

Procedia PDF Downloads 94
2884 Chromium Adsorption by Modified Wood

Authors: I. Domingos, B. Esteves, A. Figueirinha, Luísa P. Cruz-Lopes, J. Ferreira, H. Pereira

Abstract:

Chromium is one of the most common heavy metals which exist in very high concentrations in wastewater. The removal is very expensive due to the high cost of normal adsorbents. Lignocellulosic materials and mainly treated materials have proven to be a good solution for this problem. Adsorption tests were performed at different pH, different times and with varying concentrations. Results show that is at pH 3 that treated wood absorbs more chromium ranging from 70% (2h treatment) to almost 100% (12 h treatment) much more than untreated wood with less than 40%. Most of the adsorption is made in the first 2-3 hours for untreated and heat treated wood. Modified wood adsorbs more chromium throughout the time. For all the samples, adsorption fitted relatively well the Langmuir model with correlation coefficient ranging from 0.85 to 0.97. The results show that heat treated wood is a good adsorbent ant that this might be a good utilization for sawdust from treating companies.

Keywords: adsorption, chromium, heat treatment, wood modification

Procedia PDF Downloads 499
2883 Field Synergy Analysis of Combustion Characteristics in the Afterburner of Solid Oxide Fuel Cell System

Authors: Shing-Cheng Chang, Cheng-Hao Yang, Wen-Sheng Chang, Chih-Chia Lin, Chun-Han Li

Abstract:

The solid oxide fuel cell (SOFC) is a promising green technology which can achieve a high electrical efficiency. Due to the high operating temperature of SOFC stack, the off-gases at high temperature from anode and cathode outlets are introduced into an afterburner to convert the chemical energy into thermal energy by combustion. The heat is recovered to preheat the fresh air and fuel gases before they pass through the stack during the SOFC power generation system operation. For an afterburner of the SOFC system, the temperature control with a good thermal uniformity is important. A burner with a well-designed geometry usually can achieve a satisfactory performance. To design an afterburner for an SOFC system, the computational fluid dynamics (CFD) simulation is adoptable. In this paper, the hydrogen combustion characteristics in an afterburner with simple geometry are studied by using CFD. The burner is constructed by a cylinder chamber with the configuration of a fuel gas inlet, an air inlet, and an exhaust outlet. The flow field and temperature distributions inside the afterburner under different fuel and air flow rates are analyzed. To improve the temperature uniformity of the afterburner during the SOFC system operation, the flow paths of anode/cathode off-gases are varied by changing the positions of fuels and air inlet channel to improve the heat and flow field synergy in the burner furnace. Because the air flow rate is much larger than the fuel gas, the flow structure and heat transfer in the afterburner is dominated by the air flow path. The present work studied the effects of fluid flow structures on the combustion characteristics of an SOFC afterburner by three simulation models with a cylindrical combustion chamber and a tapered outlet. All walls in the afterburner are assumed to be no-slip and adiabatic. In each case, two set of parameters are simulated to study the transport phenomena of hydrogen combustion. The equivalence ratios are in the range of 0.08 to 0.1. Finally, the pattern factor for the simulation cases is calculated to investigate the effect of gas inlet locations on the temperature uniformity of the SOFC afterburner. The results show that the temperature uniformity of the exhaust gas can be improved by simply adjusting the position of the gas inlet. The field synergy analysis indicates the design of the fluid flow paths should be in the way that can significantly contribute to the heat transfer, i.e. the field synergy angle should be as small as possible. In the study cases, the averaged synergy angle of the burner is about 85̊, 84̊, and 81̊ respectively.

Keywords: afterburner, combustion, field synergy, solid oxide fuel cell

Procedia PDF Downloads 135
2882 Cardiotrophin-1 and Leptin in Male Patients with Obstructive Sleep Apnea Syndrome

Authors: Isil Cakir, Mustafa Uluhan

Abstract:

Elevated serum Cardiotrophin-1 (CT-1) and leptin levels are important risk factors for cardiovascular diseases (CVDs). Obstructive sleep apnea syndrome (OSAS) has been reported to increase the risk of CVDs, too. The aim of this study was to evaluate the concentrations of serum CT-1 and leptin in these patients and whether their possible association with the disease severity. Fifty newly diagnosed patients with OSAS and thirty nonapneic snoring subjects were participated in this study. The mean ages of patients and control groups were 47.40±13.30 and 43.23±10.50 years, respectively (P=0.128). Fasting serum triglyseride, total cholesterol, LDL and HDL cholesterol, also CT-1 and leptin levels were evaluated. A significant difference was found in the serum CT-1 and leptin levels between the patients and the controls:serum median CT-1 levels in patients and control groups, respectively, were 19.47 and 8.23 pg/mL (P < 0.001) and leptin levels were 2.07 and 1.29 ng/mL (P < 0.001). In severe patients group (n=39), serum median CT-1 level was found statistically significantly higher than the median level in mild/moderate patients (n=11) group. Patients CT-1 concentrations were not associated with lipoprotein levels and there was no correlation between patients’ leptin and lipid profile parameters. Two risk factors for CVDs, CT-1 and leptin, have significantly elevated and they were associated with OSAS. Furthermore, CT-1 was associated with the severity of disease. We recommend the use of increased serum CT-1 and leptin concentrations as markers of the presence and severity of OSAS.They can be used as early markers in male OSAS patients without known CVDs.

Keywords: obstructive sleep apnea syndrome, cardiotrophin-1, leptin, cardiovascular disease

Procedia PDF Downloads 271
2881 Daily Variations of Particulate Matter (PM10) in Industrial Sites in an Suburban Area of Sour El Ghozlane, Algeria

Authors: Sidali Khedidji, Riad Ladji, Noureddine Yassaa

Abstract:

In this study, particulate matter (PM10) which are hazardous for environment and human health were investigated in Sour El Ghozlane suburban atmosphere at a sampling point from March 2013 to April 2013. Ambient concentration measurements of polycyclic aromatic hydrocarbons were carried out at a regional study of the cement industry in Sour El Ghozlane. During sampling, the airborne particulate matter was enriched onto PTFE filters by using a two medium volume samplers with or without a size-selective inlet for PM10 and TSP were used and each sampling period lasted approximately 24 h. The organic compounds were characterized using gas chromatography coupled with mass spectrometric detection (GC-MSD). Total concentrations for PAHs recorded in sour el ghozlane suburban ranged from 101 to 204 ng m-3. Gravimeter method was applied to the black smoke concentration data for Springer seasons. The 24 h average concentrations of PM10 and TSP of Sour El Ghozlane suburban atmosphere were found in the range 4.76–165.76 μg/m3 and 28.63–800.14 μg/m3, respectively, in the sampling period. Meteorological factors, such as (relative humidity and temperature) were typically found to be affecting PMs, especially PM10. Air temperature did not seem to be significantly affecting TSP and PM10 mass concentrations.The guide value fixed by the European Community «40 μg/m3» not to exceed 35 days, were exceeded in some samples. However, it should be noted that the value limit fixed by the Algerian regulations «80 μg/m3» has been exceeded in 3 samplers during the period study.

Keywords: PAHs, PM10, TSP, particulate matter, cement industry

Procedia PDF Downloads 377
2880 Sedimentology and Geochemistry of Carbonate Bearing-Argillites on the Southeastern Flank of Mount Cameroon, Likomba

Authors: Chongwain G. Mbzighaa, Christopher M. Agyingi, Josepha-Forba-Tendo

Abstract:

Background and aim: Sedimentological, geochemical and petrographic studies were carried out on carbonate-bearing argillites outcropping at the southeastern flank of Mount Cameroon (Likomba) to determine the lithofacies and their associations, major element geochemistry and mineralogy. Methods: Major elements of the rocks were analyzed using XRF technique. Thermal analysis and thin section studies were carried out accompanied with the determination of insoluble components of the carbonates. Results: The carbonates are classed as biomicrites with siderite being the major carbonate mineral. Clay, quartz and pyrite constitute the major insoluble components of these rocks. Geochemical results depict a broad variation in their concentrations with silica and iron showing the highest concentrations and sodium and manganese with the least concentrations. Two factors were revealed with the following elemental associations, Fe2O3-MgO-Mn2O3 (72.56 %) and TiO2-SiO2-Al2O3-K2O (23.20%) indicating both Fe-enrichment, the subsequent formation of the siderite and the contribution of the sediments to the formation of these rocks. Conclusion: The rocks consist of cyclic iron-rich carbonates alternating with sideritic-shales and might have been formed as a result of variations in the sea conditions as well as variation in sediment influx resulting from transgression and regression sequences occurring in a shallow to slightly deep marine environments.

Keywords: sedimentology, geochemistry, petrography, iron carbonates, Likomba

Procedia PDF Downloads 442
2879 Economic Assessment of CO2-Based Methane, Methanol and Polyoxymethylene Production

Authors: Wieland Hoppe, Nadine Wachter, Stefan Bringezu

Abstract:

Carbon dioxide (CO2) utilization might be a promising way to substitute fossil raw materials like coal, oil or natural gas as carbon source of chemical production. While first life cycle assessments indicate a positive environmental performance of CO2-based process routes, a commercialization of CO2 is limited by several economic obstacles up to now. We, therefore, analyzed the economic performance of the three CO2-based chemicals methane and methanol as basic chemicals and polyoxymethylene as polymer on a cradle-to-gate basis. Our approach is oriented towards life cycle costing. The focus lies on the cost drivers of CO2-based technologies and options to stimulate a CO2-based economy by changing regulative factors. In this way, we analyze various modes of operation and give an outlook for the potentially cost-effective development in the next decades. Biogas, waste gases of a cement plant, and flue gases of a waste incineration plant are considered as CO2-sources. The energy needed to convert CO2 into hydrocarbons via electrolysis is assumed to be supplied by wind power, which is increasingly available in Germany. Economic data originates from both industrial processes and process simulations. The results indicate that CO2-based production technologies are not competitive with conventional production methods under present conditions. This is mainly due to high electricity generation costs and regulative factors like the German Renewable Energy Act (EEG). While the decrease in production costs of CO2-based chemicals might be limited in the next decades, a modification of relevant regulative factors could potentially promote an earlier commercialization.

Keywords: carbon capture and utilization (CCU), economic assessment, life cycle costing (LCC), power-to-X

Procedia PDF Downloads 290
2878 The Behavior of Steel, Copper, and Aluminum vis-à-vis the Corrosion in an Aqueous Medium

Authors: Harche Rima, Laoufi Nadia Aicha

Abstract:

The present work consists of studying the behavior of steel, copper, and aluminum vis-à-vis the corrosion in an aqueous medium in the presence of the antifreeze COOLELF MDX -26°C. For this, we have studied the influence of the temperature and the different concentrations of the antifreeze on the corrosion of these three metals, this will last for two months by the polarization method and weight loss. In the end, we investigated the samples with the optic microscope to know their surface state. The aim of this work is the protection of contraptions. The use of antifreeze in ordinary water has a high efficiency against steel corrosion, as demonstrated by electrochemical tests (potential monitoring as a function of time and tracing polarization curves). The inhibition rate is greater than 99% for different volume concentrations, ranging from 40% to 60%. The speeds are in turn low in the order of 10-4 mm/year. On the other hand, the addition of antifreeze to ordinary water increases the corrosion potential of steel by more than 400 mV.

Keywords: corrosion and prevention, steel, copper, aluminum, corrosion inhibitor, anti-cooling

Procedia PDF Downloads 49
2877 Alumina Supported Copper-manganese Catalysts for Combustion of Exhaust Gases: Catalysts Characterization

Authors: Krasimir I. Ivanov, Elitsa N. Kolentsova, Dimitar Y. Dimitrov, Georgi V. Avdeev, Tatyana T. Tabakova

Abstract:

In recent research copper and manganese systems were found to be the most active in CO and organic compounds oxidation among the base catalysts. The mixed copper manganese oxide has been widely studied in oxidation reactions because of their higher activity at low temperatures in comparison with single oxide catalysts. The results showed that the formation of spinel CuxMn3−xO4 in the oxidized catalyst is responsible for the activity even at room temperature. That is why most of the investigations are focused on the hopcalite catalyst (CuMn2O4) as the best copper-manganese catalyst. Now it’s known that this is true only for CO oxidation, but not for mixture of CO and VOCs. The purpose of this study is to investigate the alumina supported copper-manganese catalysts with different Cu/Mn molar ratio in terms of oxidation of CO, methanol and dimethyl ether. The catalysts were prepared by impregnation of γ-Al2O3 with copper and manganese nitrates and the catalytic activity measurements were carried out in continuous flow equipment with a four-channel isothermal stainless steel reactor. Gas mixtures on the input and output of the reactor were analyzed with a gas chromatograph, equipped with FID and TCD detectors. The texture characteristics were determined by low-temperature (- 196 oС) nitrogen adsorption in a Quantachrome Instruments NOVA 1200e (USA) specific surface area&pore analyzer. Thermal, XRD and TPR analyses were performed. It was established that the active component of the mixed Cu-Mn/γ–alumina catalysts strongly depends on the Cu/Mn molar ratio. Highly active alumina supported Cu-Mn catalysts for CO, methanol and DME oxidation were synthesized. While the hopcalite is the best catalyst for CO oxidation, the best compromise for simultaneous oxidation of all components is the catalyst with Cu/Mn molar ratio 1:5.

Keywords: supported copper-manganese catalysts, CO, VOCs oxidation, combustion of exhaust gases

Procedia PDF Downloads 285
2876 Role of Baseline Measurements in Assessing Air Quality Impact of Shale Gas Operations

Authors: Paula Costa, Ana Picado, Filomena Pinto, Justina Catarino

Abstract:

Environmental impact associated with large scale shale gas development is of major concern to the public, policy makers and other stakeholders. To assess this impact on the atmosphere, it is important to monitoring ambient air quality prior to and during all shale gas operation stages. Baseline observations can provide a standard of the pre-shale gas development state of the environment. The lack of baseline concentrations was identified as an important knowledge gap to assess the impact of emissions to the air due to shale gas operations. In fact baseline monitoring of air quality are missing in several regions, where there is a strong possibility of future shale gas exploration. This makes it difficult to properly identify, quantify and characterize environmental impacts that may be associated with shale gas development. The implementation of a baseline air monitoring program is imperative to be able to assess the total emissions related with shale gas operations. In fact, any monitoring programme should be designed to provide indicative information on background levels. A baseline air monitoring program should identify and characterize targeted air pollutants, most frequently described from monitoring and emission measurements, as well as those expected from hydraulic fracturing activities, and establish ambient air conditions prior to start-up of potential emission sources from shale gas operations. This program has to be planned for at least one year accounting for ambient variations. In the literature, in addition to GHG emissions of CH4, CO2 and nitrogen oxides (NOx), fugitive emissions from shale gas production can release volatile organic compounds (VOCs), aldehydes (formaldehyde, acetaldehyde) and hazardous air pollutants (HAPs). The VOCs include a.o., benzene, toluene, ethyl benzene, xylenes, hexanes, 2,2,4-trimethylpentane, styrene. The concentrations of six air pollutants (ozone, particulate matter (PM), carbon monoxide (CO), nitrogen oxides (NOx), sulphur oxides (SOx), and lead) whose regional ambient air levels are regulated by the Environmental Protection Agency (EPA), are often discussed. However, the main concern in the emissions to air associated to shale gas operations, seems to be the leakage of methane. Methane is identified as a compound of major concern due to its strong global warming potential. The identification of methane leakage from shale gas activities is complex due to the existence of several other CH4 sources (e.g. landfill, agricultural activity or gas pipeline/compressor station). An integrated monitoring study of methane emissions may be a suitable mean of distinguishing the contribution of different sources of methane to ambient levels. All data analysis needs to be carefully interpreted taking, also, into account the meteorological conditions of the site. This may require the implementation of a more intensive monitoring programme. So, it is essential the development of a low-cost sampling strategy, suitable for establishing pre-operations baseline data as well as an integrated monitoring program to assess the emissions from shale gas operation sites. This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 640715.

Keywords: air emissions, baseline, green house gases, shale gas

Procedia PDF Downloads 330
2875 Analysis and Treatment of Sewage Treatment Plant Wastewater of El-Karma, Oran

Authors: Larbi Hammadi, Abdellatif El Bari Tidjani

Abstract:

In order to reduce the flow of pollutants in the wastewater of the urban agglomerations of the city of Oran, a preliminary study was carried out at the El-Karma wastewater treatment plant. The primary objective of this study was to estimate the overall physicochemical pollution in the effluents of the El-Karma sewage treatment plant wastewater. It was found that the effluent of El-Karma wastewater treatment plant contains a significant amount of insoluble. Total suspended soli TSS concentrations ranged from 112 to 475 mg/l, with an average of 220.5 mg/l. The chemical oxygen demand (COD) and biochemical oxygen demand (BOD₅) values remain within the reference range for domestic wastewater with an average value of COD < 125 and BOD₅ < 25. The COD/BOD₅ ratio of raw water entering the treatment plant is less than 2. This ratio would predict that the raw sewage from the El-Karma treatment plant is polluted by inorganic pollution strong enough.

Keywords: El-Karma wastewater, TSS concentrations, COD and BOD5, COD/BOD5 ratio, treatment

Procedia PDF Downloads 268