Search results for: cellulose hydrolysis
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 610

Search results for: cellulose hydrolysis

280 Crosslinked Porous 3-Dimensional Cellulose Nanofibers/Gelatin Based Biocomposite Aerogels for Tissue Engineering Application

Authors: Ali Mirtaghavi, Andy Baldwin, Rajendarn Muthuraj, Jack Luo

Abstract:

Recent advances in biomaterials have led to utilizing biopolymers to develop 3D scaffolds in tissue regeneration. One of the major challenges of designing biomaterials for 3D scaffolds is to mimic the building blocks similar to the extracellular matrix (ECM) of the native tissues. Biopolymer based aerogels obtained by freeze-drying have shown to provide structural similarities to the ECM owing to their 3D format and a highly porous structure with interconnected pores, similar to the ECM. Gelatin (GEL) is known to be a promising biomaterial with inherent regenerative characteristics owing to its chemical similarities to the ECM in native tissue, biocompatibility abundance, cost-effectiveness and accessible functional groups, which makes it facile for chemical modifications with other biomaterials to form biocomposites. Despite such advantages, gelatin offers poor mechanical properties, sensitive enzymatic degradation and high viscosity at room temperature which limits its application and encourages its use to develop biocomposites. Hydrophilic biomass-based cellulose nanofibrous (CNF) has been explored to use as suspension for biocomposite aerogels for the development of 3D porous structures with excellent mechanical properties, biocompatibility and slow enzymatic degradation. In this work, CNF biocomposite aerogels with various ratios of CNF:GEL) (90:10, 70:30 and 50:50) were prepared by freeze-drying technique, and their properties were investigated in terms of physicochemical, mechanical and biological characteristics. Epichlorohydrin (EPH) was used to investigate the effect of chemical crosslinking on the molecular interaction of CNF: GEL, and its effects on physicochemical, mechanical and biological properties of the biocomposite aerogels. Ultimately, chemical crosslinking helped to improve the mechanical resilience of the resulting aerogels. Amongst all the CNF-GEL composites, the crosslinked CNF: GEL (70:30) biocomposite was found to be favourable for cell attachment and viability. It possessed highly porous structure (porosity of ~93%) with pore sizes ranging from 16-110 µm, adequate mechanical properties (compression modulus of ~47 kPa) and optimal biocompatibility both in-vitro and in-vivo, as well as controlled enzymatic biodegradation, high water penetration, which could be considered a suitable option for wound healing application. In-vivo experiments showed improvement on inflammation and foreign giant body cell reaction for the crosslinked CNF: GEL (70:30) compared to the other samples. This could be due to the superior interaction of CNF with gelatin through chemical crosslinking, resulting in more optimal in-vivo improvement. In-vitro cell culture investigation on human dermal fibroblasts showed satisfactory 3D cell attachment over time. Overall, it has been observed that the developed CNF: GEL aerogel can be considered as a potential scaffold for soft tissue regeneration application.

Keywords: 3D scaffolds, aerogels, Biocomposites , tissue engineering

Procedia PDF Downloads 111
279 Determination of Micronutrients in the Fruit of Cydonia oblonga Miller

Authors: Madrakhimova Sakhiba, Matmurotov Bakhtishod, Boltaboyava Zilola, Matchanov Alimjan

Abstract:

Analyzing the chemical composition of locally consumed food products is one of the urgent problems in the health sector today. Taking this into account, it analyzed the microelement content of Cydonia oblonga Miller (COM) fruit growing in the Republic of Uzbekistan using the ISP MS inductively coupled mass spectrometry method. fruits brought to a constant mass in the analysis were mineralized in a mixture of nitric acid-HNO₃ and hydrogen peroxide-H₂O₂ in a ratio of 3:2. The mineralized extract was diluted to 50 milliliters with double-distilled water and analyzed. The results of the analysis showed that the fruit is rich in micronutrients necessary for the human body, especially potassium-K and phosphorus-P among macroelements, Strontium-Sr and barium-Ba from microelements are more than other microelements. It was observed that the amount of trace elements contained in COM fruit does not exceed the permissible standards. Therefore, it can be recommended to eat this fruit every day to prevent various diseases that occur in the human body.

Keywords: cydonia oblonga miller, macroelement, microelement, inductively coupled mass spectrometry, hydrolysis, mineralization

Procedia PDF Downloads 37
278 Comparative Analysis of Soil Enzyme Activities between Laurel-Leaved and Cryptomeria japonica Forests

Authors: Ayuko Itsuki, Sachiyo Aburatani

Abstract:

Soil enzyme activities in Kasuga-yama Hill Primeval Forest (Nara, Japan) were examined to determine levels of mineralization and metabolism. Samples were selected from the soil surrounding laurel-leaved (BB-1) and Carpinus japonica (BB-2 and Pw) trees for analysis. Cellulase, β-xylosidase, and protease activities were higher in BB-1 samples those in BB-2 samples. These activity levels corresponded to the distribution of cellulose and hemicellulose in the soil horizons. Cellulase, β-xylosidase, and chymotrypsin activities were higher in soil from the Pw forest than in that from the BB-2 forest. The relationships between the soil enzymes calculated by Spearman’s rank correlation indicate that the interactions between enzymes in BB-2 samples were more complex than those in Pw samples.

Keywords: comparative analysis, enzyme activities, forest soil, Spearman's rank correlation

Procedia PDF Downloads 565
277 Impact of Material Chemistry and Morphology on Attrition Behavior of Excipients during Blending

Authors: Sri Sharath Kulkarni, Pauline Janssen, Alberto Berardi, Bastiaan Dickhoff, Sander van Gessel

Abstract:

Blending is a common process in the production of pharmaceutical dosage forms where the high shear is used to obtain a homogenous dosage. The shear required can lead to uncontrolled attrition of excipients and affect API’s. This has an impact on the performance of the formulation as this can alter the structure of the mixture. Therefore, it is important to understand the driving mechanisms for attrition. The aim of this study was to increase the fundamental understanding of the attrition behavior of excipients. Attrition behavior of the excipients was evaluated using a high shear blender (Procept Form-8, Zele, Belgium). Twelve pure excipients are tested, with morphologies varying from crystalline (sieved), granulated to spray dried (round to fibrous). Furthermore, materials include lactose, microcrystalline cellulose (MCC), di-calcium phosphate (DCP), and mannitol. The rotational speed of the blender was set at 1370 rpm to have the highest shear with a Froude (Fr) number 9. Varying blending times of 2-10 min were used. Subsequently, after blending, the excipients were analyzed for changes in particle size distribution (PSD). This was determined (n = 3) by dry laser diffraction (Helos/KR, Sympatec, Germany). Attrition was found to be a surface phenomenon which occurs in the first minutes of the high shear blending process. An increase of blending time above 2 mins showed no change in particle size distribution. Material chemistry was identified as a key driver for differences in the attrition behavior between different excipients. This is mainly related to the proneness to fragmentation, which is known to be higher for materials such as DCP and mannitol compared to lactose and MCC. Secondly, morphology also was identified as a driver of the degree of attrition. Granular products consisting of irregular surfaces showed the highest reduction in particle size. This is due to the weak solid bonds created between the primary particles during the granulation process. Granular DCP and mannitol show a reduction of 80-90% in x10(µm) compared to a 20-30% drop for granular lactose (monohydrate and anhydrous). Apart from the granular lactose, all the remaining morphologies of lactose (spray dried-round, sieved-tomahawk, milled) show little change in particle size. Similar observations have been made for spray-dried fibrous MCC. All these morphologies have little irregular or sharp surfaces and thereby are less prone to fragmentation. Therefore, products containing brittle materials such as mannitol and DCP are more prone to fragmentation when exposed to shear. Granular products with irregular surfaces lead to an increase in attrition. While spherical, crystalline, or fibrous morphologies show reduced impact during high shear blending. These changes in size will affect the functionality attributes of the formulation, such as flow, API homogeneity, tableting, formation of dust, etc. Hence it is important for formulators to fully understand the excipients to make the right choices.

Keywords: attrition, blending, continuous manufacturing, excipients, lactose, microcrystalline cellulose, shear

Procedia PDF Downloads 86
276 Magnetic Solid-Phase Separation of Uranium from Aqueous Solution Using High Capacity Diethylenetriamine Tethered Magnetic Adsorbents

Authors: Amesh P, Suneesh A S, Venkatesan K A

Abstract:

The magnetic solid-phase extraction is a relatively new method among the other solid-phase extraction techniques for the separating of metal ions from aqueous solutions, such as mine water and groundwater, contaminated wastes, etc. However, the bare magnetic particles (Fe3O4) exhibit poor selectivity due to the absence of target-specific functional groups for sequestering the metal ions. The selectivity of these magnetic particles can be remarkably improved by covalently tethering the task-specific ligands on magnetic surfaces. The magnetic particles offer a number of advantages such as quick phase separation aided by the external magnetic field. As a result, the solid adsorbent can be prepared with the particle size ranging from a few micrometers to the nanometer, which again offers the advantages such as enhanced kinetics of extraction, higher extraction capacity, etc. Conventionally, the magnetite (Fe3O4) particles were prepared by the hydrolysis and co-precipitation of ferrous and ferric salts in aqueous ammonia solution. Since the covalent linking of task-specific functionalities on Fe3O4 was difficult, and it is also susceptible to redox reaction in the presence of acid or alkali, it is necessary to modify the surface of Fe3O4 by silica coating. This silica coating is usually carried out by hydrolysis and condensation of tetraethyl orthosilicate over the surface of magnetite to yield a thin layer of silica-coated magnetite particles. Since the silica-coated magnetite particles amenable for further surface modification, it can be reacted with task-specific functional groups to obtain the functionalized magnetic particles. The surface area exhibited by such magnetic particles usually falls in the range of 50 to 150 m2.g-1, which offer advantage such as quick phase separation, as compared to the other solid-phase extraction systems. In addition, the magnetic (Fe3O4) particles covalently linked on mesoporous silica matrix (MCM-41) and task-specific ligands offer further advantages in terms of extraction kinetics, high stability, longer reusable cycles, and metal extraction capacity, due to the large surface area, ample porosity and enhanced number of functional groups per unit area on these adsorbents. In view of this, the present paper deals with the synthesis of uranium specific diethylenetriamine ligand (DETA) ligand anchored on silica-coated magnetite (Fe-DETA) as well as on magnetic mesoporous silica (MCM-Fe-DETA) and studies on the extraction of uranium from aqueous solution spiked with uranium to mimic the mine water or groundwater contaminated with uranium. The synthesized solid-phase adsorbents were characterized by FT-IR, Raman, TG-DTA, XRD, and SEM. The extraction behavior of uranium on the solid-phase was studied under several conditions like the effect of pH, initial concentration of uranium, rate of extraction and its variation with pH and initial concentration of uranium, effect of interference ions like CO32-, Na+, Fe+2, Ni+2, and Cr+3, etc. The maximum extraction capacity of 233 mg.g-1 was obtained for Fe-DETA, and a huge capacity of 1047 mg.g-1 was obtained for MCM-Fe-DETA. The mechanism of extraction, speciation of uranium, extraction studies, reusability, and the other results obtained in the present study suggests Fe-DETA and MCM-Fe-DETA are the potential candidates for the extraction of uranium from mine water, and groundwater.

Keywords: diethylenetriamine, magnetic mesoporous silica, magnetic solid-phase extraction, uranium extraction, wastewater treatment

Procedia PDF Downloads 140
275 Sustainable Development of Eco-Friendly Bio-Nanocomposites: Utilizing Nanocellulose Extracted From Saccharum Officinarum for Advanced Applications

Authors: Ngwenya M., Gumede T. P., Perez Camargo R. A., Motloung B.

Abstract:

This study presents the development of eco-friendly bio-nanocomposites using poly(lactic acid) (PLA), poly(caprolactone) (PCL), and their blends with nanocellulose extracted from Saccharum Officinarum. The extracted nanocellulose was optimized through chemical treatment and hydrolysis processes, yielding a sustainable and renewable resource for enhancing polymer properties. Bio-nanocomposites of PLA/nanocellulose, PCL/nanocellulose, and PLA/PCL/nanocellulose with varying nanocellulose contents (1, 3, and 5 wt%) were prepared via melt-blending and characterized using Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), X-ray diffraction (XRD), dynamic mechanical analysis (DMA) and tensile testing. The results show significant improvements in the thermal and mechanical properties of the polymeric matrices upon the addition of nanocellulose, demonstrating the potential of these bio-nanocomposites for advanced applications. These developments are promising for obtaining bio-nanocomposites from local bio-sources, leading to more sustainable and eco-friendly alternatives to traditional materials.

Keywords: bionanocomposites, polycaprolactone, poly(lactic acid), nanocellulose, saccharum officinarum

Procedia PDF Downloads 23
274 In vitro Fermentation Characteristics of Palm Oil Byproducts Which is Supplemented with Growth Factor Rumen Microbes

Authors: Mardiati Zain, Jurnida Rahman, Khasrad, Erpomen

Abstract:

The aim of this experiment was to study the use of palm oil by products (oil palm fronds (OPF), palm oil sludge (POS) and palm kernel cake (PKC)), that supplemented with growth factor rumen microbes (Sapindus rarak and Sacharomyces cerevisiae) on digestibility and fermentation in vitro. Oil Palm Fronds was previously treated with 3% urea. The treatments consist of 50% OPF+ 30% POS+ 20% PKC as a control diet (A), B = A + 4% Sapindus rarak, C = A + 0.5 % Sacharomyces cerevisiae and D = A + 4% Sapindus rarak + 0.5% Sacharomyces cerevisiae. Digestibility of DM, OM, ADF, NDF, cellulose and rumen parameters (NH3 and VFA) of all treatments were significantly different (P < 0.05). Fermentation and digestibility treatment A were significantly lower than treatments B, C, and D. The result indicated that supplementation Sapindus rarak and S. cerevisiae were able to improve fermentability and digestibility of palm oil by product.

Keywords: palm oil by product, Sapindus rarak, Sacharomyces rerevisiae, fermentability, OPF ammoniated

Procedia PDF Downloads 661
273 Algae Biomass as Alternatives to Wood Pulp in Handmade Paper Technology

Authors: Piyali Mukherjee, Jai Prakash Keshri

Abstract:

Anticipated shortages of raw materials for paper industry have forged the entry of algae as alternatives to wood pulp. Five algal species: Pithophora sp., Lyngbya sp., Hydrodictyon sp., Cladophora sp. and Rhizoclonium sp. were collected from different parts of Burdwan town, West Bengal, India. Their biomass compositional values were determined with respect to eucalyptus wood pulp. Paper characteristics were studied in terms of breaking length, tensile strength, CI index, pH, brightness, recyclability, and durability. Hydrodictyon sp., besides Rhizoclonium sp. and Cladophora sp. were established as the most suitable candidates for paper pulp formulation in terms of high cellulose, hemicelluloses contents and low lignin and silica contents. Paper from pure Hydrodictyon sp. pulp was found to have statistically significant (p < 0.05) improved breaking-length and tensile strength properties compared to that obtained from Lyngbya sp.

Keywords: algae, biomass, paper, pulp, wood

Procedia PDF Downloads 181
272 Melaleuca alternifolia Fibre Composites: Effect of Different Type of Fibre on Mechanical and Physical Properties

Authors: Sahari Japar, Rodney Jammy, M. A. Maleque

Abstract:

The fabrication of melaleuca alternifolia fibre reinforced thermoplastic starch composites was successfully done. This paper aims to show the effect of melaleuca alternifolia fibres on mechanical and physical properties of composites by using starch as a matrix. The fibres were extracted from three different part i.e. tea tree trunk (TTT), tea tree bunch (TTB) and tea tree leaf (TTL) and combined with tapioca starch by casting method. All composites showed superior mechanical properties in comparison to TS. The addition of 5% (v/v) fibres as a filler to TS led to the improvement in young’s modulus by 350% for TTB/TS, 282% for TTT/TS and 220% for TTL/TS. The tensile strength also increased to 34.39% for TTL/TS, 82.80% for TTB/TS and 203.18% for TTT/TS respectively. The trend can be correlated to the amount of cellulose in the fibres. For physical properties, it can be seen that, with the addition of fibres, the water absorption and swelling of composites decreased. The addition of melaleuca alternifolia fibre improved mechanical and physical properties of thermoplastic starch composites.

Keywords: melaleuca alternifolia, fibre, starch, mechanical, physical

Procedia PDF Downloads 369
271 Properties of Composite Materials Made from Surface Treated Particles from Annual Plants

Authors: Štěpán Hýsek, Petra Gajdačová, Milan Podlena

Abstract:

Annual plants are becoming more and more popular source of lignin and cellulose. In those days a lot of research is carried out in order to evaluate the possibility of utilization of fibres and particles from these plants in composite materials production. These lingo-cellulosic materials seem to be a great alternative to wood, however, due to waxy and silica layers on the surface of these stalks, one additional technological step is needed–erosion of the layers for the purpose of achieving better adhesion between particle and adhesive. In this research, we used several kinds of particle pre-treatment, in order to modify surface properties of these particles. Further, an adhesive was applied to the particles using laboratory blender and board were produced using laboratory press. Both physical and mechanical properties of boards were observed. It was found out that the surface modification of particles had statistically significant effect on properties of produced boards.

Keywords: annual plant, composites, mechanical properties, particleboard

Procedia PDF Downloads 171
270 Growth and Development of Membranes in Gas Sequestration

Authors: Sreevalli Bokka

Abstract:

The process of reducing the intensity of the carbon from a process or stream into the atmosphere is termed Decarbonization. Of the various technologies that are emerging to capture or reduce carbon intensity, membranes are emerging as a key player in separating carbon from a gas stream, such as industrial effluent air and others. Due to the advantage of high surface area and low flow resistance, fiber membranes are emerging widely for gas separation applications. A fiber membrane is a semipermeable barrier that is increasingly used for filtration and separation applications needing high packing density. A few of the many applications are in water desalination, medical applications, bioreactors, and gas separations applications. Only a few polymeric membranes were studied for fabricating fiber membranes such as cellulose acetate, Polysulfone, and Polyvinylidene fluoride. A few of the challenges of using fiber membranes are fouling and weak mechanical properties, leading to the breakage of membranes. In this work, the growth of fiber membranes and challenges for future developments in the filtration and gas separation applications are presented.

Keywords: membranes, filtration, separations, polymers, carbon capture

Procedia PDF Downloads 26
269 Chitin Degradation in Pseudomonas fluorescens

Authors: Azhar Alhasawi, Vasu D. Appanna

Abstract:

Chitin, the second most abundant bio-polymer in nature after cellulose, composed of β (1→4) linked N-acetylglucosamine (GlcNAc), is a major structural component in the cell walls of fungi and the shells of crustaceans. Chitin and its derivatives are gaining importance of economic value due to its biological activity and its industrial and biomedical applications. There are several methods to hydrolyze chitin to NAG, but they are typically expensive and environmentally unfriendly. Chitinase which catalyzes the breakdown of chitin to NAG has received much attention owing to its various applications in biotechnology. The presented research examines the ability of the versatile soil microbe, Pseudomonas fluorescens grown in chitin medium to produce chitinase and a variety of value-added products under abiotic stress. We have found that with high pH, Pseudomonas fluorescens enable to metabolize chitin more than with neutral pH and the overexpression of chitinase was also increased. P-dimethylaminobenzaldehyde (DMAB) assay for NAG production will be monitored and a combination of sodium dodecyl polyacrylamide gels will be used to monitor the proteomic and metabolomic changes as a result of the abiotic stress. The bioreactor of chitinase will also be utilized.

Keywords: Pseudomonas fluorescens, chitin, DMAB, chitinase

Procedia PDF Downloads 318
268 The Role of Metallic Mordant in Natural Dyeing Process: Experimental and Quantum Study on Color Fastness

Authors: Bo-Gaun Chen, Chiung-Hui Huang, Mei-Ching Chiang, Kuo-Hsing Lee, Chia-Chen Ho, Chin-Ping Huang, Chin-Heng Tien

Abstract:

It is known that the natural dyeing of cloth results moderate color, but with poor color fastness. This study points out the correlation between the macroscopic color fastness of natural dye to the cotton fiber and the microscopic binding energy of dye molecule to the cellulose. With the additive metallic mordant, the new-formed coordination bond bridges the dye to the fiber surface and thus affects the color fastness as well as the color appearance. The density functional theory (DFT) calculation is therefore used to explore the most possible mechanism during the dyeing process. Finally, the experimental results reflect the strong effect of three different metal ions on the natural dyeing clothes.

Keywords: binding energy, color fastness, density functional theory (DFT), natural dyeing, metallic mordant

Procedia PDF Downloads 525
267 Impact of Insect-Feeding and Fire-Heating Wounding on Wood Properties of Lodgepole Pine

Authors: Estelle Arbellay, Lori D. Daniels, Shawn D. Mansfield, Alice S. Chang

Abstract:

Mountain pine beetle (MPB) outbreaks are currently devastating lodgepole pine forests in western North America, which are also widely disturbed by frequent wildfires. Both MPB and fire can leave scars on lodgepole pine trees, thereby diminishing their commercial value and possibly compromising their utilization in solid wood products. In order to fully exploit the affected resource, it is crucial to understand how wounding from these two disturbance agents impact wood properties. Moreover, previous research on lodgepole pine has focused solely on sound wood and stained wood resulting from the MPB-transmitted blue fungi. By means of a quantitative multi-proxy approach, we tested the hypotheses that (i) wounding (of either MPB or fire origin) caused significant changes in wood properties of lodgepole pine and that (ii) MPB-induced wound effects could differ from those induced by fire in type and magnitude. Pith-to-bark strips were extracted from 30 MPB scars and 30 fire scars. Strips were cut immediately adjacent to the wound margin and encompassed 12 rings from normal wood formed prior to wounding and 12 rings from wound wood formed after wounding. Wood properties evaluated within this 24-year window included ring width, relative wood density, cellulose crystallinity, fibre dimensions, and carbon and nitrogen concentrations. Methods used to measure these proxies at a (sub-)annual resolution included X-ray densitometry, X-ray diffraction, fibre quality analysis, and elemental analysis. Results showed a substantial growth release in wound wood compared to normal wood, as both earlywood and latewood width increased over a decade following wounding. Wound wood was also shown to have a significantly different latewood density than normal wood 4 years after wounding. Latewood density decreased in MPB scars while the opposite was true in fire scars. By contrast, earlywood density was presented only minor variations following wounding. Cellulose crystallinity decreased in wound wood compared to normal wood, being especially diminished in MPB scars the first year after wounding. Fibre dimensions also decreased following wounding. However, carbon and nitrogen concentrations did not substantially differ between wound wood and normal wood. Nevertheless, insect-feeding and fire-heating wounding were shown to significantly alter most wood properties of lodgepole pine, as demonstrated by the existence of several morphological anomalies in wound wood. MPB and fire generally elicited similar anomalies, with the major exception of latewood density. In addition to providing quantitative criteria for differentiating between biotic (MPB) and abiotic (fire) disturbances, this study provides the wood industry with fundamental information on the physiological response of lodgepole pine to wounding in order to evaluate the utilization of scarred trees in solid wood products.

Keywords: elemental analysis, fibre quality analysis, lodgepole pine, wood properties, wounding, X-ray densitometry, X-ray diffraction

Procedia PDF Downloads 297
266 Production and Characterisation of Lipase from a Novel Streptomyces.sp - Its Molecular Identification

Authors: C. Asha Poorna, N. S. Pradeep

Abstract:

The biological function of lipase is to catalyze the hydrolysis of triacylglycerols to give free fatty acid, diacylglycerols, mono-acylglycerols and glycerol. They constitute the most important group of biocatalysts for biotechnological applications. The aim of the present study was to identify the lipolytic activity of Streptomyces sp. From soil sample collected from the sacred groves of southern Kerala. The culture conditions of the isolate were optimised and the enzyme was purified and characterised. The purification was attempted with acetone precipitation. The isolate observed to have high lipolytic activity and identified to be of Streptomyces strain. The purification was attempted with acetone precipitation. The purified enzyme observed to have an apparent molecular mass of ~60kDa by sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE). The enzyme showed maximum activity at 60oC and pH-8. The lipase showed tolerance towards different organic solvents like ethanol and methanol that are commonly used in transesterification reactions to displace alcohol from triglycerides contained in renewable resources to yield fatty acid alkyl esters known as biodiesel.

Keywords: lipase, Streptomyces, biodiesel, fatty acid, transesterification

Procedia PDF Downloads 296
265 Effect of Some Metal Ions on the Activity of Lipase Produced by Aspergillus Niger Cultured on Vitellaria Paradoxa Shells

Authors: Abdulhakeem Sulyman, Olukotun Zainab, Hammed Abdulquadri

Abstract:

Lipases (triacylglycerol acyl hydrolases) (EC 3.1.1.3) are class of enzymes that catalyses the hydrolysis of triglycerides to glycerol and free fatty acids. They account for up to 10% of the enzyme in the market and have a wide range of applications in biofuel production, detergent formulation, leather processing and in food and feed processing industry. This research was conducted to study the effect of some metal ions on the activity of purified lipase produced by Aspergillus niger cultured on Vitellaria paradoxa shells. Purified lipase in 12.5 mM p-NPL was incubated with different metal ions (Zn²⁺, Ca²⁺, Mn²⁺, Fe²⁺, Na⁺, K⁺ and Mg²⁺). The final concentrations of metal ions investigated were 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 and 1.0 mM. The results obtained from the study showed that Zn²⁺, Ca²⁺, Mn²⁺ and Fe²⁺ ions increased the activity of lipase up to 3.0, 3.0, 1.0, and 26.0 folds respectively. Lipase activity was partially inhibited by Na⁺ and Mg²⁺ with up to 88.5% and 83.7% loss of activity respectively. Lipase activity was also inhibited by K⁺ with up to 56.7% loss in the activity as compared to in the absence of metal ions. The study concluded that lipase produced by Aspergillus niger cultured on Vitellaria paradoxa shells can be activated by the presence of Zn²⁺, Ca²⁺, Mn²⁺ and Fe²⁺ and inhibited by Na⁺, K⁺ and Mg²⁺.

Keywords: Aspergillus niger, Vitellaria paradoxa, lipase, metal ions

Procedia PDF Downloads 128
264 Nanoporous Activated Carbons for Fuel Cells and Supercapacitors

Authors: A. Volperts, G. Dobele, A. Zhurinsh, I. Kruusenberg, A. Plavniece, J. Locs

Abstract:

Nowadays energy consumption constantly increases and development of effective and cheap electrochemical sources of power, such as fuel cells and electrochemical capacitors, is topical. Due to their high specific power, charge and discharge rates, working lifetime supercapacitor based energy accumulation systems are more and more extensively being used in mobile and stationary devices. Lignocellulosic materials are widely used as precursors and account for around 45% of the total raw materials used for the manufacture of activated carbon which is the most suitable material for supercapacitors. First part of our research is devoted to study of influence of main stages of wood thermochemical activation parameters on activated carbons porous structure formation. It was found that the main factors governing the properties of carbon materials are specific surface area, volume and pore size distribution, particles dispersity, ash content and oxygen containing groups content. Influence of activated carbons attributes on capacitance and working properties of supercapacitor are demonstrated. The correlation between activated carbons porous structure indices and electrochemical specifications of supercapacitors with electrodes made from these materials has been determined. It is shown that if synthesized activated carbons are used in supercapacitors then high specific capacitances can be reached – more than 380 F/g in 4.9M sulfuric acid based electrolytes and more than 170 F/g in 1 M tetraethylammonium tetrafluoroborate in acetonitrile electrolyte. Power specifications and minimal price of H₂-O₂ fuel cells are limited by the expensive platinum-based catalysts. The main direction in development of non-platinum catalysts for the oxygen reduction is the study of cheap porous carbonaceous materials which can be obtained by the pyrolysis of polymers including renewable biomass. It is known that nitrogen atoms in carbon materials to a high degree determine properties of the doped activated carbons, such as high electrochemical stability, hardness, electric resistance, etc. The lack of sufficient knowledge on the doping of the carbon materials calls for the ongoing researches of properties and structure of modified carbon matrix. In the second part of this study, highly porous activated carbons were synthesized using alkali thermochemical activation from wood, cellulose and cellulose production residues – craft lignin and sewage sludge. Activated carbon samples were doped with dicyandiamide and melamine for the application as fuel cell cathodes. Conditions of nitrogen introduction (solvent, treatment temperature) and its content in the carbonaceous material, as well as porous structure characteristics, such as specific surface and pore size distribution, were studied. It was found that efficiency of doping reaction depends on the elemental oxygen content in the activated carbon. Relationships between nitrogen content, porous structure characteristics and electrodes electrochemical properties are demonstrated.

Keywords: activated carbons, low-temperature fuel cells, nitrogen doping, porous structure, supercapacitors

Procedia PDF Downloads 97
263 Qualitative Characteristics of Meat from Lambs Fed Hydrolyzed Sugarcane

Authors: V. Endo, A. G. Silva Sobrinho, F. A. Almeida, N. L. L. Lima, G. M. Manzi, L. G. A. Cirne, N. M. B. L. Zeola

Abstract:

We used 24 Ile de France lambs, weighing between 15 and 32 kg (BW). Treatments were supplemented with concentrate: “in nature” sugarcane (IN), sugarcane hydrolyzed using 0.6% calcium oxide (CaO) under aerobic condition (AER), and sugarcane hydrolyzed using 0.6% CaO under anaerobic condition (ANA), constituting a completely randomized design with eight repetitions per treatment. Lambs were housed in individual stalls and fed into the through, allowing 10% of leftovers. Lambs were slaughtered when body weight reached 32 kg. The following parameters were determined on Longissimus lumborum muscle of hot and cold carcasses: pH and color, 45 minutes and 24 hours after slaughtering. Qualitative analysis of the meat were performed in the loins, water-holding capacity (WHC), cooking loss (CL), and shear force (SF). We used a completely randomized design with three treatments and eight repetitions. Means were compared by Tukey test at 5% significance. A higher value for redness (a*) 45 minutes after slaughter (10.48) was found for lambs fed sugarcane hydrolyzed under anaerobic conditions. The other qualitative characteristics of meat were not affected by treatments (P >0.05). The comparison of meat quality resulting from the treatments shows that it is possible to feed in nature sugarcane to lambs, thus waiving hydrolyses process and the spending with alkalizing agent.

Keywords: oxide, hydrolysis, meat quality, pH

Procedia PDF Downloads 541
262 Achievement of High L-Cysteine Yield from Enzymatic Conversion Using Eutectic Mixtures of the Substrate ATC

Authors: Deokyeong Choe, Sung Hun Youn, Younggon Kim, Chul Soo Shin

Abstract:

L-Cysteine, a sulfur-containing amino acid, has been often used in the pharmaceutical, cosmetic, food, and feed additive industries. This amino acid has been usually produced by acid-hydrolysis of human hair and poultry feathers. There are many problems, such as avoidance for use of animal hair, low yields, and formation of harmful waste material. As an alternative, the enzymatic conversion of D, L-2-amino-Δ2-thiazoline-4-carboxylic acid (ATC) to L-cysteine has been developed as an environmental-friendly method. However, the substrate solubility was too low to be used in industry. In this study, high concentrations of eutectic substrate solutions were prepared to solve the problem. Eutectic melting occurred at 39°C after mixing ATC and malonic acid at a molar ratio of 1:1. The characteristics of eutectic mixtures were analyzed by FE-SEM, EDS mapping, and XPS. However, since sorbitol, MnSO4, and NaOH should be added as supplements to the substrate mixture for the activation and stabilization of the enzyme, strategies for sequential addition of total five compounds, ATC, malonic acid, sorbitol, MnSO4, and NaOH were established. As a result, eutectic substrate mixtures of 670 mM ATC were successfully formulated. After 6 h of enzymatic reaction, 550 mM L-cysteine was made.

Keywords: D, L-2-amino-Δ2-thiazoline-4-carboxylicacid, enzymatic conversion, eutectic solution, l-cysteine

Procedia PDF Downloads 404
261 Ionophore-Based Materials for Selective Optical Sensing of Iron(III)

Authors: Natalia Lukasik, Ewa Wagner-Wysiecka

Abstract:

Development of selective, fast-responsive, and economical sensors for diverse ions detection and determination is one of the most extensively studied areas due to its importance in the field of clinical, environmental and industrial analysis. Among chemical sensors, vast popularity has gained ionophore-based optical sensors, where the generated analytical signal is a consequence of the molecular recognition of ion by the ionophore. Change of color occurring during host-guest interactions allows for quantitative analysis and for 'naked-eye' detection without the need of using sophisticated equipment. An example of application of such sensors is colorimetric detection of iron(III) cations. Iron as one of the most significant trace elements plays roles in many biochemical processes. For these reasons, the development of reliable, fast, and selective methods of iron ions determination is highly demanded. Taking all mentioned above into account a chromogenic amide derivative of 3,4-dihydroxybenzoic acid was synthesized, and its ability to iron(III) recognition was tested. To the best of authors knowledge (according to chemical abstracts) the obtained ligand has not been described in the literature so far. The catechol moiety was introduced to the ligand structure in order to mimic the action of naturally occurring siderophores-iron(III)-selective receptors. The ligand–ion interactions were studied using spectroscopic methods: UV-Vis spectrophotometry and infrared spectroscopy. The spectrophotometric measurements revealed that the amide exhibits affinity to iron(III) in dimethyl sulfoxide and fully aqueous solution, what is manifested by the change of color from yellow to green. Incorporation of the tested amide into a polymeric matrix (cellulose triacetate) ensured effective recognition of iron(III) at pH 3 with the detection limit 1.58×10⁻⁵ M. For the obtained sensor material parameters like linear response range, response time, selectivity, and possibility of regeneration were determined. In order to evaluate the effect of the size of the sensing material on iron(III) detection nanospheres (in the form of nanoemulsion) containing the tested amide were also prepared. According to DLS (dynamic light scattering) measurements, the size of the nanospheres is 308.02 ± 0.67 nm. Work parameters of the nanospheres were determined and compared with cellulose triacetate-based material. Additionally, for fast, qualitative experiments the test strips were prepared by adsorption of the amide solution on a glass microfiber material. Visual limit of detection of iron(III) at pH 3 by the test strips was estimated at the level 10⁻⁴ M. In conclusion, reported here amide derived from 3,4- dihydroxybenzoic acid proved to be an effective candidate for optical sensing of iron(III) in fully aqueous solutions. N. L. kindly acknowledges financial support from National Science Centre Poland the grant no. 2017/01/X/ST4/01680. Authors thank for financial support from Gdansk University of Technology grant no. 032406.

Keywords: ion-selective optode, iron(III) recognition, nanospheres, optical sensor

Procedia PDF Downloads 125
260 Confinement and Storage of Cyanate in the Nano Scale via Nanolayered Structures

Authors: Osama Saber

Abstract:

Cyanate is one such anion which is produced during protein poisoning in the body and has been studied extensively in the field of biochemistry because of its toxicity. The present work aims at confinement and storage of cyanate in the nano scale. It was achieved through the intercalation of cyanate anions into nanolayerd structures of Ni-Al LDH. In addition, the effect of aging time on the intercalation of cyanate was clarified using X-ray diffraction and scanning electron microscopy. Furthermore, the effect of cations on the affinity towards the intercalation of cyanate anions inside LDH structure was studied by replacement of tetra-valent cations Ti4+ instead of the tri-vallent cations Al3+ during the preparation of LDH structure. X-ray diffraction patterns of the Ni-Ti LDH showed that the interlayer spacing was 0.73 nm. This spacing was smaller than that of Ni-Al LDH suggesting that the interlayered anions into Ni-Ti LDH are different from those into Ni-Al LDH. Thermal analyses (TG, DTG, and DTA) and Infra-red spectra revealed the presence of only cyanate anions into Ni-Ti LDH while, in the case of Ni-Al LDH, both cyanate and carbonate anions were observed. SEM images showed plate-like morphology for both Ni-Ti and Ni-Al LDHs although the shapes of their plates are not similar. Our results suggested that the LDH structures containing titanium cations have higher affinity for cyanate anions than those containing aluminum cations. Therefore, this choice for cyanate in the interlayered spacing widens the applicability to study the effect of the confinement on the toxicity of cyanate by bio researchers.

Keywords: nanolayered structures, Ni-Al LDH, Ni-Ti LDH, intercalation of cyanate anions, urea hydrolysis

Procedia PDF Downloads 490
259 High Dissolution of ATC by pH Control and Its Enzymatic Conversion to L-Cysteine

Authors: Deokyeong Choe, Sung Hun Youn, Younggon Kim, Chul Soo Shin

Abstract:

L-Cysteine is extensively used as a supplement of pharmaceuticals, cosmetics, food and feed additives. It has obtained industrially by hydrolysis of human hair and poultry feathers. However, there are some problems such as the restriction of using materials from animals and the intractable waste pollution. The enzymatic conversion has been regarded as an environmental-friendly method. Currently, the biggest bottle-neck of enzymatic conversion is the low yield of L-cysteine due to the low substrate solubility. In this study, the method of enhancing the solubility of the substrate D,L-2-amino-Δ2-thiazoline-4-carboxylicacid (ATC) was developed and the enzymatic reaction at high concentration levels was performed. A large amount of substrate in aqueous solutions was dissolved by pH control using salts. As the pH of the solution increased, the solubility of ATC increased. It was thought that a shift of ATC from acid form (-COOH) to dissociated carboxylic group (-COO-) would improve its hydrophilicity leading to solubility increase. The highest solubility of ATC was 610 mM at pH 10.5, whereas the maximum reaction rate was obtained at pH 8.3. As a result, a high L-cysteine yield of 250 mM was achieved at pH 9.1, which was obtained from a combination of optimum pH conditions for ATC solubility and enzymatic conversion. This yield corresponds to approximately 18 times of that in previous reports.

Keywords: D, L-2-amino-Δ2-thiazoline-4-carboxylicacid, enzymatic conversion, high-substrate solubilization, L-Cysteine

Procedia PDF Downloads 398
258 Characterization of Banana (Musa spp.) Pseudo-Stem and Fruit-Bunch-Stem as a Potential Renewable Energy Resource

Authors: Nurhayati Abdullah, Fauziah Sulaiman, Muhamad Azman Miskam, Rahmad Mohd Taib

Abstract:

Banana pseudo-stem and fruit-bunch-stem are agricultural residues that can be used for conversion to bio-char, bio-oil, and gases by using thermochemical process. The aim of this work is to characterize banana pseudo-stem and banana fruit-bunch-stem through proximate analysis, elemental analysis, chemical analysis, thermo-gravimetric analysis, and heating calorific value. The ash contents of the banana pseudo-stem and banana fruit-bunch-stem are 11.0 mf wt.% and 20.6 mf wt.%; while the carbon content of banana pseudo-stem and fruit-bunch-stem are 37.9 mf wt.% and 35.58 mf wt.% respectively. The molecular formulas for banana stem and banana fruit-bunch-stem are C24H33NO26 and C19H29NO33 respectively. The measured higher heating values of banana pseudo-stem and banana fruit-bunch-stem are 15.5MJ/kg and 12.7 MJ/kg respectively. By chemical analysis, the lignin, cellulose, and hemicellulose contents in the samples will also be presented. The feasibility of the banana wastes to be a feedstock for thermochemical process in comparison with other biomass will be discussed in this paper.

Keywords: banana waste, biomass, renewable energy, thermo-chemical characteristics

Procedia PDF Downloads 494
257 Chitin Nanocrystals as Sustainable Surfactant Alternative for Enhancing Oil-in-Water Emulsions Stability in Oil and Gas Fields

Authors: A. Altomi, A. Alhebshi, M. Rasm, B. Osman

Abstract:

This study explored the application of chitin nanocrystals (ChiNCs), derived from a renewable and environmentally friendly material, as stabilizers for oil-in-water (O/W) emulsions. O/W emulsions are commonly used in various applications but are prone to instability and degradation over time. Instability can occur due to factors such as flocculation, coalescence, and gravitational separation, including creaming and sedimentation, either independently or simultaneously. To produce ChiNCs, chitin powder underwent acid hydrolysis. Transmission electron microscopy (TEM) analysis revealed that ChiNCs exhibited a needle-like morphology, with lengths ranging from 200 to 800 nm and widths ranging from 20 to 80 nm. The surface charge of ChiNCs was negative at pH values above 7 and positive at pH values below 7. The rheological properties of O/W emulsions stabilized by ChiNCs were compared to those stabilized by synthetic surfactants, namely Tween 80 and CTAB. The emulsions stabilized by ChiNCs demonstrated higher yield stress and lower shear viscosity compared to those stabilized by synthetic surfactants. This indicates that ChiNC-stabilized emulsions are more stable and less prone to breakdown. Based on these findings, ChiNCs show promise as an alternative to synthetic surfactants for stabilizing O/W emulsions.

Keywords: chitin nanocrystals, colloidal pickering, emulsion rheology, oil-in-water, synthetic surfactant

Procedia PDF Downloads 32
256 Effect of Ultrasound and Enzyme on the Extraction of Eurycoma longifolia (Tongkat Ali)

Authors: He Yuhai, Ahmad Ziad Bin Sulaiman

Abstract:

Tongkat Ali, or Eurycoma longifolia, is a traditional Malay and Orang Asli herb used as aphrodisiac, general tonic, anti-Malaria, and anti-Pyretic. It has been recognized as a cashcrop by Malaysia due to its high value for the pharmaceutical use. In Tongkat Ali, eurycomanone, a quassinoid is usually chosen as a marker phytochemical as it is the most abundant phytochemical. In this research, ultrasound and enzyme were used to enhance the extraction of Eurycomanone from Tongkat Ali. Ultrasonic assisted extraction (USE) enhances extraction by facilitating the swelling and hydration of the plant material, enlarging the plant pores, breaking the plant cell, reducing the plant particle size and creating cavitation bubbles that enhance mass transfer in both the washing and diffusion phase of extraction. Enzyme hydrolyses the cell wall of the plant, loosening the structure of the cell wall, releasing more phytochemicals from the plant cell, enhancing the productivity of the extraction. Possible effects of ultrasound on the activity of the enzyme during the hydrolysis of the cell wall is under the investigation by this research. The extracts was analysed by high performance liquid chromatography for the yields of Eurycomanone. In this whole process, the conventional water extraction was used as a control of comparing the performance of the ultrasound and enzyme assisted extraction.

Keywords: ultrasound, enzymatic, extraction, Eurycoma longifolia

Procedia PDF Downloads 394
255 Chemical Reaction Method for Growing Uniform Photomechanical Organic Crystlas

Authors: Rabih O. Al-Kaysi, Lingyan Zhu, Muhannah K. Al-Muhannah, Christopher J. Bardeen

Abstract:

(E)-3-(Anthracen-9-yl)acrylic acid (9-AYAA) 1 exhibits a strong photomechanical response in bulk crystals but is challenging to grow in microcrystalline form. High quality microcrystals of this molecule could not be grown using techniques like sublimation, reprecipitation, and the floating drop method. If the tertbutyl ester of 9-AYAA is used as a starting material, however, high quality, size-uniform microwires could be grown via acid catalyzed hydrolysis. 9-AYAA microwires with uniform length and thickness were produced after a suspension of (E)-tert-butyl 3-(anthracen-9-yl)acrylate ester 2 microparticles was tumble-mixed in a mixture of phosphoric acid and sodium dodecyl sulfate at 35 °C. The dependence of the results on temperature, surfactant and precursor concentration, and mixing mode was investigated. This chemical reaction-growth method was extended to grow microplates of 9-anthraldehyde 3 using the corresponding acylal 4 as the starting material. Under 475 nm irradiation, the 9-AYAA microwires undergo a photoinduced coiling–uncoiling transition, while the 9-anthraldehyde microplates undergo a folding–unfolding transition.

Keywords: photomechanical, surfactant, organic crystals, uniform

Procedia PDF Downloads 384
254 Revolution Biopolibag System Based on Water Hyacinth's Fiber as a Solution for Environmental Friendly Seeding and Seedling

Authors: Supriady R. P. Siregar, Rizki Barkah Aulia, Dhiya Fadilla Dewi

Abstract:

Polybag is a plastic that is used to seed plants. The common type that used for polybag is a synthetic that made from petroleum such as polyethylene. Beside the character of the raw material that are non-renewable and limited, synthetic polybag ability to disintegrate in the environment is very low. According to that situation, we need a solution to overcome these problems by creating an environmentally friendly polybag. In this research, using the water hyacinth plant fibers (Eichornia crassipes) as a major component in manufacturing the environmentally friendly polybag, the water hyacinth (Eichornia crassipes) contains approximately 60% cellulose. The research method used is an experiment by testing the mechanical characters and biodegradability bio-polybag water hyacinth fibers (Eichornia crassipes) on three medium that is dissolved in water, river water and buried in soil. The research shows bio-polybag of hyacinth fibers can rapidly degraded. This study is expected to be the beginning of the creation bio-polybag of water hyacinth fiber (Eichornia crassipes) and can be applied in agriculture.

Keywords: revolution, biopolybag, renewable, environment

Procedia PDF Downloads 217
253 Biosorption of Ni (II) Using Alkaline-Treated Rice Husk

Authors: Khanom Simarani

Abstract:

Rice husk has been widely reported as a good sorbent for heavy metals. Pre treatment of rice husk minimizes cellulose crystallinity and increases the surface area thus ensuring better adsorption capacity. Commercial base and natural base-treated rice husk were used to investigate the potential of Ni(II) adsorption from synthetic solutions and waste water in batch systems. Effects of process variables such as pH, contact time, adsorbent dose, initial Ni (II) concentration were studied. Optimum Ni (II) adsorption was observed at pH 6 within 60 min of contact time. Experimental data showed increased amount of adsorbed Ni(II) with increasing adsorbent dose and decreased percent of adsorption with increasing initial Ni(II) concentration. Kinetic isotherms (Langmuir, Freundlich) were also applied. Biosorption mechanism of rice husk was analyzed using SEM/EDS, FT-IR, and XRD. The results revealed that natural base produced from agroindustrial waste could be used as efficient as commercial bases during pre treatment rice husk in removing Ni(II) from waste waters within 15 min.

Keywords: Nickel removal, adsorbent, heavy metal, biomass

Procedia PDF Downloads 266
252 Assessment of Cassava Varieties in Ecuador for the Production of Lactic Acid From Starch by-Products

Authors: Pedro Maldonado-Alvarado

Abstract:

An important cassava quality production was detected in Ecuador. However, in this country, few products with low adding-value are produced from the tuber and none from cassava by-products. To our best knowledge, lactic acid was produced from Ecuadorian cassava bagasse starch in a biotechnological way. The objective of this contribution was to study the influence of the fermentation variables (pH and agitation) on the lactic acid production of Ecuadorian cassava varieties from bagasse starch. Enzymatic hydrolysis of cassava bagasse starch for INIAP 650 and INIAP 651 varieties spread in Ecuador was performed using α-amylase and amyloglucosidase. Then, glucose was fermented by Lactobacillus leichmannii strains in different conditions of agitation (0 and 150 rpm) and pH (4.5, 5.0, and 5.5). Significant differences in ash, fibre, protein, lipids, and amylose were found in cassava bagasse starch of INIAP 650 and INIAP 651 with 1.4 and 1.3%, 4.3 and 6%, 1.2 and 2.1%, 1.9 and 1.5%, and 24.3 and 26.5%, respectively. The determination of lactic acid was performed by potentiometric and FTIR analysis. Conversions of cassava bagasse to reduced sugars were 71.7 and 85.1% for INIAP 650 and INIAP 651, respectively. The best lactic acid concentrations were 27.6 and 33.5 g/L, obtained at agitation 150 rpm and pH 5.5 for INIAP 650 and INIAP 651. Qualitative analysis conducted by FTIR spectrophotometry confirmed the presence of lactic acid in the reacted products. This investigation could contribute to the valorisation of residues from promising cassava varieties in Ecuador and hence to increase the development of this country.

Keywords: bagasse starch, cassava, Ecuador, fermentation, lactic acid

Procedia PDF Downloads 166
251 In Vitro Antioxidant Properties of Balanites Aeqyptiaca Del Enzymatic Protein Hydrolysates

Authors: Friday A. Ogori, Ojotu M. Eke, Oneh J. Abu, Abraham T. Girgih

Abstract:

B.aeqygtiaca del (Balanites aegyptiaca del) seed protein concentrate (APC) was hydrolyzed using different enzymes such as pepsin+pancreatin (PP), Alcalase (Alca), and Flavourzyme (Flav). The Alca has higher yield (100%) when compared to PP (83.23%) and Flav (62.90%). The hydrophobic amino acid and Sulphur containing amino acid (40.19%, 7.04%) in PP hydrolysate were higher compared to Alcalase (38.92%, 6.69%), Flavourenzyme (37.43%,6.35%), and APC (39.97%, 6.95%) samples. The PP has stronger DPPH, Hydroxyl radical quenching, Ferric reducing activity, and linoleic acid peroxidation activity, followed by the protein concentrate (APC) and Alcalase (Alca), while Flavourenzyme (Flav) derived hydrolysate was least in scavenging and inhibiting radical peroxidation properties. Flavourenzyme derived hydrolysate had stronger Ferric reducing antioxidant potential and metal chelating property. The result showed that the Alcalase hydrolysate has promising peptide yield, and PP hydrolysate had excellent amino acid residues and good in-vitro antioxidant potentials and could be a preferred ingredients in the nutraceutical and functional food emerging industries.

Keywords: balanites aegyptiaca del, protein concentrate, protein hydrolysates, enzymatic hydrolysis, antioxidants

Procedia PDF Downloads 49