Search results for: network technology
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 11928

Search results for: network technology

8388 Exploring Hydrogen Embrittlement and Fatigue Crack Growth in API 5L X52 Steel Pipeline Under Cyclic Internal Pressure

Authors: Omar Bouledroua, Djamel Zelmati, Zahreddine Hafsi, Milos B. Djukic

Abstract:

Transporting hydrogen gas through the existing natural gas pipeline network offers an efficient solution for energy storage and conveyance. Hydrogen generated from excess renewable electricity can be conveyed through the API 5L steel-made pipelines that already exist. In recent years, there has been a growing demand for the transportation of hydrogen through existing gas pipelines. Therefore, numerical and experimental tests are required to verify and ensure the mechanical integrity of the API 5L steel pipelines that will be used for pressurized hydrogen transportation. Internal pressure loading is likely to accelerate hydrogen diffusion through the internal pipe wall and consequently accentuate the hydrogen embrittlement of steel pipelines. Furthermore, pre-cracked pipelines are susceptible to quick failure, mainly under a time-dependent cyclic pressure loading that drives fatigue crack propagation. Meanwhile, after several loading cycles, the initial cracks will propagate to a critical size. At this point, the remaining service life of the pipeline can be estimated, and inspection intervals can be determined. This paper focuses on the hydrogen embrittlement of API 5L steel-made pipeline under cyclic pressure loading. Pressurized hydrogen gas is transported through a network of pipelines where demands at consumption nodes vary periodically. The resulting pressure profile over time is considered a cyclic loading on the internal wall of a pre-cracked pipeline made of API 5L steel-grade material. Numerical modeling has allowed the prediction of fatigue crack evolution and estimation of the remaining service life of the pipeline. The developed methodology in this paper is based on the ASME B31.12 standard, which outlines the guidelines for hydrogen pipelines.

Keywords: hydrogen embrittlement, pipelines, transient flow, cyclic pressure, fatigue crack growth

Procedia PDF Downloads 94
8387 Expanding Access and Deepening Engagement: Building an Open Source Digital Platform for Restoration-Based Stem Education in the Largest Public-School System in the United States

Authors: Lauren B. Birney

Abstract:

This project focuses upon the expansion of the existing "Curriculum and Community Enterprise for the Restoration of New York Harbor in New York City Public Schools" NSF EHR DRL 1440869, NSF EHR DRL 1839656 and NSF EHR DRL 1759006. This project is recognized locally as “Curriculum and Community Enterprise for Restoration Science,” or CCERS. CCERS is a comprehensive model of ecological restoration-based STEM education for urban public-school students. Following an accelerated rollout, CCERS is now being implemented in 120+ Title 1 funded NYC Department of Education middle schools, led by two cohorts of 250 teachers, serving more than 11,000 students in total. Initial results and baseline data suggest that the CCERS model, with the Billion Oyster Project (BOP) as its local restoration ecology-based STEM curriculum, is having profound impacts on students, teachers, school leaders, and the broader community of CCERS participants and stakeholders. Students and teachers report being receptive to the CCERS model and deeply engaged in the initial phase of curriculum development, citizen science data collection, and student-centered, problem-based STEM learning. The BOP CCERS Digital Platform will serve as the central technology hub for all research, data, data analysis, resources, materials and student data to promote global interactions between communities, Research conducted included qualitative and quantitative data analysis. We continue to work internally on making edits and changes to accommodate a dynamic society. The STEM Collaboratory NYC® at Pace University New York City continues to act as the prime institution for the BOP CCERS project since the project’s inception in 2014. The project continues to strive to provide opportunities in STEM for underrepresented and underserved populations in New York City. The replicable model serves as an opportunity for other entities to create this type of collaboration within their own communities and ignite a community to come together and address the notable issue. Providing opportunities for young students to engage in community initiatives allows for a more cohesive set of stakeholders, ability for young people to network and provide additional resources for those students in need of additional support, resources and structure. The project has planted more than 47 million oysters across 12 acres and 15 reef sites, with the help of more than 8,000 students and 10,000 volunteers. Additional enhancements and features on the BOP CCERS Digital Platform will continue over the next three years through funding provided by the National Science Foundation, NSF DRL EHR 1759006/1839656 Principal Investigator Dr. Lauren Birney, Professor Pace University. Early results from the data indicate that the new version of the Platform is creating traction both nationally and internationally among community stakeholders and constituents. This project continues to focus on new collaborative partners that will support underrepresented students in STEM Education. The advanced Digital Platform will allow for us connect with other countries and networks on a larger Global scale.

Keywords: STEM education, environmental restoration science, technology, citizen science

Procedia PDF Downloads 91
8386 Benchmarking Machine Learning Approaches for Forecasting Hotel Revenue

Authors: Rachel Y. Zhang, Christopher K. Anderson

Abstract:

A critical aspect of revenue management is a firm’s ability to predict demand as a function of price. Historically hotels have used simple time series models (regression and/or pick-up based models) owing to the complexities of trying to build casual models of demands. Machine learning approaches are slowly attracting attention owing to their flexibility in modeling relationships. This study provides an overview of approaches to forecasting hospitality demand – focusing on the opportunities created by machine learning approaches, including K-Nearest-Neighbors, Support vector machine, Regression Tree, and Artificial Neural Network algorithms. The out-of-sample performances of above approaches to forecasting hotel demand are illustrated by using a proprietary sample of the market level (24 properties) transactional data for Las Vegas NV. Causal predictive models can be built and evaluated owing to the availability of market level (versus firm level) data. This research also compares and contrast model accuracy of firm-level models (i.e. predictive models for hotel A only using hotel A’s data) to models using market level data (prices, review scores, location, chain scale, etc… for all hotels within the market). The prospected models will be valuable for hotel revenue prediction given the basic characters of a hotel property or can be applied in performance evaluation for an existed hotel. The findings will unveil the features that play key roles in a hotel’s revenue performance, which would have considerable potential usefulness in both revenue prediction and evaluation.

Keywords: hotel revenue, k-nearest-neighbors, machine learning, neural network, prediction model, regression tree, support vector machine

Procedia PDF Downloads 137
8385 A Sentence-to-Sentence Relation Network for Recognizing Textual Entailment

Authors: Isaac K. E. Ampomah, Seong-Bae Park, Sang-Jo Lee

Abstract:

Over the past decade, there have been promising developments in Natural Language Processing (NLP) with several investigations of approaches focusing on Recognizing Textual Entailment (RTE). These models include models based on lexical similarities, models based on formal reasoning, and most recently deep neural models. In this paper, we present a sentence encoding model that exploits the sentence-to-sentence relation information for RTE. In terms of sentence modeling, Convolutional neural network (CNN) and recurrent neural networks (RNNs) adopt different approaches. RNNs are known to be well suited for sequence modeling, whilst CNN is suited for the extraction of n-gram features through the filters and can learn ranges of relations via the pooling mechanism. We combine the strength of RNN and CNN as stated above to present a unified model for the RTE task. Our model basically combines relation vectors computed from the phrasal representation of each sentence and final encoded sentence representations. Firstly, we pass each sentence through a convolutional layer to extract a sequence of higher-level phrase representation for each sentence from which the first relation vector is computed. Secondly, the phrasal representation of each sentence from the convolutional layer is fed into a Bidirectional Long Short Term Memory (Bi-LSTM) to obtain the final sentence representations from which a second relation vector is computed. The relations vectors are combined and then used in then used in the same fashion as attention mechanism over the Bi-LSTM outputs to yield the final sentence representations for the classification. Experiment on the Stanford Natural Language Inference (SNLI) corpus suggests that this is a promising technique for RTE.

Keywords: deep neural models, natural language inference, recognizing textual entailment (RTE), sentence-to-sentence relation

Procedia PDF Downloads 352
8384 Mapping New Technologies for Sustainability along the Fashion Supply Chain

Authors: Hilde Heim

Abstract:

The textile industry is known for its swift adoption of innovations in fashion technology (Fash-Tech). The industry is also known for its harmful effects on the environment. Opportunely, Fash-Tech is expected to facilitate the turn towards more sustainable practice. However, although several technologies have the potential for advancing sustainable practice, many industry players, whether large or small, are confused and misinformed about Fash-Tech adoption, application, and impact. Through a visual poster presentation, this project aims to map global fashion innovations along the supply chain from fibre production to waste management, thus providing a clearer picture of numbers, scale, and adoption. While the project aims to identify Fash-Tech effectiveness in reaching sustainability goals, it also identifies areas of congestion as well as insufficiency in the accessibility of Fash-Tech. This project intends to help inform future decisions in business, investment, and policy for the advancement of sustainable practice.

Keywords: fashion technology, sustainability, supply chain, enterprise management

Procedia PDF Downloads 246
8383 Virtual Reality Learning Environment in Embryology Education

Authors: Salsabeel F. M. Alfalah, Jannat F. Falah, Nadia Muhaidat, Amjad Hudaib, Diana Koshebye, Sawsan AlHourani

Abstract:

Educational technology is changing the way how students engage and interact with learning materials. This improved the learning process amongst various subjects. Virtual Reality (VR) applications are considered one of the evolving methods that have contributed to enhancing medical education. This paper utilizes VR to provide a solution to improve the delivery of the subject of Embryology to medical students, and facilitate the teaching process by providing a useful aid to lecturers, whilst proving the effectiveness of this new technology in this particular area. After evaluating the current teaching methods and identifying students ‘needs, a VR system was designed that demonstrates in an interactive fashion the development of the human embryo from fertilization to week ten of intrauterine development. This system aims to overcome some of the problems faced by the students’ in the current educational methods, and to increase the efficacy of the learning process.

Keywords: virtual reality, student assessment, medical education, 3D, embryology

Procedia PDF Downloads 195
8382 A Design of an Augmented Reality Based Virtual Heritage Application

Authors: Stephen Barnes, Ian Mills, Frances Cleary

Abstract:

Augmented and virtual reality-based applications offer many benefits for the heritage and tourism sector. This technology provides a platform to showcase the regions of interest to people without the need for them to be physically present, which has had a positive impact on enticing tourists to visit those locations. However, the technology also provides the opportunity to present historical artefacts in a form that accurately represents their original, intended appearance. Three sites of interest were identified in the Lingaun Valley in South East Ireland, wherein virtual representations of site-specific artefacts of interest were created via a multidisciplinary team encompassing archaeology, art history, 3D modelling, design, and software development. The collated information has been presented to users via an augmented reality mobile-based application that provides information in an engaging manner that encourages an interest in history as well as visits to the sites in the Lingaun Valley.

Keywords: augmented reality, virtual heritage, 3D modelling, archaeology, virtual representation

Procedia PDF Downloads 86
8381 Pro-BluCRM: A Proactive Customer Relationship Management System Using Bluetooth

Authors: Mohammad Alawairdhi

Abstract:

Customer Relationship Management (CRM) started gaining attention as late as the 1990s, and since then efforts are ongoing to define the domain’s precise specifications. There is yet no single agreed upon definition. However, a predominant majority perceives CRM as a mechanism for enhancing interaction with customers, thereby strengthening the relationship between a business and its clients. From the perspective of Information Technology (IT) companies, CRM systems can be viewed as facilitating software products or services to automate the marketing, selling and servicing functions of an organization. In this paper, we have proposed a Bluetooth enabled CRM system for small- and medium-scale organizations. In the proposed system, Bluetooth technology works as an automatic identification token in addition to its common use as a communication channel. The system comprises a server side accompanied by a user-interface support for both client and server sides. The system has been tested in two environments and users have expressed ease of use, convenience and understandability as major advantages of the proposed solution.

Keywords: customer relationship management, CRM, bluetooth, automatic identification token

Procedia PDF Downloads 346
8380 Impact of Moderating Role of e-Administration on Training, Perfromance Appraisal and Organizational Performance

Authors: Ejaz Ali, Muhammad Younas, Tahir Saeed

Abstract:

In this age of information technology, organizations are revisiting their approach in great deal. E-administration is the most popular area to proceed with. Organizations in order to excel over their competitors are spending a substantial chunk of its resources on E-Administration as it is the most effective, transparent and efficient way to achieve their short term as well as long term organizational goals. E-administration being a tool of ICT plays a significant role towards effective management of HR practices resulting into optimal performance of an organization. The present research was carried out to analyze the impact of moderating role of e-administration in the relationships training and performance appraisal aligned with perceived organizational performance. The study is based on RBV and AMO theories, advocating that use of latest technology in execution of human resource (HR) functions enables an organization to achieve and sustain competitive advantage which leads to optimal firm performance.

Keywords: e-administration, human resource management, ict, performance appraisal, training

Procedia PDF Downloads 270
8379 Exploiting JPEG2000 into Reversible Information

Authors: Te-Jen Chang, I-Hui Pan, Kuang-Hsiung Tan, Shan-Jen Cheng, Chien-Wu Lan, Chih-Chan Hu

Abstract:

With the event of multimedia age in order to protect data not to be tampered, damaged, and faked, information hiding technologies are proposed. Information hiding means important secret information is hidden into cover multimedia and then camouflaged media is produced. This camouflaged media has the characteristic of natural protection. Under the undoubted situation, important secret information is transmitted out.Reversible information hiding technologies for high capacity is proposed in this paper. The gray images are as cover media in this technology. We compress gray images and compare with the original image to produce the estimated differences. By using the estimated differences, expression information hiding is used, and higher information capacity can be achieved. According to experimental results, the proposed technology can be approved. For these experiments, the whole capacity of information payload and image quality can be satisfied.

Keywords: cover media, camouflaged media, reversible information hiding, gray image

Procedia PDF Downloads 331
8378 Multi-Impairment Compensation Based Deep Neural Networks for 16-QAM Coherent Optical Orthogonal Frequency Division Multiplexing System

Authors: Ying Han, Yuanxiang Chen, Yongtao Huang, Jia Fu, Kaile Li, Shangjing Lin, Jianguo Yu

Abstract:

In long-haul and high-speed optical transmission system, the orthogonal frequency division multiplexing (OFDM) signal suffers various linear and non-linear impairments. In recent years, researchers have proposed compensation schemes for specific impairment, and the effects are remarkable. However, different impairment compensation algorithms have caused an increase in transmission delay. With the widespread application of deep neural networks (DNN) in communication, multi-impairment compensation based on DNN will be a promising scheme. In this paper, we propose and apply DNN to compensate multi-impairment of 16-QAM coherent optical OFDM signal, thereby improving the performance of the transmission system. The trained DNN models are applied in the offline digital signal processing (DSP) module of the transmission system. The models can optimize the constellation mapping signals at the transmitter and compensate multi-impairment of the OFDM decoded signal at the receiver. Furthermore, the models reduce the peak to average power ratio (PAPR) of the transmitted OFDM signal and the bit error rate (BER) of the received signal. We verify the effectiveness of the proposed scheme for 16-QAM Coherent Optical OFDM signal and demonstrate and analyze transmission performance in different transmission scenarios. The experimental results show that the PAPR and BER of the transmission system are significantly reduced after using the trained DNN. It shows that the DNN with specific loss function and network structure can optimize the transmitted signal and learn the channel feature and compensate for multi-impairment in fiber transmission effectively.

Keywords: coherent optical OFDM, deep neural network, multi-impairment compensation, optical transmission

Procedia PDF Downloads 149
8377 A Comparative Semantic Network Study between Chinese and Western Festivals

Authors: Jianwei Qian, Rob Law

Abstract:

With the expansion of globalization and the increment of market competition, the festival, especially the traditional one, has demonstrated its vitality under the new context. As a new tourist attraction, festivals play a critically important role in promoting the tourism economy, because the organization of a festival can engage more tourists, generate more revenues and win a wider media concern. However, in the current stage of China, traditional festivals as a way to disseminate national culture are undergoing the challenge of foreign festivals and the related culture. Different from those special events created solely for developing economy, traditional festivals have their own culture and connotation. Therefore, it is necessary to conduct a study on not only protecting the tradition, but promoting its development as well. This study conducts a comparative study of the development of China’s Valentine’s Day and Western Valentine’s Day under the Chinese context and centers on newspaper reports in China from 2000 to 2016. Based on the literature, two main research focuses can be established: one is concerned about the festival’s impact and the other is about tourists’ motivation to engage in a festival. Newspaper reports serve as the research discourse and can help cover the two focal points. With the assistance of content mining techniques, semantic networks for both Days are constructed separately to help depict the status quo of these two festivals in China. Based on the networks, two models are established to show the key component system of traditional festivals in the hope of perfecting the positive role festival tourism plays in the promotion of economy and culture. According to the semantic networks, newspaper reports on both festivals have similarities and differences. The difference is mainly reflected in its cultural connotation, because westerners and Chinese may show their love in different ways. Nevertheless, they share more common points in terms of economy, tourism, and society. They also have a similar living environment and stakeholders. Thus, they can be promoted together to revitalize some traditions in China. Three strategies are proposed to realize the aforementioned aim. Firstly, localize international festivals to suit the Chinese context to make it function better. Secondly, facilitate the internationalization process of traditional Chinese festivals to receive more recognition worldwide. Finally, allow traditional festivals to compete with foreign ones to help them learn from each other and elucidate the development of other festivals. It is believed that if all these can be realized, not only the traditional Chinese festivals can obtain a more promising future, but foreign ones are the same as well. Accordingly, the paper can contribute to the theoretical construction of festival images by the presentation of the semantic network. Meanwhile, the identified features and issues of festivals from two different cultures can enlighten the organization and marketing of festivals as a vital tourism activity. In the long run, the study can enhance the festival as a key attraction to keep the sustainable development of both the economy and the society.

Keywords: Chinese context, comparative study, festival tourism, semantic network analysis, valentine’s day

Procedia PDF Downloads 239
8376 Mobile Asthma Action Plan for Adolescent with Asthma: A Systematic Review

Authors: Reisy Tane

Abstract:

Asthma is the common health problems in adolescents. Self-management is one way to improve health status in adolescent with asthma. Mobile technology has the potential to improve self-management in adolescents with asthma. Objective: the aim of this study to determine the effectiveness of using the mobile technology Asthma Action Plan to improve self management. Method: this study is Systematic review approach using PRISM template. The literature search started on first September 2017 by using electronic data Pro Quest and Google Scholars with keywords ‘Mobile AAP’ and ‘Adolescent Asthma’. Results and Conclusion: M-AAP is effective to improve adolescent self-management with asthma because it is easy to use and provide information appropriately. The improvement of self-management in teenagers will enhance the quality of life of adolescents with asthma. The recommendation of this study is the addition of parental control content in the application appropriate with Family Centered Care (FCC) philosophy on pediatric nursing. In addition, it is expected the development of applications for other chronic diseases such as diabetes mellitus and congestive heart failure.

Keywords: asthma, mobile AAP, adolescent, self-management

Procedia PDF Downloads 198
8375 Life Expansion: Visual Autobiography, Identity, Representation and the Degrees of Fictionalization of the Self on Instagram

Authors: Pablo De Macedo Silveira Vallejos

Abstract:

This article aims to observe autobiographical and visual narrative practices among users on Instagram. In this way, the work proposes to reflect on how image resources are used to develop edited representations of the self in that social network. The research aims to explore the uses of editing and the degrees of fictionalization present on Instagram.

Keywords: autobiography, visual narratives, representation, fiction, social media

Procedia PDF Downloads 80
8374 Self-Efficacy Perceptions of Pre-Service Art and Music Teachers towards the Use of Information and Communication Technologies

Authors: Agah Tugrul Korucu

Abstract:

Information and communication technologies have become an important part of our daily lives with significant investments in technology in the 21st century. Individuals are more willing to design and implement computer-related activities, and they are the main component of computer self-efficacy and self-efficacy related to the fact that the increase in information technology, with operations in parallel with these activities more successful. The Self-efficacy level is a significant factor which determines how individuals act in events, situations and difficult processes. It is observed that individuals with higher self-efficacy perception of computers who encounter problems related to computer use overcome them more easily. Therefore, this study aimed to examine self-efficacy perceptions of pre-service art and music teachers towards the use of information and communication technologies in terms of different variables. Research group consists of 60 pre-service teachers who are studying at Necmettin Erbakan University Ahmet Keleşoğlu Faculty of Education Art and Music department. As data collection tool of the study; “personal information form” developed by the researcher and used to collect demographic data and "the perception scale related to self-efficacy of informational technology" are used. The scale is 5-point Likert-type scale. It consists of 27 items. The Kaiser-Meyer-Olkin (KMO) sample compliance value is found 0.959. The Cronbach alpha reliability coefficient of the scale is found to be 0.97. computer-based statistical software package (SPSS 21.0) is used in order to analyze the data collected by data collection tools; descriptive statistics, t-test, analysis of variance are used as statistical techniques.

Keywords: self-efficacy perceptions, teacher candidate, information and communication technologies, art teacher

Procedia PDF Downloads 328
8373 Exploring the History of Chinese Music Acoustic Technology through Data Fluctuations

Authors: Yang Yang, Lu Xin

Abstract:

The study of extant musical sites can provide a side-by-side picture of historical ethnomusicological information. In their data collection on Chinese opera houses, researchers found that one Ming Dynasty opera house reached a width of nearly 18 meters, while all opera houses of the same period and after it was far from such a width, being significantly smaller than 18 meters. The historical transient fluctuations in the data dimension of width that caused Chinese theatres to fluctuate in the absence of construction scale constraints have piqued the interest of researchers as to why there is data variation in width. What factors have contributed to the lack of further expansion in the width of theatres? To address this question, this study used a comparative approach to conduct a venue experiment between this theater stage and another theater stage for non-heritage opera performances, collecting the subjective perceptions of performers and audiences at different theater stages, as well as combining BK Connect platform software to measure data such as echo and delay. From the subjective and objective results, it is inferred that the Chinese ancients discovered and understood the acoustical phenomenon of the Haas effect by exploring the effect of stage width on musical performance and appreciation of listening states during the Ming Dynasty and utilized this discovery to serve music in subsequent stage construction. This discovery marked a node of evolution in Chinese architectural acoustics technology driven by musical demands. It is also instructive to note that, in contrast to many of the world's "unsuccessful civilizations," China can use a combination of heritage and intangible cultural research to chart a clear, demand-driven course for the evolution of human music technology, and that the findings of such research will complete the course of human exploration of music acoustics. The findings of such research will complete the journey of human exploration of music acoustics, and this practical experience can be applied to the exploration and understanding of other musical heritage base data.

Keywords: Haas effect, musical acoustics, history of acoustical technology, Chinese opera stage, structure

Procedia PDF Downloads 191
8372 Breast Cancer Metastasis Detection and Localization through Transfer-Learning Convolutional Neural Network Classification Based on Convolutional Denoising Autoencoder Stack

Authors: Varun Agarwal

Abstract:

Introduction: With the advent of personalized medicine, histopathological review of whole slide images (WSIs) for cancer diagnosis presents an exceedingly time-consuming, complex task. Specifically, detecting metastatic regions in WSIs of sentinel lymph node biopsies necessitates a full-scanned, holistic evaluation of the image. Thus, digital pathology, low-level image manipulation algorithms, and machine learning provide significant advancements in improving the efficiency and accuracy of WSI analysis. Using Camelyon16 data, this paper proposes a deep learning pipeline to automate and ameliorate breast cancer metastasis localization and WSI classification. Methodology: The model broadly follows five stages -region of interest detection, WSI partitioning into image tiles, convolutional neural network (CNN) image-segment classifications, probabilistic mapping of tumor localizations, and further processing for whole WSI classification. Transfer learning is applied to the task, with the implementation of Inception-ResNetV2 - an effective CNN classifier that uses residual connections to enhance feature representation, adding convolved outputs in the inception unit to the proceeding input data. Moreover, in order to augment the performance of the transfer learning CNN, a stack of convolutional denoising autoencoders (CDAE) is applied to produce embeddings that enrich image representation. Through a saliency-detection algorithm, visual training segments are generated, which are then processed through a denoising autoencoder -primarily consisting of convolutional, leaky rectified linear unit, and batch normalization layers- and subsequently a contrast-normalization function. A spatial pyramid pooling algorithm extracts the key features from the processed image, creating a viable feature map for the CNN that minimizes spatial resolution and noise. Results and Conclusion: The simplified and effective architecture of the fine-tuned transfer learning Inception-ResNetV2 network enhanced with the CDAE stack yields state of the art performance in WSI classification and tumor localization, achieving AUC scores of 0.947 and 0.753, respectively. The convolutional feature retention and compilation with the residual connections to inception units synergized with the input denoising algorithm enable the pipeline to serve as an effective, efficient tool in the histopathological review of WSIs.

Keywords: breast cancer, convolutional neural networks, metastasis mapping, whole slide images

Procedia PDF Downloads 136
8371 Improving the LDMOS Temperature Compensation Bias Circuit to Optimize Back-Off

Authors: Antonis Constantinides, Christos Yiallouras, Christakis Damianou

Abstract:

The application of today's semiconductor transistors in high power UHF DVB-T linear amplifiers has evolved significantly by utilizing LDMOS technology. This fact provides engineers with the option to design a single transistor signal amplifier which enables output power and linearity that was unobtainable previously using bipolar junction transistors or later type first generation MOSFETS. The quiescent current stability in terms of thermal variations of the LDMOS guarantees a robust operation in any topology of DVB-T signal amplifiers. Otherwise, progressively uncontrolled heat dissipation enhancement on the LDMOS case can degrade the amplifier’s crucial parameters in regards to the gain, linearity, and RF stability, resulting in dysfunctional operation or a total destruction of the unit. This paper presents one more sophisticated approach from the traditional biasing circuits used so far in LDMOS DVB-T amplifiers. It utilizes a microprocessor control technology, providing stability in topologies where IDQ must be perfectly accurate.

Keywords: LDMOS, amplifier, back-off, bias circuit

Procedia PDF Downloads 345
8370 A Settlement Strategy for Health Facilities in Emerging Countries: A Case Study in Brazil

Authors: Domenico Chizzoniti, Monica Moscatelli, Letizia Cattani, Piero Favino, Luca Preis

Abstract:

A settlement strategy is to anticipate and respond the needs of existing and future communities through the provision of primary health care facilities in marginalized areas. Access to a health care network is important to improving healthcare coverage, often lacking, in developing countries. The study explores that a good sanitary system strategy of rural contexts brings advantages to an existing settlement: improving transport, communication, water and social facilities. The objective of this paper is to define a possible methodology to implement primary health care facilities in disadvantaged areas of emerging countries. In this research, we analyze the case study of Lauro de Freitas, a municipality in the Brazilian state of Bahia, part of the Metropolitan Region of Salvador, with an area of 57,662 km² and 194.641 inhabitants. The health localization system in Lauro de Freitas is an integrated process that involves not only geographical aspects, but also a set of factors: population density, epidemiological data, allocation of services, road networks, and more. Data were collected also using semi-structured interviews and questionnaires to the local population. Synthesized data suggest that moving away from the coast where there is the greatest concentration of population and services, a network of primary health care facilities is able to improve the living conditions of small-dispersed communities. Based on the health service needs of populations, we have developed a methodological approach that is particularly useful in rural and remote contexts in emerging countries.

Keywords: healthcare, settlement strategy, urban health, rural

Procedia PDF Downloads 373
8369 A Deep Learning Model with Greedy Layer-Wise Pretraining Approach for Optimal Syngas Production by Dry Reforming of Methane

Authors: Maryam Zarabian, Hector Guzman, Pedro Pereira-Almao, Abraham Fapojuwo

Abstract:

Dry reforming of methane (DRM) has sparked significant industrial and scientific interest not only as a viable alternative for addressing the environmental concerns of two main contributors of the greenhouse effect, i.e., carbon dioxide (CO₂) and methane (CH₄), but also produces syngas, i.e., a mixture of hydrogen (H₂) and carbon monoxide (CO) utilized by a wide range of downstream processes as a feedstock for other chemical productions. In this study, we develop an AI-enable syngas production model to tackle the problem of achieving an equivalent H₂/CO ratio [1:1] with respect to the most efficient conversion. Firstly, the unsupervised density-based spatial clustering of applications with noise (DBSAN) algorithm removes outlier data points from the original experimental dataset. Then, random forest (RF) and deep neural network (DNN) models employ the error-free dataset to predict the DRM results. DNN models inherently would not be able to obtain accurate predictions without a huge dataset. To cope with this limitation, we employ reusing pre-trained layers’ approaches such as transfer learning and greedy layer-wise pretraining. Compared to the other deep models (i.e., pure deep model and transferred deep model), the greedy layer-wise pre-trained deep model provides the most accurate prediction as well as similar accuracy to the RF model with R² values 1.00, 0.999, 0.999, 0.999, 0.999, and 0.999 for the total outlet flow, H₂/CO ratio, H₂ yield, CO yield, CH₄ conversion, and CO₂ conversion outputs, respectively.

Keywords: artificial intelligence, dry reforming of methane, artificial neural network, deep learning, machine learning, transfer learning, greedy layer-wise pretraining

Procedia PDF Downloads 92
8368 Feasibility Study of MongoDB and Radio Frequency Identification Technology in Asset Tracking System

Authors: Mohd Noah A. Rahman, Afzaal H. Seyal, Sharul T. Tajuddin, Hartiny Md Azmi

Abstract:

Taking into consideration the real time situation specifically the higher academic institutions, small, medium to large companies, public to private sectors and the remaining sectors, do experience the inventory or asset shrinkages due to theft, loss or even inventory tracking errors. This happening is due to a zero or poor security systems and measures being taken and implemented in their organizations. Henceforth, implementing the Radio Frequency Identification (RFID) technology into any manual or existing web-based system or web application can simply deter and will eventually solve certain major issues to serve better data retrieval and data access. Having said, this manual or existing system can be enhanced into a mobile-based system or application. In addition to that, the availability of internet connections can aid better services of the system. Such involvement of various technologies resulting various privileges to individuals or organizations in terms of accessibility, availability, mobility, efficiency, effectiveness, real-time information and also security. This paper will look deeper into the integration of mobile devices with RFID technologies with the purpose of asset tracking and control. Next, it is to be followed by the development and utilization of MongoDB as the main database to store data and its association with RFID technology. Finally, the development of a web based system which can be viewed in a mobile based formation with the aid of Hypertext Preprocessor (PHP), MongoDB, Hyper-Text Markup Language 5 (HTML5), Android, JavaScript and AJAX programming language.

Keywords: RFID, asset tracking system, MongoDB, NoSQL

Procedia PDF Downloads 308
8367 Using a Card Game as a Tool for Developing a Design

Authors: Matthias Haenisch, Katharina Hermann, Marc Godau, Verena Weidner

Abstract:

Over the past two decades, international music education has been characterized by a growing interest in informal learning for formal contexts and a "compositional turn" that has moved from closed to open forms of composing. This change occurs under social and technological conditions that permeate 21st-century musical practices. This forms the background of Musical Communities in the (Post)Digital Age (MusCoDA), a four-year joint research project of the University of Erfurt (UE) and the University of Education Karlsruhe (PHK), funded by the German Federal Ministry of Education and Research (BMBF). Both explore songwriting processes as an example of collective creativity in (post)digital communities, one in formal and the other in informal learning contexts. Collective songwriting will be studied from a network perspective, that will allow us to view boundaries between both online and offline as well as formal and informal or hybrid contexts as permeable and to reconstruct musical learning practices. By comparing these songwriting processes, possibilities for a pedagogical-didactic interweaving of different educational worlds are highlighted. Therefore, the subproject of the University of Erfurt investigates school music lessons with the help of interviews, videography, and network maps by analyzing new digital pedagogical and didactic possibilities. In the first step, the international literature on songwriting in the music classroom was examined for design development. The analysis focused on the question of which methods and practices are circulating in the current literature. Results from this stage of the project form the basis for the first instructional design that will help teachers in planning regular music classes and subsequently reconstruct musical learning practices under these conditions. In analyzing the literature, we noticed certain structural methods and concepts that recur, such as the Building Blocks method and the pre-structuring of the songwriting process. From these findings, we developed a deck of cards that both captures the current state of research and serves as a method for design development. With this deck of cards, both teachers and students themselves can plan their individual songwriting lessons by independently selecting and arranging topic, structure, and action cards. In terms of science communication, music educators' interactions with the card game provide us with essential insights for developing the first design. The overall goal of MusCoDA is to develop an empirical model of collective musical creativity and learning and an instructional design for teaching music in the postdigital age.

Keywords: card game, collective songwriting, community of practice, network, postdigital

Procedia PDF Downloads 67
8366 Numerical Modeling and Characteristic Analysis of a Parabolic Trough Solar Collector

Authors: Alibakhsh Kasaeian, Mohammad Sameti, Zahra Noori, Mona Rastgoo Bahambari

Abstract:

Nowadays, the parabolic trough solar collector technology has become the most promising large-scale technology among various solar thermal generations. In this paper, a detailed numerical heat transfer model for a parabolic trough collector with nanofluid is presented based on the finite difference approach for which a MATLAB code was developed. The model was used to simulate the performance of a parabolic trough solar collector’s linear receiver, called a heat collector element (HCE). In this model, the heat collector element of the receiver was discretized into several segments in axial directions and energy balances were used for each control volume. All the heat transfer correlations, the thermodynamic equations and the optical properties were considered in details and the set of algebraic equations were solved simultaneously using iterative numerical solutions. The modeling assumptions and limitations are also discussed, along with recommendations for model improvement.

Keywords: heat transfer, nanofluid, numerical analysis, trough

Procedia PDF Downloads 375
8365 Direct Electrical Communication of Redox Enzyme Based on 3-Dimensional Cross-Linked Redox Enzyme/Nanomaterials

Authors: A. K. M. Kafi, S. N. Nina, Mashitah M. Yusoff

Abstract:

In this work, we have described a new 3-dimensional (3D) network of cross-linked Horseradish Peroxidase/Carbon Nanotube (HRP/CNT) on a thiol-modified Au surface in order to build up the effective electrical wiring of the enzyme units with the electrode. This was achieved by the electropolymerization of aniline-functionalized carbon nanotubes (CNTs) and 4-aminothiophenol -modified-HRP on a 4-aminothiophenol monolayer-modified Au electrode. The synthesized 3D HRP/CNT networks were characterized with cyclic voltammetry and amperometry, resulting the establishment direct electron transfer between the redox active unit of HRP and the Au surface. Electrochemical measurements reveal that the immobilized HRP exhibits high biological activity and stability and a quasi-reversible redox peak of the redox center of HRP was observed at about −0.355 and −0.275 V vs. Ag/AgCl. The electron transfer rate constant, KS and electron transfer co-efficient were found to be 0.57 s-1 and 0.42, respectively. Based on the electrocatalytic process by direct electrochemistry of HRP, a biosensor for detecting H2O2 was developed. The developed biosensor exhibits excellent electrocatalytic activity for the reduction of H2O2. The proposed biosensor modified with HRP/CNT 3D network displays a broader linear range and a lower detection limit for H2O2 determination. The linear range is from 1.0×10−7 to 1.2×10−4M with a detection limit of 2.2.0×10−8M at 3σ. Moreover, this biosensor exhibits very high sensitivity, good reproducibility and long-time stability. In summary, ease of fabrication, a low cost, fast response and high sensitivity are the main advantages of the new biosensor proposed in this study. These obvious advantages would really help for the real analytical applicability of the proposed biosensor.

Keywords: redox enzyme, nanomaterials, biosensors, electrical communication

Procedia PDF Downloads 459
8364 CO₂/CH₄ Exchange Studies on Shales to Assess the Potential for CO₂ Storage and Enhanced Shale Gas Recovery

Authors: Mateusz Kudasik, Katarzyna Kozieł

Abstract:

The work included detailed studies of CO₂/CH₄ exchange on a shale core from the Lewino-1G2 well (Poland) from a depth of 3408 m. The sample permeability coefficients were determined under conditions of confining pressure from 5 MPa to 35 MPa. These studies showed that at a confining pressure of 35 MPa – corresponding to a depth of about 1000 m, the shale core was impermeable in the direction perpendicular to the bedding, and in the direction parallel to the bedding, the sample had very low permeability (k∞=0.001 mD). The sorption tests performed showed low sorption capacities, which amounted to a maximum of 1.28 cm³/g in relation to CO₂ and 0.87 cm³/g to CH₄ at a pressure of 1.4 MPa. The most important study used to assess the possibilities of CO₂ storage and gas recovery from shale rocks were the CO₂/CH₄ exchange experiments, which were carried out under confining pressure conditions of 5 MPa and 30 MPa. These experiments were carried out on a unique apparatus, which makes it possible to apply a confining pressure corresponding to in situ conditions. The obtained results made it possible to carry out a comprehensive balance of gas exchange during the injection of CO₂ into the shale sample, with simultaneous recovery of CH₄. Based on the conducted sorption and gas exchange studies on the core sample under confining pressure conditions, it was found that in situ conditions, at the depths of shale gas occurrence in Poland of 3000-4000 m, where the confining pressure can be about 100 MPa: (i) poorly developed pore structure, (ii) very low permeability, and (iii) low sorption properties, make shale rocks poorly predisposed to the application of CO₂ storage technology with simultaneous recovery of CH₄. Without the stimulation of CO₂/CH₄ exchange rates through fracturing processes, the effectiveness of CO₂-ESGR technology on shale rock is very low. The research presented in this work is extremely important from the point of view of precise assessment of the potential of CO₂-ESGR technology.

Keywords: shale gas, shale rocks, CO₂/CH₄ exchange, permeability, sorption, CO₂, CH₄

Procedia PDF Downloads 23
8363 Influence of Hearing Aids on Non-Medically Treatable Deafness

Authors: Niragira Donatien

Abstract:

The progress of technology creates new expectations for patients. The world of deafness is no exception. In recent years, there have been considerable advances in the field of technologies aimed at assisting failing hearing. According to the usual medical vocabulary, hearing aids are actually orthotics. They do not replace an organ but compensate for a functional impairment. The amplifier hearing amplification is useful for a large number of people with hearing loss. Hearing aids restore speech audibility. However, their benefits vary depending on the quality of residual hearing. The hearing aid is not a "cure" for deafness. It cannot correct all affected hearing abilities. It should be considered as an aid to communicate who the best candidates for hearing aids are. The urge to judge from the audiogram alone should be resisted here, as audiometry only indicates the ability to detect non-verbal sounds. To prevent hearing aids from ending up in the drawer, it is important to ensure that the patient's disability situations justify the use of this type of orthosis. If the problems of receptive pre-fitting counselling are crucial, the person with hearing loss must be informed of the advantages and disadvantages of amplification in his or her case. Their expectations must be realistic. They also need to be aware that the adaptation process requires a good deal of patience and perseverance. They should be informed about the various models and types of hearing aids, including all the aesthetic, functional, and financial considerations. If the person's motivation "survives" pre-fitting counselling, we are in the presence of a good candidate for amplification. In addition to its relevance, hearing aids raise other questions: Should one or both ears be fitted? In short, all these questions show that the results found in this study significantly improve the quality of audibility in the patient, from where this technology must be made accessible everywhere in the world. So we want to progress with the technology.

Keywords: audiology, influence, hearing, madicaly, treatable

Procedia PDF Downloads 58
8362 Typical Characteristics and Compositions of Solvent System in Application of Maceration Technology to Isolate Antioxidative Activated Extract of Natural Products

Authors: Yohanes Buang, Suwari

Abstract:

Increasing interest of society in use and creation of herbal medicines has encouraged scientists/researchers to establish an ideal method to produce the best quality and quantity of pharmaceutical extracts. To have highest the antioxidative extracts, the method used must be at optimum conditions. Hence, the best method is not only able to provide highest quantity and quality of the isolated pharmaceutical extracts but also it has to be easy to do, simple, fast, and cheap. The characterization of solvents in maceration technique, in present study, involved various variables influencing quantity and quality of the pharmaceutical extracts, such as solvent’s optimum acidity-alkalinity (pH), temperature, concentration, and contact time. The shifting polarity of the solvent by combinations of water with ethanol (70:30) and (50:50) were also performed to completely record the best solvent system in application of maceration technology. Among those three solvents threated within Myrmecodia pendens, as a model of natural product, the results showed that water solvent system with conditions of alkalinity pH, optimum temperature, concentration, and contact time, is the best system to perform the maceration in order to have the highest isolated antioxidative activated extracts. The optimum conditions of the water solvent are at the alkalinity pH 9 up, 30 mg/mL of concentration, 40 min of contact time, 100 °C of temperature, and no ethanol used to replace parts of the water solvent. The present study strongly recommended the best conditions of solvent system to isolate the pharmaceutical extracts of natural products in application of the maceration technology.

Keywords: extracts, herbal medicine, natural product, maceration technique

Procedia PDF Downloads 303
8361 Direct Electrical Communication of Redox Enzyme Based on 3-Dimensional Crosslinked Redox Enzyme/Carbon Nanotube on a Thiol-Modified Au Surface

Authors: A. K. M. Kafi, S. N. Nina, Mashitah M. Yusoff

Abstract:

In this work, we have described a new 3-dimensional (3D) network of crosslinked Horseradish Peroxidase/Carbon Nanotube (HRP/CNT) on a thiol-modified Au surface in order to build up the effective electrical wiring of the enzyme units with the electrode. This was achieved by the electropolymerization of aniline-functionalized carbon nanotubes (CNTs) and 4-aminothiophenol -modified-HRP on a 4-aminothiophenol monolayer-modified Au electrode. The synthesized 3D HRP/CNT networks were characterized with cyclic voltammetry and amperometry, resulting the establishment direct electron transfer between the redox active unit of HRP and the Au surface. Electrochemical measurements reveal that the immobilized HRP exhibits high biological activity and stability and a quasi-reversible redox peak of the redox center of HRP was observed at about −0.355 and −0.275 V vs. Ag/AgCl. The electron transfer rate constant, KS and electron transfer co-efficient were found to be 0.57 s-1 and 0.42, respectively. Based on the electrocatalytic process by direct electrochemistry of HRP, a biosensor for detecting H2O2 was developed. The developed biosensor exhibits excellent electrocatalytic activity for the reduction of H2O2. The proposed biosensor modified with HRP/CNT 3D network displays a broader linear range and a lower detection limit for H2O2 determination. The linear range is from 1.0×10−7 to 1.2×10−4M with a detection limit of 2.2.0×10−8M at 3σ. Moreover, this biosensor exhibits very high sensitivity, good reproducibility and long-time stability. In summary, ease of fabrication, a low cost, fast response and high sensitivity are the main advantages of the new biosensor proposed in this study. These obvious advantages would really help for the real analytical applicability of the proposed biosensor.

Keywords: biosensor, nanomaterials, redox enzyme, thiol-modified Au surface

Procedia PDF Downloads 333
8360 Internet Addiction among Students: An Empirical Study in Pondicherry University

Authors: Mashood C., Abdul Vahid K., Ashique C. K.

Abstract:

The technology is growing beyond human expectation. Internet is one of very sophisticated product of the information technology. It has various advantages like connecting the world, simplifying the difficult tasks done in past etc. Simultaneously it has demerits also; that is lack of authenticity and internet addiction. To find out the problems of internet addiction, a study conducted among the Postgraduate students of Pondicherry University and collected 454 samples. The study strictly focused to identify the internet addiction among students, influence and interdependence of personality on internet addiction among first years and second years. To evaluate this, we used two major analysis, these are Confirmatory Factor Analysis (CFA) to predict the internet addiction with the observed data and Logistic Regression to identify the difference between first years and second years in the case of internet addiction. Before applying to the core analysis, the data applied to some preliminary tests to check the model fit. The empirical findings shows that , the students of Pondicherry University are very much addicted to the internet, But there is no such huge difference between first years and second years in case of internet addiction.

Keywords: internet addiction, students, Pondicherry University, empirical study

Procedia PDF Downloads 462
8359 Neural Network Approach For Clustering Host Community: Based on Perceptions Toward Tourism, Their Satisfaction Level and Demographic Attributes in Iran (Lahijan)

Authors: Nasibeh Mohammadpour, Ali Rajabzadeh, Adel Azar, Hamid Zargham Borujeni,

Abstract:

Generally, various industries development depends on their stakeholders and beneficiaries supports. One of the most important stakeholders in tourism industry ( which has become one of the most important lucrative and employment-generating activities at the international level these days) are host communities in tourist destination which are affected and effect on this industry development. Recognizing host community and its segmentations can be important to get their support for future decisions and policy making. In order to identify these segments, in this study, clustering of the residents has been done by using some tools that are designed to encounter human complexities and have ability to model and generalize complex systems without any needs for the initial clusters’ seeds like classic methods. Neural networks can help to meet these expectations. The research have been planned to design neural networks-based mathematical model for clustering the host community effectively according to multi criteria, and identifies differences among segments. In order to achieve this goal, the residents’ segmentation has been done by demographic characteristics, their attitude towards the tourism development, the level of satisfaction and the type of their support in this field. The applied method is self-organized neural networks and the results have compared with K-means. As the results show, the use of Self- Organized Map (SOM) method provides much better results by considering the Cophenetic correlation and between clusters variance coefficients. Based on these criteria, the host community is divided into five sections with unique and distinctive features, which are in the best condition (in comparison other modes) according to Cophenetic correlation coefficient of 0.8769 and between clusters variance of 0.1412.

Keywords: Artificial Nural Network, Clustering , Resident, SOM, Tourism

Procedia PDF Downloads 189