Search results for: vascular cell adhesion molecule-1
881 Removal of Nickel and Vanadium from Crude Oil by Using Solvent Extraction and Electrochemical Process
Authors: Aliya Kurbanova, Nurlan Akhmetov, Abilmansur Yeshmuratov, Yerzhigit Sugurbekov, Ramiz Zulkharnay, Gulzat Demeuova, Murat Baisariyev, Gulnar Sugurbekova
Abstract:
Last decades crude oils have tended to become more challenge to process due to increasing amounts of sour and heavy crude oils. Some crude oils contain high vanadium and nickel content, for example Pavlodar LLP crude oil, which contains more than 23.09 g/t nickel and 58.59 g/t vanadium. In this study, we used two types of metal removing methods such as solvent extraction and electrochemical. The present research is conducted for comparative analysis of the deasphalting with organic solvents (cyclohexane, carbon tetrachloride, chloroform) and electrochemical method. Applying the cyclic voltametric analysis (CVA) and Inductively coupled plasma mass spectrometry (ICP MS), these mentioned types of metal extraction methods were compared in this paper. Maximum efficiency of deasphalting, with cyclohexane as the solvent, in Soxhlet extractor was 66.4% for nickel and 51.2% for vanadium content from crude oil. Percentage of Ni extraction reached maximum of approximately 55% by using the electrochemical method in electrolysis cell, which was developed for this research and consists of three sections: oil and protonating agent (EtOH) solution between two conducting membranes which divides it from two capsules of 10% sulfuric acid and two graphite electrodes which cover all three parts in electrical circuit. Ions of metals pass through membranes and remain in acid solutions. The best result was obtained in 60 minutes with ethanol to oil ratio 25% to 75% respectively, current fits into the range from 0.3A to 0.4A, voltage changed from 12.8V to 17.3V.Keywords: demetallization, deasphalting, electrochemical removal, heavy metals, petroleum engineering, solvent extraction
Procedia PDF Downloads 325880 Investigating the Effect of the Psychoactive Substances Act 2016 on the Incidence of Adverse Medical Events in Her Majesty’s Prison (HMP) Leeds
Authors: Hayley Boal, Chloe Bromley, John Fairfield
Abstract:
Novel Psychoactive Substances (NPS) are synthetic compounds designed to reproduce effects of illicit drugs. Cheap, potent, and readily available on UK highstreets from so-called ‘head shops’, in recent years their use has surged and with it have emerged side effects including seizures, aggression, palpitations, coma, and death. Rapid development of new substances has vastly outpaced pre-existing drug legislation but the Psychoactive Substances Act 2016 rendered all but tobacco, alcohol, and amyl nitrates, illegal. Drug use has long been rife within prisons, but the absence of a reliable screening tool alongside the availability of NPS makes them ideal for prison use. Here we examine the occurrence of NPS-related adverse side effects within HMP Leeds, comparing May-September of 2015 and 2017 using daily reports distributed amongst prison staff summarising medical and behavioural incidents of the previous day. There was a statistically-significant rise of over 200% in the use of NPS between 2015 and 2017: 0.562 and 1.149 incidents per day respectively. In 2017, 38.46% incidents required ambulances, fallen from 51.02% in 2015. Although the most common descriptions in both years were ‘seizure’ and ‘unresponsive’, by 2017 ‘inhalation by staff’ had emerged. Patterns of NPS consumption mirrored the prison regime, peaking when cell doors opened, and prisoners could socialise. Despite limited data, the Psychoactive Substances Act has clearly been an insufficient deterrent to the prison population; more must be done to understand and address substance misuse in prison. NPS remains a significant risk to prisoners’ health and wellbeing.Keywords: legislation, novel psychoactive substances, prison, spice
Procedia PDF Downloads 189879 Evaluation of the Diagnostic Potential of IL-2 after Specific Antigen Stimulation with PE35 (Rv3872) and PPE68 (Rv3873) for the Discrimination of Active and Latent Tuberculosis
Authors: Shima Mahmoudi, Babak Pourakbari, Setareh Mamishi, Mostafa Teymuri, Majid Marjani
Abstract:
Although cytokine analysis has greatly contributed to the understanding of tuberculosis (TB) pathogenesis, data on cytokine profiles that might distinguish progression from latency of TB infection are scarce. Since PE/PPE proteins are known to induce strong humoral and cellular immune responses, the aim of this study was to evaluate the diagnostic potential of interleukin-2 (IL-2) as biomarker after specific antigen stimulation with PE35 and PPE68 for the discrimination of active and latent tuberculosis infection (LTBI). The production of IL-2 was measured in the antigen-stimulated whole-blood supernatants following stimulation with recombinant PE35 and PPE68. All the patients with active TB and LTBI had positive QuantiFERON-TB Gold in Tube test. The level of IL-2 following stimulation with recombinant PE35 and PPE68 were significantly higher in LTBI group than in patients with active TB infection or control group. The discrimination performance (assessed by the area under ROC curve) for IL-2 following stimulation with recombinant PE35 and PPE68 between LTBI and patients with active TB were 0.837 (95%CI: 0.72-0.97) and 0.75 (95%CI: 0.63-0.89), respectively. Applying the 12.4 pg/mL cut-off for IL-2 induced by PE35 in the present study population resulted in sensitivity of 78%, specificity of 78%, PPV of 78% and NPV of 100%. In addition, a sensitivity of 81%, specificity of 70%, PPV of 67% and 87% of NPV was reported based on the 4.4 pg/mL cut-off for IL-2 induced by PPE68. In conclusion, peptides of the antigen PE35 and PPE68, absent from commonly used BCG strains, stimulated strong IL-2- positive T cell responses in patients with LTBI. This study confirms IL-2 induced by PE35 and PPE68 as a sensitive and specific biomarker and highlights IL-2 as new promising adjunct markers for discriminating of LTBI and Active TB infection.Keywords: IL-2, PE35, PPE68, tuberculosis
Procedia PDF Downloads 409878 Conjugated Linoleic Acid (CLA) Health Benefits and Sources
Authors: Hilal Ahmad Punoo
Abstract:
Conjugated linoleic acid (CLA) is a mixture of positional and geometric isomers of octadecadienoic acid with two conjugated double bonds. Of more than a dozen isomers of CLA found naturally in dairy and meat products from ruminants, c-9, t-11 and t-10, c-12 are the two isomers with known physiological importance, including anticarcinogenic, antidiabetic, antilipogenic, and antiatherosclerotic effects. Conjugated linoleic acids (CLA) may influence the onset and severity of several chronic diseases, including various cancers, atherosclerosis, obesity, bone density loss, and diabetes. These findings are of special interest to the agriculture community, because dietary sources of CLA are almost exclusively beef and dairy products. Thus, a better understanding of the specific isomers and mechanisms responsible for these positive effects of CLA on human health would be both prudent and economically beneficial. To date, research related to the advantages of CLA consumption on human health has been conducted using experimental laboratory animals and cell culture systems. These data consistently show that relatively low levels of CLA can influence risk of cancer. Further, very recent investigations suggest that the predominate CLA isoform (cis-9, trans-11 CLA or rumenic acid) found in beef and milk fat possesses anticarcinogenic effects but does not alter body composition; the trans-10, cis-12 CLA has been shown to inhibit lipogenesis. Clearly, further work, especially using human subjects, will be required to characterize the potential benefits of CLA consumption on human health. Moreover, we suggest that foods naturally containing high amounts of CLA (e.g., beef and dairy products) be considered as meeting the definition of functional foods.Keywords: conjugated linoleic acid, potential health benefits, fats, animals, humans
Procedia PDF Downloads 308877 Eco-Friendly Control of Bacterial Speck on Solanum lycopersicum by Azadirachta indica Extract
Authors: Navodit Goel, Prabir K. Paul
Abstract:
Tomato (Solanum lycopersicum) is attacked by Pseudomonas syringae pv. tomato causing speck lesions on the leaves leading to severe economic casualty. In the present study, aqueous fruit extracts of Azadirachta indica (neem) were sprayed on a single node of tomato plants grown under controlled contamination-free conditions. The treatment of plants was performed with neem fruit extract either alone or along with the pathogen. The parameters of observation were activities of polyphenol oxidase (PPO) and lysozyme, and isoform analysis of PPO; both at the treated leaves as well as untreated leaves away from the site of extract application. Polyphenol oxidase initiates phenylpropanoid pathway resulting in the synthesis of quinines from cytoplasmic phenols and production of reactive oxygen species toxic to broad spectrum microbes. Lysozyme is responsible for the breakdown of bacterial cell wall. The results indicate the upregulation of PPO and lysozyme activities in both the treated and untreated leaves along with de novo expression of newer PPO isoenzymes (which were absent in control samples). The appearance of additional PPO isoenzymes in bioelicitor-treated plants indicates that either the isoenzymes were expressed after bioelicitor application or the already expressed but inactive isoenzymes were activated by it. Lysozyme activity was significantly increased in the plants when treated with the bioelicitor or the pathogen alone. However, no new isoenzymes of lysozyme were expressed upon application of the extract. Induction of resistance by neem fruit extract could be a potent weapon in eco-friendly plant protection strategies.Keywords: Azadirachta indica, lysozyme, polyphenol oxidase, Solanum lycopersicum
Procedia PDF Downloads 288876 Antihyperglycemic Potential of Chrysin and Diosmin alone or in Combination against Streptozotocin-Induced Hyperglycemia in Rats: Anti-Inflammatory and Antioxidant Mechanisms
Authors: Sally A. El Awdan, Gehad A. Abdel Jaleel, Dalia O Saleh, Manal Badawi
Abstract:
Background: Diabetes is a metabolic disease that affects a wide range of people worldwide and results in serious complications. Streptozotocin (STZ) causes selective cytotoxicity in the pancreatic β-cell, and it has been extensively used to induce diabetes mellitus in rats. The present study investigated the effects of diosmin and chrysin alone or in combination with each other on glucose level and on liver in STZ diabetic rats. Methods: In this study, rats were divided into six experimental groups (normal, untreated STZ-diabetic (60 mg/kg B.W., IP), treated STZ-diabetic with glycazide (10 mg/kg B.W, oral), treated STZ-diabetic with diosmin (100 mg/kg B. W., oral), treated STZ-diabetic with chrysin (80 mg/kg B.W., oral), treated STZ-diabetic with diosmin (50 mg/kg B.W, oral) + chrysin (40 mg/kg B.W., oral). After 2 weeks blood samples were withdrawn and glucose was measured. Animals were anaesthetized with an intraperitoneal injection of sodium pentobarbital (60 mg/kg), and sacrificed for dissecting liver. Results: Throughout the experimental period, all treatments significantly (P<0.05) lowered serum glucose, AST, ALT, triglyceride, cholesterol, IL-6, TNF-α and IL-1β. Moreover, the treated diabetic rats showed higher levels of reduced glutathione (P<0.05) in the liver compared to the diabetic control rats and inhibited diabetes-induced elevation in the levels of malondialdehyde in liver. The results of this study clearly demonstrated that diosmin and chrysin possess several treatment-oriented properties, including the control of hyperglycemia, antioxidant effects and anti-inflammatory effects. Conclusion: Considering these observations, it appears that diosmin and chrysin may be a useful supplement to delay the developmentof diabetes and its complications.Keywords: diabetes, streptozocin, chrysin, rat, diosmin, cytokines
Procedia PDF Downloads 265875 Encapsulation of Probiotic Bacteria in Complex Coacervates
Authors: L. A. Bosnea, T. Moschakis, C. Biliaderis
Abstract:
Two probiotic strains of Lactobacillus paracasei subsp. paracasei (E6) and Lactobacillus paraplantarum (B1), isolated from traditional Greek dairy products, were microencapsulated by complex coacervation using whey protein isolate (WPI, 3% w/v) and gum arabic (GA, 3% w/v) solutions mixed at different polymer ratio (1:1, 2:1 and 4:1). The effect of total biopolymer concentration on cell viability was assessed using WPI and GA solutions of 1, 3 and 6% w/v at a constant ratio of 2:1. Also, several parameters were examined for optimization of the microcapsule formation, such as inoculum concentration and the effect of ionic strength. The viability of the bacterial cells during heat treatment and under simulated gut conditions was also evaluated. Among the different WPI/GA weight ratios tested (1:1, 2:1, and 4:1), the highest survival rate was observed for the coacervate structures made with the ratio of 2:1. The protection efficiency at low pH values is influenced by both concentration and the ratio of the added biopolymers. Moreover, the inoculum concentration seems to affect the efficiency of microcapsules to entrap the bacterial cells since an optimum level was noted at less than 8 log cfu/ml. Generally, entrapment of lactobacilli in the complex coacervate structure enhanced the viability of the microorganisms when exposed to a low pH environment (pH 2.0). Both encapsulated strains retained high viability in simulated gastric juice (>73%), especially in comparison with non-encapsulated (free) cells (<19%). The encapsulated lactobacilli also exhibited enhanced viability after 10–30 min of heat treatment (65oC) as well as at different NaCl concentrations (pH 4.0). Overall, the results of this study suggest that complex coacervation with WPI/GA has a potential to deliver live probiotics in low pH food systems and fermented dairy products; the complexes can dissolve at pH 7.0 (gut environment), releasing the microbial cells.Keywords: probiotic, complex coacervation, whey, encapsulation
Procedia PDF Downloads 297874 The Role of Micro-Ribonucleic Acid-182 and Micro-Ribonucleic Acid-214 in Cisplatin Resistance of Triple-Negative Breast Cancer Cells
Authors: Bahadir Batar, Elif Serdal, Berna Erdal, Hasan Ogul
Abstract:
Micro-ribonucleic acids (miRNAs) are small short non-coding ribonucleic acid molecules about 22 nucleotides long. miRNAs play a key role in response to chemotherapeutic agents. WW domain-containing oxidoreductase (WWOX) gene encodes a tumor suppressor protein. Loss or reduction of Wwox protein is observed in many breast cancer cases. WWOX protein deficiency is increased in triple-negative breast cancer (TNBC). TNBC is a heterogeneous, highly aggressive, and difficult to treat tumor type. WWOX loss contributes to resistance to cisplatin therapy in patients with TNBC. Here, the aim of the study was to investigate the potential role of miRNAs in cisplatin therapy resistance of WWOX-deficient TNBC cells. This was a cell culture study. miRNA expression profiling was analyzed by LightCycler 480 system. miRNA Set Enrichment Analysis tool was used to integrate experimental data with literature-based biological knowledge to infer a new hypothesis. Increased miR-182 and decreased miR-214 were significantly correlated with cisplatin resistance in WWOX-deficient TNBC cells. miR-182 and miR-214 may involve in cisplatin resistance of WWOX-deficient TNBC cells by deregulating the DNA repair, apoptosis, or protein kinase B signaling pathways. These data highlight the mechanism by which WWOX regulates cisplatin resistance of TNBC and the potential use of WWOX as a predictor biomarker for cisplatin resistance.Keywords: cisplatin, microRNA, triple-negative breast cancer, WWOX
Procedia PDF Downloads 131873 Anticancer Activity of Calyx of Diospyros kaki Thunb. through Downregulation of Cyclin D1 Protein Level in Human Colorectal Cancer Cells
Authors: Jin Boo Jeong
Abstract:
In this study, we elucidated anti-cancer activity and potential molecular mechanism of DKC against human colorectal cancer cells. DKC-E70 suppressed the proliferation of human colorectal cancer cell lines such as HCT116, SW480, LoVo and HT-29. Although DKC-E70 decreased cyclin D1 expression in protein and mRNA level, decreased level of cyclin D1 protein by DKC-E70 occurred at the earlier time than that of cyclin D1 mRNA, which indicates that DKC-E70-mediated downregulation of cyclin D1 protein may be a consequence of the induction of degradation and transcriptional inhibition of cyclin D1. In cyclin D1 degradation, we found that cyclin D1 downregulation by DKC-E70 was attenuated in presence of MG132. In addition, DKC-E70 phosphorylated threonine-286 (T286) of cyclin D1 and T286A abolished cyclin D1 downregulation by DKC-E70. We also observed that DKC-E70-mediated T286 phosphorylation and subsequent cyclin D1 degradation was blocked in presence of the inhibitors of ERK1/2, p38 or GSK3β. In cyclin D1 transcriptional inhibition, DKC-E70 inhibited the expression of β-catenin and TCF4, and β–catenin/TCF-dependent luciferase activity. Our results suggest that DKC-E70 may downregulate cyclin D1 as one of the potential anti-cancer targets through cyclin D1 degradation by T286 phosphorylation dependent on ERK1/2, p38 or GSK3β, and cyclin D1 transcriptional inhibition through Wnt signaling. From these findings, DKC-E70 has potential to be a candidate for the development of chemoprevention or therapeutic agents for human colorectal cancer. This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2016R1D1A3B03931713).Keywords: anticancer, calyx of persimmon, cyclin D1, Diospyros kaki Thunb., human colorectal cancer
Procedia PDF Downloads 312872 Experimental Correlation for Erythrocyte Aggregation Rate in Population Balance Modeling
Authors: Erfan Niazi, Marianne Fenech
Abstract:
Red Blood Cells (RBCs) or erythrocytes tend to form chain-like aggregates under low shear rate called rouleaux. This is a reversible process and rouleaux disaggregate in high shear rates. Therefore, RBCs aggregation occurs in the microcirculation where low shear rates are present but does not occur under normal physiological conditions in large arteries. Numerical modeling of RBCs interactions is fundamental in analytical models of a blood flow in microcirculation. Population Balance Modeling (PBM) is particularly useful for studying problems where particles agglomerate and break in a two phase flow systems to find flow characteristics. In this method, the elementary particles lose their individual identity due to continuous destructions and recreations by break-up and agglomeration. The aim of this study is to find RBCs aggregation in a dynamic situation. Simplified PBM was used previously to find the aggregation rate on a static observation of the RBCs aggregation in a drop of blood under the microscope. To find aggregation rate in a dynamic situation we propose an experimental set up testing RBCs sedimentation. In this test, RBCs interact and aggregate to form rouleaux. In this configuration, disaggregation can be neglected due to low shear stress. A high-speed camera is used to acquire video-microscopic pictures of the process. The sizes of the aggregates and velocity of sedimentation are extracted using an image processing techniques. Based on the data collection from 5 healthy human blood samples, the aggregation rate was estimated as 2.7x103(±0.3 x103) 1/s.Keywords: red blood cell, rouleaux, microfluidics, image processing, population balance modeling
Procedia PDF Downloads 355871 Avoiding Gas Hydrate Problems in Qatar Oil and Gas Industry: Environmentally Friendly Solvents for Gas Hydrate Inhibition
Authors: Nabila Mohamed, Santiago Aparicio, Bahman Tohidi, Mert Atilhan
Abstract:
Qatar's one of the biggest problem in processing its natural resource, which is natural gas, is the often occurring blockage in the pipelines caused due to uncontrolled gas hydrate formation in the pipelines. Several millions of dollars are being spent at the process site to dehydrate the blockage safely by using chemical inhibitors. We aim to establish national database, which addresses the physical conditions that promotes Qatari natural gas to form gas hydrates in the pipelines. Moreover, we aim to design and test novel hydrate inhibitors that are suitable for Qatari natural gas and its processing facilities. From these perspectives we are aiming to provide more effective and sustainable reservoir utilization and processing of Qatari natural gas. In this work, we present the initial findings of a QNRF funded project, which deals with the natural gas hydrate formation characteristics of Qatari type gas in both experimental (PVTx) and computational (molecular simulations) methods. We present the data from the two fully automated apparatus: a gas hydrate autoclave and a rocking cell. Hydrate equilibrium curves including growth/dissociation conditions for multi-component systems for several gas mixtures that represent Qatari type natural gas with and without the presence of well known kinetic and thermodynamic hydrate inhibitors. Ionic liquids were designed and used for testing their inhibition performance and their DFT and molecular modeling simulation results were also obtained and compared with the experimental results. Results showed significant performance of ionic liquids with up to 0.5 % in volume with up to 2 to 4 0C inhibition at high pressures.Keywords: gas hydrates, natural gas, ionic liquids, inhibition, thermodynamic inhibitors, kinetic inhibitors
Procedia PDF Downloads 1320870 Level of IGF-I and IGFBP-3 in Gingival Crevicular Fluid and Plasma in Patients with Aggressive Periodontitis
Authors: Youjeong Hwang
Abstract:
Purpose: Insulin-like growth factor-I (IGF-I) promotes B-cell development, immunoglobulin formation, and interleukin-6 (IL-6) production, then regulate the immune response and inflammation. As IGF-I and their receptor also exist in the periodontal tissue, they may affect the immune response caused by periodontal pathogens in aggressive periodontitis (AgP) patients. The function of IGF is regulated by IGF binding proteins (IGFBPs), and IGFBP-3 is known to most abundant in plasma. The aim of the present study was to assess the concentration of IGF-I and IGFBP-3 in plasma and gingival crevicular fluid (GCF) in AgP patients and to find out their association. Methods: Nine patients with AgP (test group) and nine healthy subjects (control group) were included in this study. None of the subjects had a history of systemic disease, smoking or steroids medication. GCF samples were collected by microcapillary pipettes and plasma samples were obtained by venipuncture. Probing pocket depth (PD), clinical attachment level (CAL) and bleeding on probing (BOP) were recorded. Samples were assayed for IGF-I and IGFBP-3 levels using ELISA. Results: Mean IGF-I level in GCF was higher in the test group than control. Mean IGF-I level in plasma and IGFBP-3 level in GCF and plasma in control group were higher than that of the test group. However, there was no statistical significance (p > 0.05). The mean level of IGF-I and IGFBP-3 in GCF was lower than those in plasma. Mean IGF-I level in plasma showed a negative correlation with PD and CAL (p < 0.05) in both groups. The levels of IGF-I and IGFBP-3 in GCF seemed to be negatively correlated with BOP in the test group (p < 0.05). Conclusions: The difference in the level of IGF-I and IGFBP-3 between AgP and healthy subjects was not significant. Further studies that explain the mechanism of the protective role of IGF-I with more samples are needed.Keywords: aggressive periodontitis, pathogenesis, insulin-like growth factor, insulin-like growth factor binding protein
Procedia PDF Downloads 210869 Chitosan Coated Liposome Incorporated Cyanobacterial Pigment for Nasal Administration in the Brain Stroke
Authors: Kyou Hee Shim, Hwa Sung Shin
Abstract:
When a thrombolysis agent is administered to treat ischemic stroke, excessive reactive oxygen species are generated due to a sudden provision of oxygen and occurs secondary damage cell necrosis. Thus, it is necessary to administrate adjuvant as well as thrombolysis agent to protect and reduce damaged tissue. As cerebral blood vessels have specific structure called blood-brain barrier (BBB), it is not easy to transfer substances from blood to tissue. Therefore, development of a drug carrier is required to increase drug delivery efficiency to brain tissue. In this study, cyanobacterial pigment from the blue-green algae known for having neuroprotective effect as well as antioxidant effect was nasally administrated for bypassing BBB. In order to deliver cyanobacterial pigment efficiently, the nano-sized liposome was used as a carrier. Liposomes were coated with a positive charge of chitosan since negative residues are present at the nasal mucosa the first gateway of nasal administration. Characteristics of liposome including morphology, size and zeta potential were analyzed by transmission electron microscope (TEM) and zeta analyzer. As a result of cytotoxic test, the liposomes were not harmful. Also, being administered a drug to the ischemic stroke animal model, we could confirm that the pharmacological effect of the pigment delivered by chitosan coated liposome was enhanced compared to that of non-coated liposome. Consequently, chitosan coated liposome could be considered as an optimized drug delivery system for the treatment of acute ischemic stroke.Keywords: ischemic stroke, cyanobacterial pigment, liposome, chitosan, nasal administration
Procedia PDF Downloads 227868 The Effect of Potassium Hydroxide on Fine Soil Treated with Olivine
Authors: Abdelmaoula Mahamoud Tahir, Sedat Sert
Abstract:
The possibility of improving the shear strength of unsaturated clayey soil with the addition of olivine was investigated in this paper. Unconsolidated undrained triaxial tests (UU), under different cell pressures (namely: 100 kPa and 200 kPa), with varying percentages of olivine (10% and 20% by weight) and with one day, 28 days, and 56 days curing times, were performed to determine the shear strength of the soil. The increase in strength was observed as a function of the increase in olivine content. An olivine content of 25% was determined as the optimum value to achieve the targeted improvement for both cure times. A comparative study was also conducted between clay samples treated with only olivine and others in the presence of potassium hydroxide (KOH). Clay samples treated with olivine and activated with potassium hydroxide (KOH) had higher shear strength than non-activated olivine-treated samples. It was determined that the strength of the clay samples treated with only olivine did not increase over time and added resistance only with the high specific gravity of olivine. On the other hand, the samples activated with potassium hydroxide (KOH) added to the resistance with high specific gravity and the chemical bonds of olivine. Morphological and mineralogical analyzes were carried out in this study to see and analyze the chemical bonds formed after the reaction. The main components of this improvement were the formation of magnesium-aluminate-hydrate and magnesium-silicate-hydrate. Compared to older methods such as cement addition, these results show that in stabilizing clayey soils, olivine additive offers an energy-efficient alternative for reducing carbon dioxide emissions.Keywords: ground stabilization, clay, olivine additive, KOH, microstructure
Procedia PDF Downloads 117867 Surface Modified Quantum Dots for Nanophotonics, Stereolithography and Hybrid Systems for Biomedical Studies
Authors: Redouane Krini, Lutz Nuhn, Hicham El Mard Cheol Woo Ha, Yoondeok Han, Kwang-Sup Lee, Dong-Yol Yang, Jinsoo Joo, Rudolf Zentel
Abstract:
To use Quantum Dots (QDs) in the two photon initiated polymerization technique (TPIP) for 3D patternings, QDs were modified on the surface with photosensitive end groups which are able to undergo a photopolymerization. We were able to fabricate fluorescent 3D lattice structures using photopatternable QDs by TPIP for photonic devices such as photonic crystals and metamaterials. The QDs in different diameter have different emission colors and through mixing of RGB QDs white light fluorescent from the polymeric structures has been created. Metamaterials are capable for unique interaction with the electrical and magnetic components of the electromagnetic radiation and for manipulating light it is crucial to have a negative refractive index. In combination with QDs via TPIP technique polymeric structures can be designed with properties which cannot be found in nature. This makes these artificial materials gaining a huge importance for real-life applications in photonic and optoelectronic. Understanding of interactions between nanoparticles and biological systems is of a huge interest in the biomedical research field. We developed a synthetic strategy of polymer functionalized nanoparticles for biomedical studies to obtain hybrid systems of QDs and copolymers with a strong binding network in an inner shell and which can be modified in the end through their poly(ethylene glycol) functionalized outer shell. These hybrid systems can be used as models for investigation of cell penetration and drug delivery by using measurements combination between CryoTEM and fluorescence studies.Keywords: biomedical study models, lithography, photo induced polymerization, quantum dots
Procedia PDF Downloads 526866 Luminescent and Conductive Cathode Buffer Layer for Enhanced Power Conversion Efficiency of Bulk-Heterojunction Solar Cells
Authors: Swati Bishnoi, D. Haranath, Vinay Gupta
Abstract:
In this work, we demonstrate that the power conversion efficiency (PCE) of organic solar cells (OSCs) could be improved significantly by using ZnO doped with Aluminum (Al) and Europium (Eu) as cathode buffer layer (CBL). The ZnO:Al,Eu nanoparticle layer has broadband absorption in the ultraviolet (300-400 nm) region. The Al doping contributes to the enhancement in the conductivity whereas Eu doping significantly improves emission in the visible region. Moreover, this emission overlaps with the absorption range of polymer poly [N -9′-heptadecanyl-2,7-carbazole-alt-5,5-(4′,7′-di-2-thienyl-2′,1′,3′- benzothiadiazole)] (PCDTBT) significantly and results in an enhanced absorption by the active layer and hence high photocurrent. An increase in the power conversion efficiency (PCE) of 6.8% has been obtained for ZnO: Al,Eu CBL as compared to 5.9% for pristine ZnO, in the inverted device configuration ITO/CBL/active layer/MoOx/Al. The active layer comprises of a blend of PCDTBT donor and [6-6]-phenyl C71 butyric acid methyl ester (PC71BM) acceptor. In the reference device pristine ZnO has been used as CBL, whereas in the other one ZnO:Al,Eu has been used as CBL. The role of the luminescent CBL layer is to down-shift the UV light into visible range which overlaps with the absorption of PCDTBT polymer, resulting in an energy transfer from ZnO:Al,Eu to PCDTBT polymer and the absorption by active layer is enhanced as revealed by transient spectroscopy. This enhancement resulted in an increase in the short circuit current which contributes in an increased PCE in the device employing ZnO: Al,Eu CBL. Thus, the luminescent ZnO: Al, Eu nanoparticle CBL has great potential in organic solar cells.Keywords: cathode buffer layer, energy transfer, organic solar cell, power conversion efficiency
Procedia PDF Downloads 256865 Electrochemical Synthesis of Copper Nanoparticles
Authors: Juan Patricio Ibáñez, Exequiel López
Abstract:
A method for synthesizing copper nanoparticles through an electrochemical approach is proposed, employing surfactants to stabilize the size of the newly formed nanoparticles. The electrolyte was made up of a matrix of H₂SO₄ (190 g/L) having Cu²⁺ (from 3.2 to 9.5 g/L), sodium dodecyl sulfate -SDS- (from 0.5 to 1.0 g/L) and Tween 80 (from 0 to 7.5 mL/L). Tween 80 was used in a molar relation of 1 to 1 with SDS. A glass cell was used, which was in a thermostatic water bath to keep the system temperature, and the electrodes were cathodic copper as an anode and stainless steel 316-L as a cathode. This process was influenced by the control exerted through the initial copper concentration in the electrolyte and the applied current density. Copper nanoparticles of electrolytic purity, exhibiting a spherical morphology of varying sizes with low dispersion, were successfully produced, contingent upon the chemical composition of the electrolyte and current density. The minimum size achieved was 3.0 nm ± 0.9 nm, with an average standard deviation of 2.2 nm throughout the entire process. The deposited copper mass ranged from 0.394 g to 1.848 g per hour (over an area of 25 cm²), accompanied by an average Faradaic efficiency of 30.8% and an average specific energy consumption of 4.4 kWh/kg. The chemical analysis of the product employed X-ray powder diffraction (XRD), while physical characteristics such as size and morphology were assessed using atomic force microscopy (AFM). It was identified that the initial concentration of copper and the current density are the variables defining the size and dispersion of the nanoparticles, as they serve as reactants in the cathodic half-reaction. The presence of surfactants stabilizes the nanoparticle size as their molecules adsorb onto the nanoparticle surface, forming a thick barrier that prevents mass transfer with the exterior and halts further growth.Keywords: copper nanopowder, electrochemical synthesis, current density, surfactant stabilizer
Procedia PDF Downloads 63864 Hybrid-Nanoengineering™: A New Platform for Nanomedicine
Authors: Mewa Singh
Abstract:
Nanomedicine, a fusion of nanotechnology and medicine, is an emerging technology ideally suited to the targeted therapies. Nanoparticles overcome the low selectivity of anti-cancer drugs toward the tumor as compared to normal tissue and hence result-in less severe side-effects. Our new technology, HYBRID-NANOENGINEERING™, uses a new molecule (MR007) in the creation of nanoparticles that not only helps in nanonizing the medicine but also provides synergy to the medicine. The simplified manufacturing process will result in reduced manufacturing costs. Treatment is made more convenient because hybrid nanomedicines can be produced in oral, injectable or transdermal formulations. The manufacturing process uses no protein, oil or detergents. The particle size is below 180 nm with a narrow distribution of size. Importantly, these properties confer great stability of the structure. The formulation does not aggregate in plasma and is stable over a wide range of pH. The final hybrid formulation is stable for at least 18 months as a powder. More than 97 drugs, including paclitaxel, docetaxel, tamoxifen, doxorubicinm prednisone, and artemisinin have been nanonized in water soluble formulations. Preclinical studies on cell cultures of tumors show promising results. Our HYBRID-NANOENGINEERING™ platform enables the design and development of hybrid nano-pharmaceuticals that combine efficacy with tolerability, giving patients hope for both extended overall survival and improved quality of life. This study would discuss or present this new discovery of HYBRID-NANOENGINEERING™ which targets drug delivery, synergistic, and potentiating effects, and barriers of drug delivery and advanced drug delivery systems.Keywords: nano-medicine, nano-particles, drug delivery system, pharmaceuticals
Procedia PDF Downloads 486863 Multiscale Cohesive Zone Modeling of Composite Microstructure
Authors: Vincent Iacobellis, Kamran Behdinan
Abstract:
A finite element cohesive zone model is used to predict the temperature dependent material properties of a polyimide matrix composite with unidirectional carbon fiber arrangement. The cohesive zone parameters have been obtained from previous research involving an atomistic-to-continuum multiscale simulation of the fiber-matrix interface using the bridging cell multiscale method. The goal of the research was to both investigate the effect of temperature change on the composite behavior with respect to transverse loading as well as the validate the use of cohesive parameters obtained from atomistic-to-continuum multiscale modeling to predict fiber-matrix interfacial cracking. From the multiscale model cohesive zone parameters (i.e. maximum traction and energy of separation) were obtained by modeling the interface between the coarse-grained polyimide matrix and graphite based carbon fiber. The cohesive parameters from this simulation were used in a cohesive zone model of the composite microstructure in order to predict the properties of the macroscale composite with respect to changes in temperature ranging from 21 ˚C to 316 ˚C. Good agreement was found between the microscale RUC model and experimental results for stress-strain response, stiffness, and material strength at low and high temperatures. Examination of the deformation of the composite through localized crack initiation at the fiber-matrix interface also agreed with experimental observations of similar phenomena. Overall, the cohesive zone model was shown to be both effective at modeling the composite properties with respect to transverse loading as well as validated the use of cohesive zone parameters obtained from the multiscale simulation.Keywords: cohesive zone model, fiber-matrix interface, microscale damage, multiscale modeling
Procedia PDF Downloads 487862 PRENACEL: Development and Evaluation of an M-Health Strategy to Improve Prenatal Care in Brazil
Authors: E. M. Vieira, C. S. Vieira, L. P. Bonifácio, L. M. de Oliveira Ciabati, A. C. A. Franzon, F. S. Zaratini, J. A. C. Sanchez, M. S. Andrade, J. P. Dias de Souza
Abstract:
The quality of prenatal care is key to reduce maternal morbidity and mortality. Communication between the health service and users can stimulate prevention and care. M-health has been an important and low cost strategy to health education. The PRENACEL programme (prenatal in the cell phone) was developed. It consists of a programme of information via SMS from the 20th week of pregnancy up to 12th week after delivery. Messages were about prenatal care, birth, contraception and breastfeeding. Communication of the pregnant woman asking questions about their health was possible. The objective of this study was to evaluate the implementation of PRENACEL as a useful complement to the standard prenatal care. Twenty health clinics were selected and randomized by cluster, 10 as the intervention group and 10 as the control group. In the intervention group, women and their partner were invited to participate. The control group received the standard prenatal care. All women were interviewed in the immediate post-partum and in the 12th and 24th week post-partum. Most women were married, had more than 8 years of schooling and visit the clinic more than 6 times during prenatal care. The intervention group presented lowest percentage of higher economic participants (5.6%), less single mothers and no drug user. It also presented more prenatal care visits than the control group and it was less likely to present Severe Acute Maternal Mortality when compared to control group as well as higher percentage of partners (75.4%) was present at the birth compared to control group. Although the study is still being carried out, preliminary data are showing positive results of the compliance of women to prenatal care.Keywords: cellphone, health technology, prenatal care, prevention
Procedia PDF Downloads 389861 The Generation of Insulin Producing Cells from Human Mesenchymal Stem Cells by miR-375 and Anti-miR-9
Authors: Arefeh Jafarian, Mohammad Taghikani, Saied Abroun, Amir Allahverdi, Masoud Soleimani
Abstract:
Introduction: The miRNAs have key roles in control of pancreatic islet development and insulin secretion. In this regards, current study investigated the pancreatic differentiation of human bone marrow mesenchymal stem cells (hBM-MSCs) by up-regulation of miR-375 and down-regulation of miR-9 by lentiviruses containing miR-375 and anti-miR-9. Findings: After 21 days of induction, islet-like clusters containing insulin producing cells (IPCs) were confirmed by dithizone (DTZ) staining. The IPCs and β cell specific related genes and proteins were detected using qRT-PCR and immunofluorescence on days 7, 14 and 21 of differentiation. Glucose challenge test was performed at different concentrations of glucose as well as extracellular and intracellular insulin and C-peptide were assayed using ELISA kit. In derived IPCs by miR-375 alone are capable to express insulin and other endocrine specific transcription factors, the cells lack the machinery to respond to glucose. The differentiated hMSCs by miR-375 and anti-miR-9 lentiviruses could secrete insulin and c-peptide in a glucose-regulated manner. Conclusion: It was found that over-expression of miR-375 led to a reduction in levels of Mtpn protein in derived IPCs, while treatment with anti-miR-9 following miR-375 over-expression had synergistic effects on MSCs differentiation and insulin secretion in a glucose-regulated manner. The researchers reported that silencing of miR-9 increased OC-2 protein in IPCs that may contribute to the observed glucose-regulated insulin secretion. These findings highlight miRNAs functions in stem cells differentiation and suggest that they could be used as therapeutic tools for gene-based therapy in diabetes mellitus.Keywords: diabetes, differentiation, MSCs, insulin producing cells, miR-375, miR-9
Procedia PDF Downloads 317860 Single Protoplast of Murraya paniculata L. Jack Regenerated Into Plantlets
Authors: Hasan Basri Jumin, Danil Endriand Basri
Abstract:
Isolated protoplast from embryogenic callus of orange Jessamine (Murraya paniculata L. (Jack) cultured and maintained under growth chamber at the temperature +25oC. The parameter observed are the plating efficiency, the number of spherical embryos, heard-shaped embryos-like structure, shoot formation, and plantlets obtained. Treatment was arranged with 0.0, 0.001, 0.01, 0.1 or 1.0 mg 1-1 Naphthalene acetic acid (NAA), and 0, 300, 500 mg 1/l malt extract (ME) and 0.M sorbitol in the medium with 2.5 % sucrose. Interaction between 0.001 mg/l NAA and 500 mg/l was observed the higher percentage of planting efficiency. For embryo development from callus, the media was added to 0.0 mg/l, 0.001 mg/l, 0.01 ,mg/l, 0.1 mg/l, 1.0 mg/l NAA, and 1.0 %, 2.0 %, 3.0 %, 4.0 % sucrose. Media supplemented with 0.01mg/l NAA, and 1.0% sucrose was found to be a suitable medium for the development of spherical somatic embryos. A combination of 0.1 mg/ indole acetic acid (IAA) and 0.1 mg/l zeatin constituted the spherical somatic embryo became heart-shaped embryos-like structure. A combination between GA3 0.1 mg 1/l GA3 and 0.1 mg 1-1 zeatin is looking high, growing the heart-shaped embryos-like structure to form a shoot. Cells were developed into spherical embryos and grew into heart-shaped embryos, and then spherical somatic embryos developed into shoot formation. Sequence from single protoplast to plantlets was obtained by using a low concentration of plant growth regulator and sucrose; This recovery of single protoplast to be completed plantlets is a new technology in plant cell culture, and this could be used in genetic engineering in citrus.Keywords: heart-shaped-embryos-like-structure, Muraya-paniculata, plant-growth-regulator, spherical- somatic-embryo, single protoplast, glucose
Procedia PDF Downloads 110859 Nagami Kumkuat: A Source of Antiviral and Antimicrobial Bioactive Compounds
Authors: Howaida I. Abd-Alla, Nagwa M. M. Shalaby
Abstract:
The fruit rind of Fortunella margarita (Nagami Kumkuat) was investigated for its chemical constituents. Thirteen metabolites were obtained and classified into, a sterol; β-sitosterol (1) and twelve phenolic compounds, three coumarins; xanthotoxin (2), isopimpinellin (3), umbelliferone (4), nine flavonoids of O-glycosides of flavone; apigenin-7-O-β-D-glucopyranoside (5), apigenin-7-O-rhamnoglucoside (rhoifolin) (6), C-glycosides; vitexin (7), vicenin II (8), and the methoxylated; 6-methoxyapigenin-7-methyl ether (9) and tangeretin (10) as well as flavanones class; naringenin (11), liquiritigenin (12), hesperdin (hesperetin-7-rhamnoglucoside) (13). All compounds were identified for the first time in F. margarita except compound (8). The major glycosides 5, 6, and 13 and total crude extract showed potential antiviral activity against live Newcastle disease virus vaccine strains (Komarov and LaSota) and live infectious bursitis viruses vaccine strain D78 replication in VERO cell cultures and on specific pathogen-free embryonated chicken eggs. Antiviral inhibitory concentration fifty (IC50), cytotoxic concentration fifty (CC50), and therapeutic index (TI) were calculated. In addition, the extract and compounds 7 and 13 showed marked antimicrobial activity against different strains of fungi, Gram-positive and negative bacteria, including some foodborne pathogens of animal origin, caused human disease. These results suggested that the extract of F. margarita may be considered potentially useful as a source of natural antiviral and antimicrobial agents. It can be used as an ingredient for functional food and/or pharmaceuticals.Keywords: antimicrobial, antiviral, Fortunella margarita, Nagami Kumkuat, phenolic secondary metabolites
Procedia PDF Downloads 206858 Formulation Development and Characterization of Oligonucleotide Containing Chitosan Nanoparticles
Authors: Gyati Shilakari Asthana, Abhay Asthana
Abstract:
Purpose: The therapeutic potential of oligonucleotide (ODN) is primarily dependent upon its safe and efficient delivery to specific cells overcoming degradation and maximizing cellular uptake in vivo. The present study is focused to design low molecular weight chitosan nanoconstructs to meet the requirements of safe and effectual delivery of ODNs. LMW-chitosan is a biodegradable, water soluble, biocompatible polymer and is useful as a non-viral vector for gene delivery due to its better stability in water. Methods: LMW chitosan ODN nanoparticles (CHODN NPs) were formulated by self assembled method using various N/P ratios (moles ratio of amine groups of CH to phosphate moieties of ODNs; 0.5:1, 1:1, 3:1, 5:1 and 7:1) of CH to ODN. The developed CHODN NPs were evaluated with respect to gel retardation assay, particle size, zeta potential and cytotoxicity and transfection efficiency. Results: Complete complexation of CH/ODN was achieved at the charge ratio of 0.5:1 or above and CHODN NPs displayed resistance against DNase I. On increasing the N/P ratio of CH/ODN, particle size of the NPs decreased whereas zeta potential (ZV) value increased. No significant toxicity was observed at all CH concentrations. The transfection efficiency was increased on increasing N/P ratio from 1:1 to 3:1, whereas it was decreased with further increment in N/P ratio upto 7:1. Maximum transfection of CHODN NPs with both the cell lines (Raw 267.4 cells and Hela cells) was achieved at N/P ratio of 3:1. The results suggest that transfection efficiency of CHODN NPs is dependent on N/P ratio. Conclusion: Thus the present study states that LMW chitosan nanoparticulate carriers would be acceptable choice to improve transfection efficiency in vitro as well as in vivo delivery of oligonucleotide.Keywords: LMW-chitosan, chitosan nanoparticles, biocompatibility, cytotoxicity study, transfection efficiency, oligonucleotide
Procedia PDF Downloads 493857 Co-Culture of Neonate Mouse Spermatogonial Stem Cells with Sertoli Cells: Inductive Role of Melatonin following Transplantation: Adult Azoospermia Mouse Model
Authors: Mehdi Abbasi, Shadan Navid, Mohammad Pourahmadi, M. Majidi Zolbin
Abstract:
We have recently reported that melatonin as antioxidant enhances the efficacy of colonization of spermatogonial stem cells (SSCs). Melatonin as an antioxidant plays a vital role in the development of SSCs in vitro. This study aimed to investigate evaluation of sertoli cells and melatonin simultaneously on SSC proliferation following transplantation to testis of adult mouse busulfan-treated azoospermia model. SSCs and sertoli cells were isolated from the testes of three to six-day old male mice.To determine the purity, Flow cytometry technique using PLZF antibody were evaluated. Isolated testicular cells were cultured in αMEM medium in the absence (control group) or presence (experimental group) of sertoli cells and melatonin extract for 2 weeks. We then transplanted SSCs by injection into the azoospermia mice model. Higher viability, proliferation, and Id4, Plzf, expression were observed in the presence of simultaneous sertoli cells and melatonin in vitro. Moreover, immunocytochemistry results showed higher Oct4 expression in this group. Eight weeks after transplantation, injected cells were localized at the base of seminiferous tubules in the recipient testes. The number of spermatogonia and the weight of testis were higher in the experimental group relative to control group. The results of our study suggest that this new protocol can increase the transplantation of these cells can be useful in the treatment of male infertility.Keywords: colonization, melatonin, spermatogonial stem cell, transplantation
Procedia PDF Downloads 170856 Multidimensional Modeling of Solidification Process of Multi-Crystalline Silicon under Magnetic Field for Solar Cell Technology
Authors: Mouhamadou Diop, Mohamed I. Hassan
Abstract:
Molten metallic flow in metallurgical plant is highly turbulent and presents a complex coupling with heat transfer, phase transfer, chemical reaction, momentum transport, etc. Molten silicon flow has significant effect in directional solidification of multicrystalline silicon by affecting the temperature field and the emerging crystallization interface as well as the transport of species and impurities during casting process. Owing to the complexity and limits of reliable measuring techniques, computational models of fluid flow are useful tools to study and quantify these problems. The overall objective of this study is to investigate the potential of a traveling magnetic field for an efficient operating control of the molten metal flow. A multidimensional numerical model will be developed for the calculations of Lorentz force, molten metal flow, and the related phenomenon. The numerical model is implemented in a laboratory-scale silicon crystallization furnace. This study presents the potential of traveling magnetic field approach for an efficient operating control of the molten flow. A numerical model will be used to study the effects of magnetic force applied on the molten flow, and their interdependencies. In this paper, coupled and decoupled, steady and unsteady models of molten flow and crystallization interface will be compared. This study will allow us to retrieve the optimal traveling magnetic field parameter range for crystallization furnaces and the optimal numerical simulations strategy for industrial application.Keywords: multidimensional, numerical simulation, solidification, multicrystalline, traveling magnetic field
Procedia PDF Downloads 245855 Efficient Implementation of Finite Volume Multi-Resolution Weno Scheme on Adaptive Cartesian Grids
Authors: Yuchen Yang, Zhenming Wang, Jun Zhu, Ning Zhao
Abstract:
An easy-to-implement and robust finite volume multi-resolution Weighted Essentially Non-Oscillatory (WENO) scheme is proposed on adaptive cartesian grids in this paper. Such a multi-resolution WENO scheme is combined with the ghost cell immersed boundary method (IBM) and wall-function technique to solve Navier-Stokes equations. Unlike the k-exact finite volume WENO schemes which involve large amounts of extra storage, repeatedly solving the matrix generated in a least-square method or the process of calculating optimal linear weights on adaptive cartesian grids, the present methodology only adds very small overhead and can be easily implemented in existing edge-based computational fluid dynamics (CFD) codes with minor modifications. Also, the linear weights of this adaptive finite volume multi-resolution WENO scheme can be any positive numbers on condition that their sum is one. It is a way of bypassing the calculation of the optimal linear weights and such a multi-resolution WENO scheme avoids dealing with the negative linear weights on adaptive cartesian grids. Some benchmark viscous problems are numerical solved to show the efficiency and good performance of this adaptive multi-resolution WENO scheme. Compared with a second-order edge-based method, the presented method can be implemented into an adaptive cartesian grid with slight modification for big Reynolds number problems.Keywords: adaptive mesh refinement method, finite volume multi-resolution WENO scheme, immersed boundary method, wall-function technique.
Procedia PDF Downloads 149854 CMPD: Cancer Mutant Proteome Database
Authors: Po-Jung Huang, Chi-Ching Lee, Bertrand Chin-Ming Tan, Yuan-Ming Yeh, Julie Lichieh Chu, Tin-Wen Chen, Cheng-Yang Lee, Ruei-Chi Gan, Hsuan Liu, Petrus Tang
Abstract:
Whole-exome sequencing focuses on the protein coding regions of disease/cancer associated genes based on a priori knowledge is the most cost-effective method to study the association between genetic alterations and disease. Recent advances in high throughput sequencing technologies and proteomic techniques has provided an opportunity to integrate genomics and proteomics, allowing readily detectable mutated peptides corresponding to mutated genes. Since sequence database search is the most widely used method for protein identification using Mass spectrometry (MS)-based proteomics technology, a mutant proteome database is required to better approximate the real protein pool to improve disease-associated mutated protein identification. Large-scale whole exome/genome sequencing studies were launched by National Cancer Institute (NCI), Broad Institute, and The Cancer Genome Atlas (TCGA), which provide not only a comprehensive report on the analysis of coding variants in diverse samples cell lines but a invaluable resource for extensive research community. No existing database is available for the collection of mutant protein sequences related to the identified variants in these studies. CMPD is designed to address this issue, serving as a bridge between genomic data and proteomic studies and focusing on protein sequence-altering variations originated from both germline and cancer-associated somatic variations.Keywords: TCGA, cancer, mutant, proteome
Procedia PDF Downloads 593853 Network Pharmacological Evaluation of Holy Basil Bioactive Phytochemicals for Identifying Novel Potential Inhibitors Against Neurodegenerative Disorder
Authors: Bhuvanesh Baniya
Abstract:
Alzheimer disease is illnesses that are responsible for neuronal cell death and resulting in lifelong cognitive problems. Due to their unclear mechanism, there are no effective drugs available for the treatment. For a long time, herbal drugs have been used as a role model in the field of the drug discovery process. Holy basil in the Indian medicinal system (Ayurveda) is used for several neuronal disorders like insomnia and memory loss for decades. This study aims to identify active components of holy basil as potential inhibitors for the treatment of Alzheimer disease. To fulfill this objective, the Network pharmacology approach, gene ontology, pharmacokinetics analysis, molecular docking, and molecular dynamics simulation (MDS) studies were performed. A total of 7 active components in holy basil, 12 predicted neurodegenerative targets of holy basil, and 8063 Alzheimer-related targets were identified from different databases. The network analysis showed that the top ten targets APP, EGFR, MAPK1, ESR1, HSPA4, PRKCD, MAPK3, ABL1, JUN, and GSK3B were found as significant target related to Alzheimer disease. On the basis of gene ontology and topology analysis results, APP was found as a significant target related to Alzheimer’s disease pathways. Further, the molecular docking results to found that various compounds showed the best binding affinities. Further, MDS top results suggested could be used as potential inhibitors against APP protein and could be useful for the treatment of Alzheimer’s disease.Keywords: holy basil, network pharmacology, neurodegeneration, active phytochemicals, molecular docking and simulation
Procedia PDF Downloads 101852 Food Supplements and Natural Products to Slow Down Biological Aging
Authors: Coppa Federica, Iannello Giulia, Pennisi Stefania, Giuffrida Graziella, Lo Faro Riccardo, Cartelli Simone, Ferruggia Greta, Brundo Maria Violetta
Abstract:
In recent years, a new field of basic research has emerged: the biology and physiology of extracellular vesicles and their application in diagnostics and therapy. In particular, exosomes attract the scientific community as nanovesicles of endosomal origin, which can be secreted by a variety of cells and are found in all biological fluids. Exosomes have recently gained attention also in the cosmetic field: in fact, they are used in creams, serums and masks for topical use, proving to have a series of therapeutic and anti-aging benefits. To date, the oral administration of exosomes is the subject of attention because it represents a non-invasive and efficient method for delivering bioactive molecules into the intestine. We decided to focus our research on the creation of a food supplement that contains various bioactive factors, vitamins, and a new technology called AMPLEX PLUS, containing a mixture of 20 different biologically active factors (GF20) and exosomes isolated and purified from bovine colostrum. We have demonstrated in vitro that this new supplement acts on telomerase, slowing down cell aging. Amplex plus increased the proliferation rate of cells and the addition of it reduced the rate of telomere shortening. Under oxidative stress conditions (H2O2 – induced), the TSR increased; however, treatment with colostrum appeared to attenuate this increase. In particular, after 2 weeks of treatment, AMPLEX plus increased the proliferation rate of cells and exerted a protective effect on telomere length erosion, reducing the rate of its shortening.Keywords: AMPLEX PLUS, colostrum, exosomes, telomerase
Procedia PDF Downloads 52