Search results for: nano-medicine
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 37

Search results for: nano-medicine

37 Biomaterials Solutions to Medical Problems: A Technical Review

Authors: Ashish Thakur

Abstract:

This technical paper was written in view of focusing the biomaterials and its various applications in modern industries. Author tires to elaborate not only the medical, infect plenty of application in other industries. The scope of the research area covers the wide range of physical, biological and chemical sciences that underpin the design of biomaterials and the clinical disciplines in which they are used. A biomaterial is now defined as a substance that has been engineered to take a form which, alone or as part of a complex system, is used to direct, by control of interactions with components of living systems, the course of any therapeutic or diagnostic procedure. Biomaterials are invariably in contact with living tissues. Thus, interactions between the surface of a synthetic material and biological environment must be well understood. This paper reviews the benefits and challenges associated with surface modification of the metals in biomedical applications. The paper also elaborates how the surface characteristics of metallic biomaterials, such as surface chemistry, topography, surface charge, and wettability, influence the protein adsorption and subsequent cell behavior in terms of adhesion, proliferation, and differentiation at the biomaterial–tissue interface. The chapter also highlights various techniques required for surface modification and coating of metallic biomaterials, including physicochemical and biochemical surface treatments and calcium phosphate and oxide coatings. In this review, the attention is focused on the biomaterial-associated infections, from which the need for anti-infective biomaterials originates. Biomaterial-associated infections differ markedly for epidemiology, aetiology and severity, depending mainly on the anatomic site, on the time of biomaterial application, and on the depth of the tissues harbouring the prosthesis. Here, the diversity and complexity of the different scenarios where medical devices are currently utilised are explored, providing an overview of the emblematic applicative fields and of the requirements for anti-infective biomaterials. In addition to this, chapter introduces nanomedicine and the use of both natural and synthetic polymeric biomaterials, focuses on specific current polymeric nanomedicine applications and research, and concludes with the challenges of nanomedicine research. Infection is currently regarded as the most severe and devastating complication associated to the use of biomaterials. Osteoporosis is a worldwide disease with a very high prevalence in humans older than 50. The main clinical consequences are bone fractures, which often lead to patient disability or even death. A number of commercial biomaterials are currently used to treat osteoporotic bone fractures, but most of these have not been specifically designed for that purpose. Many drug- or cell-loaded biomaterials have been proposed in research laboratories, but very few have received approval for commercial use. Polymeric nanomaterial-based therapeutics plays a key role in the field of medicine in treatment areas such as drug delivery, tissue engineering, cancer, diabetes, and neurodegenerative diseases. Advantages in the use of polymers over other materials for nanomedicine include increased functionality, design flexibility, improved processability, and, in some cases, biocompatibility.

Keywords: nanomedicine, tissue, infections, biomaterials

Procedia PDF Downloads 264
36 Noncovalent Antibody-Nanomaterial Conjugates: A Simple Approach to Produce Targeted Nanomedicines

Authors: Nicholas Fletcher, Zachary Houston, Yongmei Zhao, Christopher Howard, Kristofer Thurecht

Abstract:

One promising approach to enhance nanomedicine therapeutic efficacy is to include a targeting agent, such as an antibody, to increase accumulation at the tumor site. However, the application of such targeted nanomedicines remains limited, in part due to difficulties involved with biomolecule conjugation to synthetic nanomaterials. One approach recently developed to overcome this has been to engineer bispecific antibodies (BsAbs) with dual specificity, whereby one portion binds to methoxy polyethyleneglycol (mPEG) epitopes present on synthetic nanomedicines, while the other binds to molecular disease markers of interest. In this way, noncovalent complexes of nanomedicine core, comprising a hyperbranched polymer (HBP) of primarily mPEG, decorated with targeting ligands are able to be produced by simple mixing. Further work in this area has now demonstrated such complexes targeting the breast cancer marker epidermal growth factor receptor (EGFR) to show enhanced binding to tumor cells both in vitro and in vivo. Indeed the enhanced accumulation at the tumor site resulted in improved therapeutic outcomes compared to untargeted nanomedicines and free chemotherapeutics. The current work on these BsAb-HBP conjugates focuses on further probing antibody-nanomaterial interactions and demonstrating broad applicability to a range of cancer types. Herein are reported BsAb-HBP materials targeted towards prostate-specific membrane antigen (PSMA) and study of their behavior in vivo using ⁸⁹Zr positron emission tomography (PET) in a dual-tumor prostate cancer xenograft model. In this model mice bearing both PSMA+ and PSMA- tumors allow for PET imaging to discriminate between nonspecific and targeted uptake in tumors, and better quantify the increased accumulation following BsAb conjugation. Also examined is the potential for formation of these targeted complexes in situ following injection of individual components? The aim of this approach being to avoid undesirable clearance of proteinaceous complexes upon injection limiting available therapeutic. Ultimately these results demonstrate BsAb functionalized nanomaterials as a powerful and versatile approach for producing targeted nanomedicines for a variety of cancers.

Keywords: bioengineering, cancer, nanomedicine, polymer chemistry

Procedia PDF Downloads 143
35 Defining Death and Dying in Relation to Information Technology and Advances in Biomedicine

Authors: Evangelos Koumparoudis

Abstract:

The definition of death is a deep philosophical question, and no single meaning can be ascribed to it. This essay focuses on the ontological, epistemological, and ethical aspects of death and dying in view of technological progress in information technology and biomedicine. It starts with the ad hoc 1968 Harvard committee that proposed that the criterion for the definition of death be irreversible coma and then refers to the debate over the whole brain death formula, emphasizing the integrated function of the organism and higher brain formula, taking consciousness and personality as essential human characteristics. It follows with the contribution of information technology in personalized and precision medicine and anti-aging measures aimed at life prolongation. It also touches on the possibility of the creation of human-machine hybrids and how this raises ontological and ethical issues that concern the “cyborgization” of human beings and the conception of the organism and personhood based on a post/transhumanist essence, and, furthermore, if sentient AI capable of autonomous decision-making that might even surpass human intelligence (singularity, superintelligence) deserves moral or legal personhood. Finally, there is the question as to whether death and dying should be redefined at a transcendent level, which is reinforced by already-existing technologies of “virtual after-” life and the possibility of uploading human minds. In the last section, I refer to the current (and future) applications of nanomedicine in diagnostics, therapeutics, implants, and tissue engineering as well as the aspiration to “immortality” by cryonics. The definition of death is reformulated since age and disease elimination may be realized, and the criterion of irreversibility may be challenged.

Keywords: death, posthumanism, infomedicine, nanomedicine, cryonics

Procedia PDF Downloads 73
34 Hybrid-Nanoengineering™: A New Platform for Nanomedicine

Authors: Mewa Singh

Abstract:

Nanomedicine, a fusion of nanotechnology and medicine, is an emerging technology ideally suited to the targeted therapies. Nanoparticles overcome the low selectivity of anti-cancer drugs toward the tumor as compared to normal tissue and hence result-in less severe side-effects. Our new technology, HYBRID-NANOENGINEERING™, uses a new molecule (MR007) in the creation of nanoparticles that not only helps in nanonizing the medicine but also provides synergy to the medicine. The simplified manufacturing process will result in reduced manufacturing costs. Treatment is made more convenient because hybrid nanomedicines can be produced in oral, injectable or transdermal formulations. The manufacturing process uses no protein, oil or detergents. The particle size is below 180 nm with a narrow distribution of size. Importantly, these properties confer great stability of the structure. The formulation does not aggregate in plasma and is stable over a wide range of pH. The final hybrid formulation is stable for at least 18 months as a powder. More than 97 drugs, including paclitaxel, docetaxel, tamoxifen, doxorubicinm prednisone, and artemisinin have been nanonized in water soluble formulations. Preclinical studies on cell cultures of tumors show promising results. Our HYBRID-NANOENGINEERING™ platform enables the design and development of hybrid nano-pharmaceuticals that combine efficacy with tolerability, giving patients hope for both extended overall survival and improved quality of life. This study would discuss or present this new discovery of HYBRID-NANOENGINEERING™ which targets drug delivery, synergistic, and potentiating effects, and barriers of drug delivery and advanced drug delivery systems.

Keywords: nano-medicine, nano-particles, drug delivery system, pharmaceuticals

Procedia PDF Downloads 486
33 Chemical Fabrication of Gold Nanorings: Controlled Reduction and Optical Tuning for Nanomedicine Applications

Authors: Mehrnaz Mostafavi, Jalaledin Ghanavi

Abstract:

This research investigates the production of nanoring structures through a chemical reduction approach, exploring gradual reduction processes assisted by reductant agents, leading to the formation of these specialized nanorings. The study focuses on the controlled reduction of metal atoms within these agents, crucial for shaping these nanoring structures over time. The paper commences by highlighting the wide-ranging applications of metal nanostructures across fields like Nanomedicine, Nanobiotechnology, and advanced spectroscopy methods such as Surface Enhanced Raman Spectroscopy (SERS) and Surface Enhanced Infrared Absorption Spectroscopy (SEIRA). Particularly, gold nanoparticles, especially in the nanoring configuration, have gained significant attention due to their distinctive properties, offering accessible spaces suitable for sensing and spectroscopic applications. The methodology involves utilizing human serum albumin as a reducing agent to create gold nanoparticles through a chemical reduction process. This process involves the transfer of electrons from albumin's carboxylic groups, converting them into carbonyl, while AuCl4− acquires electrons to form gold nanoparticles. Various characterization techniques like Ultraviolet–visible spectroscopy (UV-Vis), Atomic-force microscopy (AFM), and Transmission electron microscopy (TEM) were employed to examine and validate the creation and properties of the gold nanoparticles and nanorings. The findings suggest that precise and gradual reduction processes, in conjunction with optimal pH conditions, play a pivotal role in generating nanoring structures. Experiments manipulating optical properties revealed distinct responses in the visible and infrared spectrums, demonstrating the tunability of these nanorings. Detailed examinations of the morphology confirmed the formation of gold nanorings, elucidating their size, distribution, and structural characteristics. These nanorings, characterized by an empty volume enclosed by uniform walls, exhibit promising potential in the realms of Nanomedicine and Nanobiotechnology. In summary, this study presents a chemical synthesis approach using organic reducing agents to produce gold nanorings. The results underscore the significance of controlled and gradual reduction processes in crafting nanoring structures with unique optical traits, offering considerable value across diverse nanotechnological applications.

Keywords: nanoring structures, chemical reduction approach, gold nanoparticles, spectroscopy methods, nano medicine applications

Procedia PDF Downloads 139
32 Curcumin Nanomedicine: A Breakthrough Approach for Enhanced Lung Cancer Therapy

Authors: Shiva Shakori Poshteh

Abstract:

Lung cancer is a highly prevalent and devastating disease, representing a significant global health concern with profound implications for healthcare systems and society. Its high incidence, mortality rates, and late-stage diagnosis contribute to its formidable nature. To address these challenges, nanoparticle-based drug delivery has emerged as a promising therapeutic strategy. Curcumin (CUR), a natural compound derived from turmeric, has garnered attention as a potential nanomedicine for lung cancer treatment. Nanoparticle formulations of CUR offer several advantages, including improved drug delivery efficiency, enhanced stability, controlled release kinetics, and targeted delivery to lung cancer cells. CUR exhibits a diverse array of effects on cancer cells. It induces apoptosis by upregulating pro-apoptotic proteins, such as Bax and Bak, and downregulating anti-apoptotic proteins, such as Bcl-2. Additionally, CUR inhibits cell proliferation by modulating key signaling pathways involved in cancer progression. It suppresses the PI3K/Akt pathway, crucial for cell survival and growth, and attenuates the mTOR pathway, which regulates protein synthesis and cell proliferation. CUR also interferes with the MAPK pathway, which controls cell proliferation and survival, and modulates the Wnt/β-catenin pathway, which plays a role in cell proliferation and tumor development. Moreover, CUR exhibits potent antioxidant activity, reducing oxidative stress and protecting cells from DNA damage. Utilizing CUR as a standalone treatment is limited by poor bioavailability, lack of targeting, and degradation susceptibility. Nanoparticle-based delivery systems can overcome these challenges. They enhance CUR’s bioavailability, protect it from degradation, and improve absorption. Further, Nanoparticles enable targeted delivery to lung cancer cells through surface modifications or ligand-based targeting, ensuring sustained release of CUR to prolong therapeutic effects, reduce administration frequency, and facilitate penetration through the tumor microenvironment, thereby enhancing CUR’s access to cancer cells. Thus, nanoparticle-based CUR delivery systems promise to improve lung cancer treatment outcomes. This article provides an overview of lung cancer, explores CUR nanoparticles as a treatment approach, discusses the benefits and challenges of nanoparticle-based drug delivery, and highlights prospects for CUR nanoparticles in lung cancer treatment. Future research aims to optimize these delivery systems for improved efficacy and patient prognosis in lung cancer.

Keywords: lung cancer, curcumin, nanomedicine, nanoparticle-based drug delivery

Procedia PDF Downloads 72
31 Assessment of Acute Oral Toxicity Studies and Anti Diabetic Activity of Herbal Mediated Nanomedicine

Authors: Shanker Kalakotla, Krishna Mohan Gottumukkala

Abstract:

Diabetes is a metabolic disorder characterized by hyperglycemia, carbohydrates, altered lipids and proteins metabolism. In recent research nanotechnology is a blazing field for the researchers; latterly there has been prodigious excitement in the nanomedicine and nano pharmacological area for the study of silver nanoparticles synthesis using natural products. Biological methods have been used to synthesize silver nanoparticles in presence of medicinally active antidiabetic plants, and this intention made us assess the biologically synthesized silver nanoparticles from the seed extract of Psoralea corylfolia using 1 mM silver nitrate solution. The synthesized herbal mediated silver nanoparticles (HMSNP’s) then subjected to various characterization techniques such as XRD, SEM, EDX, TEM, DLS, UV and FT-IR respectively. In current study, the silver nanoparticles tested for in-vitro anti-diabetic activity and possible toxic effects in healthy female albino mice by following OECD guidelines-425. Herbal mediated silver nanoparticles were successfully obtained from bioreduction of silver nitrate using Psoralea corylifolia plant extract. Silver nanoparticles have been appropriately characterized and confirmed using different types of equipment viz., UV-vis spectroscopy, XRD, FTIR, DLS, SEM and EDX analysis. From the behavioral observations of the study, the female albino mice did not show sedation, respiratory arrest, and convulsions. Test compounds did not cause any mortality at the dose level tested (i.e., 2000 mg/kg body weight) doses till the end of 14 days of observation and were considered safe. It may be concluded that LD50 of the HMSNPs was 2000mg/kg body weight. Since LD50 of the HMSNPs was 2000mg/kg body weight, so the preferred dose range for HMSNPs falls between the levels of 200 and 400 mg/kg. Further In-vivo pharmacological models and biochemical investigations will clearly elucidate the mechanism of action and will be helpful in projecting the currently synthesized silver nanoparticles as a therapeutic target in treating chronic ailments.

Keywords: herbal mediated silver nanoparticles, HMSNPs, toxicity of silver nanoparticles, PTP1B in-vitro anti-diabetic assay female albino mice, 425 OECD guidelines

Procedia PDF Downloads 273
30 DNA Multiplier: A Design Architecture of a Multiplier Circuit Using DNA Molecules

Authors: Hafiz Md. Hasan Babu, Khandaker Mohammad Mohi Uddin, Nitish Biswas, Sarreha Tasmin Rikta, Nuzmul Hossain Nahid

Abstract:

Nanomedicine and bioengineering use biological systems that can perform computing operations. In a biocomputational circuit, different types of biomolecules and DNA (Deoxyribose Nucleic Acid) are used as active components. DNA computing has the capability of performing parallel processing and a large storage capacity that makes it diverse from other computing systems. In most processors, the multiplier is treated as a core hardware block, and multiplication is one of the time-consuming and lengthy tasks. In this paper, cost-effective DNA multipliers are designed using algorithms of molecular DNA operations with respect to conventional ones. The speed and storage capacity of a DNA multiplier are also much higher than a traditional silicon-based multiplier.

Keywords: biological systems, DNA multiplier, large storage, parallel processing

Procedia PDF Downloads 218
29 Atypical Retinoid ST1926 Nanoparticle Formulation Development and Therapeutic Potential in Colorectal Cancer

Authors: Sara Assi, Berthe Hayar, Claudio Pisano, Nadine Darwiche, Walid Saad

Abstract:

Nanomedicine, the application of nanotechnology to medicine, is an emerging discipline that has gained significant attention in recent years. Current breakthroughs in nanomedicine have paved the way to develop effective drug delivery systems that can be used to target cancer. The use of nanotechnology provides effective drug delivery, enhanced stability, bioavailability, and permeability, thereby minimizing drug dosage and toxicity. As such, the use of nanoparticle (NP) formulations in drug delivery has been applied in various cancer models and have shown to improve the ability of drugs to reach specific targeted sites in a controlled manner. Cancer is one of the major causes of death worldwide; in particular, colorectal cancer (CRC) is the third most common type of cancer diagnosed amongst men and women and the second leading cause of cancer related deaths, highlighting the need for novel therapies. Retinoids, consisting of natural and synthetic derivatives, are a class of chemical compounds that have shown promise in preclinical and clinical cancer settings. However, retinoids are limited by their toxicity and resistance to treatment. To overcome this resistance, various synthetic retinoids have been developed, including the adamantyl retinoid ST1926, which is a potent anti-cancer agent. However, due to its limited bioavailability, the development of ST1926 has been restricted in phase I clinical trials. We have previously investigated the preclinical efficacy of ST1926 in CRC models. ST1926 displayed potent inhibitory and apoptotic effects in CRC cell lines by inducing early DNA damage and apoptosis. ST1926 significantly reduced the tumor doubling time and tumor burden in a xenograft CRC model. Therefore, we developed ST1926-NPs and assessed their efficacy in CRC models. ST1926-NPs were produced using Flash NanoPrecipitation with the amphiphilic diblock copolymer polystyrene-b-ethylene oxide and cholesterol as a co-stabilizer. ST1926 was formulated into NPs with a drug to polymer mass ratio of 1:2, providing a stable formulation for one week. The contin ST1926-NP diameter was 100 nm, with a polydispersity index of 0.245. Using the MTT cell viability assay, ST1926-NP exhibited potent anti-growth activities as naked ST1926 in HCT116 cells, at pharmacologically achievable concentrations. Future studies will be performed to study the anti-tumor activities and mechanism of action of ST1926-NPs in a xenograft mouse model and to detect the compound and its glucuroconjugated form in the plasma of mice. Ultimately, our studies will support the use of ST1926-NP formulations in enhancing the stability and bioavailability of ST1926 in CRC.

Keywords: nanoparticles, drug delivery, colorectal cancer, retinoids

Procedia PDF Downloads 101
28 Metal Nanoparticles Caused Death of Metastatic MDA-MB-231 Cells

Authors: O. S. Adeyemi, C. G. Whiteley

Abstract:

The present study determined the toxic potential of metal nanoparticles in cell culture system. Silver and gold nanoparticles were synthesized and characterized following established "green" protocols. The synthesized nanoparticles, in varying concentrations ranging from 0.1–100 µM were evaluated for toxicity in metastatic MDA-MB-231 cells. The nanoparticles promoted a generation of reactive oxygen species and reduced cell viability to less than 50% in the demonstration of cellular toxicity. The nanoparticles; gold and the silver-gold mixture had IC50 values of 56.65 and 18.44 µM respectively. The IC50 concentration for silver nanoparticles could not be determined. Furthermore, the probe of the cell death using flow cytometry and confocal microscopy revealed the partial involvement of apoptosis as well as necrosis. Our results revealed cellular toxicity caused by the nanoparticles but the mechanism remains yet undefined.

Keywords: cell death, nanomedicine, nanotoxicology, toxicity

Procedia PDF Downloads 395
27 Targeted Delivery of Docetaxel Drug Using Cetuximab Conjugated Vitamin E TPGS Micelles Increases the Anti-Tumor Efficacy and Inhibit Migration of MDA-MB-231 Triple Negative Breast Cancer

Authors: V. K. Rajaletchumy, S. L. Chia, M. I. Setyawati, M. S. Muthu, S. S. Feng, D. T. Leong

Abstract:

Triple negative breast cancers (TNBC) can be classified as one of the most aggressive with a high rate of local recurrences and systematic metastases. TNBCs are insensitive to existing hormonal therapy or targeted therapies such as the use of monoclonal antibodies, due to the lack of oestrogen receptor (ER) and progesterone receptor (PR) and the absence of overexpression of human epidermal growth factor receptor 2 (HER2) compared with other types of breast cancers. The absence of targeted therapies for selective delivery of therapeutic agents into tumours, led to the search for druggable targets in TNBC. In this study, we developed a targeted micellar system of cetuximab-conjugated micelles of D-α-tocopheryl polyethylene glycol succinate (vitamin E TPGS) for targeted delivery of docetaxel as a model anticancer drug for the treatment of TNBCs. We examined the efficacy of our micellar system in xenograft models of triple negative breast cancers and explored the effect of the micelles on post-treatment tumours in order to elucidate the mechanism underlying the nanomedicine treatment in oncology. The targeting micelles were found preferentially accumulated in tumours immediately after the administration of the micelles compare to normal tissue. The fluorescence signal gradually increased up to 12 h at the tumour site and sustained for up to 24 h, reflecting the increases in targeted micelles (TPFC) micelles in MDA-MB-231/Luc cells. In comparison, for the non-targeting micelles (TPF), the fluorescence signal was evenly distributed all over the body of the mice. Only a slight increase in fluorescence at the chest area was observed after 24 h post-injection, reflecting the moderate uptake of micelles by the tumour. The successful delivery of docetaxel into tumour by the targeted micelles (TPDC) exhibited a greater degree of tumour growth inhibition than Taxotere® after 15 days of treatment. The ex vivo study has demonstrated that tumours treated with targeting micelles exhibit enhanced cell cycle arrest and attenuated proliferation compared with the control and with those treated non-targeting micelles. Furthermore, the ex vivo investigation revealed that both the targeting and non-targeting micellar formulations shows significant inhibition of cell migration with migration indices reduced by 0.098- and 0.28-fold, respectively, relative to the control. Overall, both the in vivo and ex vivo data increased the confidence that our micellar formulations effectively targeted and inhibited EGF-overexpressing MDA-MB-231 tumours.

Keywords: biodegradable polymers, cancer nanotechnology, drug targeting, molecular biomaterials, nanomedicine

Procedia PDF Downloads 281
26 Polysulfide as Active ‘Stealth’ Polymers with Additional Anti-Inflammatory Activity

Authors: Farah El Mohtadi, Richard d'Arcy, Nicola Tirelli

Abstract:

Since 40 years, poly (ethylene glycol) (PEG) has been the gold standard in biomaterials and drug delivery, because of its combination of chemical and biological inertness. However, the possibility of its breakdown under oxidative conditions and the demonstrated development of anti-PEG antibodies highlight the necessity to develop carriers based on materials with increased stability in a challenging biological environment. Here, we describe the synthesis of polysulfide via anionic ring-opening polymerization. In vitro, the synthesized polymer was characterized by low toxicity and a level of complement activation (in human plasma) and macrophage uptake slightly lower than PEG and poly (2‐methyl-2‐oxazoline) (PMOX), of a similar size. Importantly, and differently from PEG, on activated macrophages, the synthesized polymer showed a strong and dose-dependent ROS scavenging activity, which resulted in the corresponding reduction of cytokine production. Therefore, the results from these studies show that polysulfide is highly biocompatible and are potential candidates to be used as an alternative to PEG for various applications in nanomedicine.

Keywords: PEG, low toxicity, ROS scavenging, biocompatible

Procedia PDF Downloads 131
25 Mixed Monolayer and PEG Linker Approaches to Creating Multifunctional Gold Nanoparticles

Authors: D. Dixon, J. Nicol, J. A. Coulter, E. Harrison

Abstract:

The ease with which they can be functionalized, combined with their excellent biocompatibility, make gold nanoparticles (AuNPs) ideal candidates for various applications in nanomedicine. Indeed several promising treatments are currently undergoing human clinical trials (CYT-6091 and Auroshell). A successful nanoparticle treatment must first evade the immune system, then accumulate within the target tissue, before enter the diseased cells and delivering the payload. In order to create a clinically relevant drug delivery system, contrast agent or radiosensitizer, it is generally necessary to functionalize the AuNP surface with multiple groups; e.g. Polyethylene Glycol (PEG) for enhanced stability, targeting groups such as antibodies, peptides for enhanced internalization, and therapeutic agents. Creating and characterizing the biological response of such complex systems remains a challenge. The two commonly used methods to attach multiple groups to the surface of AuNPs are the creation of a mixed monolayer, or by binding groups to the AuNP surface using a bi-functional PEG linker. While some excellent in-vitro and animal results have been reported for both approaches further work is necessary to directly compare the two methods. In this study AuNPs capped with both PEG and a Receptor Mediated Endocytosis (RME) peptide were prepared using both mixed monolayer and PEG linker approaches. The PEG linker used was SH-PEG-SGA which has a thiol at one end for AuNP attachment, and an NHS ester at the other to bind to the peptide. The work builds upon previous studies carried out at the University of Ulster which have investigated AuNP synthesis, the influence of PEG on stability in a range of media and investigated intracellular payload release. 18-19nm citrate capped AuNPs were prepared using the Turkevich method via the sodium citrate reduction of boiling 0.01wt% Chloroauric acid. To produce PEG capped AuNPs, the required amount of PEG-SH (5000Mw) or SH-PEG-SGA (3000Mw Jenkem Technologies) was added, and the solution stirred overnight at room temperature. The RME (sequence: CKKKKKKSEDEYPYVPN, Biomatik) co-functionalised samples were prepared by adding the required amount of peptide to the PEG capped samples and stirring overnight. The appropriate amounts of PEG-SH and RME peptide were added to the AuNP to produce a mixed monolayer consisting of approximately 50% PEG and 50% RME. The PEG linker samples were first fully capped with bi-functional PEG before being capped with RME peptide. An increase in diameter from 18-19mm for the ‘as synthesized’ AuNPs to 40-42nm after PEG capping was observed via DLS. The presence of PEG and RME peptide on both the mixed monolayer and PEG linker co-functionalized samples was confirmed by both FTIR and TGA. Bi-functional PEG linkers allow the entire AuNP surface to be capped with PEG, enabling in-vitro stability to be achieved using a lower molecular weight PEG. The approach also allows the entire outer surface to be coated with peptide or other biologically active groups, whilst also offering the promise of enhanced biological availability. The effect of mixed monolayer versus PEG linker attachment on both stability and non-specific protein corona interactions was also studied.

Keywords: nanomedicine, gold nanoparticles, PEG, biocompatibility

Procedia PDF Downloads 341
24 Characterization of Retinal Pigmented Cell Epithelium Cell Sheet Cultivated on Synthetic Scaffold

Authors: Tan Yong Sheng Edgar, Yeong Wai Yee

Abstract:

Age-related macular degeneration (AMD) is one of the leading cause of blindness. It can cause severe visual loss due to damaged retinal pigment epithelium (RPE). RPE is an important component of the retinal tissue. It functions as a transducing boundary for visual perception making it an essential factor for sight. The RPE also functions as a metabolically complex and functional cell layer that is responsible for the local homeostasis and maintenance of the extra photoreceptor environment. Thus one of the suggested method of treating such diseases would be regenerating these RPE cells. As such, we intend to grow these cells using a synthetic scaffold to provide a stable environment that reduces the batch effects found in natural scaffolds. Stiffness of the scaffold will also be investigated to determine the optimal Young’s modulus for cultivating these cells. The cells will be generated into a monolayer cell sheet and their functions such as formation of tight junctions and gene expression patterns will be assessed to evaluate the cell sheet quality compared to a native RPE tissue.

Keywords: RPE, scaffold, characterization, biomaterials, colloids and nanomedicine

Procedia PDF Downloads 437
23 Harnessing Nature's Fury: Hyptis Suaveolens Loaded Bioactive Liposome for Photothermal Therapy of Lung Cancer

Authors: Sajmina Khatun, Monika Pebam, Aravind Kumar Rengan

Abstract:

Photothermal therapy, a subset of nanomedicine, takes advantage of light-absorbing agents to generate localized heat, selectively eradicating cancer cells. This innovative approach minimizes damage to healthy tissues and offers a promising avenue for targeted cancer treatment. Unlike conventional therapies, photothermal therapy harnesses the power of light to combat malignancies precisely and effectively, showcasing its potential to revolutionize cancer treatment paradigms. The combined strengths of nanomedicine and photothermal therapy signify a transformative shift toward more effective, targeted, and tolerable cancer treatments in the medical landscape. Utilizing natural products becomes instrumental in formulating diverse bioactive medications owing to their various pharmacological properties attributed to the existence of phenolic structures, triterpenoids, and similar compounds. Hyptis suaveolens, commonly known as pignut, stands as an aromatic herb within the Lamiaceae family and represents a valuable therapeutic plant. Flourishing in swamps and alongside tropical and subtropical roadsides, these noxious weeds impede the development of adjacent plants. Hyptis suaveolens ranks among the most globally distributed alien invasive species. The present investigation revealed that a versatile, biodegradable liposome nanosystem (HIL NPs), incorporating bioactive molecules from Hyptis suaveolens, exhibits effective bioavailability to cancer cells, enabling tumor ablation upon near-infrared (NIR) laser exposure. The components within the nanosystem, specifically the bioactive molecules from Hyptis, function as anticancer agents, aiding in the photothermal ablation of highly metastatic lung cancer cells. Despite being a prolific weed impeding neighboring plant growth, Hyptis suaveolens showcases therapeutic benefits through its bioactive compounds. The obtained HIL NPs, characterized as a photothermally active liposome nanosystem, demonstrate a pronounced fluorescence absorption peak in the NIR range and achieve a high photothermal conversion efficiency under NIR laser irradiation. Transmission electron microscopy (TEM) and particle size analysis reveal that HIL NPs possess a spherical shape with a size of 141 ± 30 nm. Moreover, in vitro assessments of HIL NPs against lung cancer cell lines (A549) indicate effective anticancer activity through a combined cytotoxic effect and hyperthermia. Tumor ablation is facilitated by apoptosis induced by the overexpression of ɣ-H2AX, arresting cancer cell proliferation. Consequently, the multifunctional and biodegradable nanosystem (HIL NPs), incorporating bioactive compounds from Hyptis, provides valuable perspectives for developing an innovative therapeutic strategy originating from a challenging weed. This approach holds promise for potential applications in both bioimaging and the combined use of phyto-photothermal therapy for cancer treatment.

Keywords: bioactive liposome, hyptis suaveolens, photothermal therapy, lung cancer

Procedia PDF Downloads 95
22 Magnesium Nanoparticles for Photothermal Therapy

Authors: E. Locatelli, I. Monaco, R. C. Martin, Y. Li, R. Pini, M. Chiariello, M. Comes Franchini

Abstract:

Despite the many advantages of application of nanomaterials in the field of nanomedicine, increasing concerns have been expressed on their potential adverse effects on human health. There is urgency for novel green strategies toward novel materials with enhanced biocompatibility using safe reagents. Photothermal ablation therapy, which exploits localized heat increase of a few degrees to kill cancer cells, has appeared recently as a non-invasive and highly efficient therapy against various cancer types; anyway new agents able to generate hyperthermia when irradiated are needed and must have precise biocompatibility in order to avoid damage to healthy tissues and prevent toxicity. Recently, there has been increasing interest in magnesium as a biomaterial: it is the fourth most abundant cation in the human body, and it is essential for human metabolism. However magnesium nanoparticles (Mg NPs) have had limited diffusion due to the high reduction potential of magnesium cations, which makes NPs synthesis challenging. Herein, we report the synthesis of Mg NPs and their surface functionalization for the obtainment of a stable and biocompatible nanomaterial suitable for photothermal ablation therapy against cancer. We synthesized the Mg crystals by reducing MgCl2 with metallic lithium and exploiting naphthalene as an electron carrier: the lithium–naphthalene complex acts as the real reducing agent. Firstly, the nanocrystal particles were coated with the ligand 12-ethoxy ester dodecanehydroxamic acid, and then entrapped into water-dispersible polymeric micelles (PMs) made of the FDA-approved PLGA-b-PEG-COOH copolymer using the oil-in-water emulsion technique. Lately, we developed a more straightforward methodology by introducing chitosan, a highly biocompatible natural product, at the beginning of the process, simultaneously using lithium–naphthalene complex, thus having a one-pot procedure for the formation and surface modification of MgNPs. The obtained MgNPs were purified and fully characterized, showing diameters in the range of 50-300 nm. Notably, when coated with chitosan the particles remained stable as dry powder for more than 10 months. We proved the possibility of generating a temperature rise of a few to several degrees once MgNPs were illuminated using a 810 nm diode laser operating in continuous wave mode: the temperature rise resulted significant (0-15 °C) and concentration dependent. We then investigated potential cytotoxicity of the MgNPs: we used HN13 epithelial cells, derived from a head and neck squamous cell carcinoma and the hepa1-6 cell line, derived from hepatocellular carcinoma and very low toxicity was observed for both nanosystems. Finally, in vivo photothermal therapy was performed on xenograft hepa1-6 tumor bearing mice: the animals were treated with MgNPs coated with chitosan and showed no sign of suffering after the injection. After 12 hours the tumor was exposed to near-infrared laser light. The results clearly showed an extensive damage to tumor tissue after only 2 minutes of laser irradiation at 3Wcm-1, while no damage was reported when the tumor was treated with the laser and saline alone in control group. Despite the lower photothermal efficiency of Mg with respect to Au NPs, we consider MgNPs a promising, safe and green candidate for future clinical translations.

Keywords: chitosan, magnesium nanoparticles, nanomedicine, photothermal therapy

Procedia PDF Downloads 270
21 Multifunctional Bismuth-Based Nanoparticles as Theranostic Agent for Imaging and Radiation Therapy

Authors: Azimeh Rajaee, Lingyun Zhao, Shi Wang, Yaqiang Liu

Abstract:

In recent years many studies have been focused on bismuth-based nanoparticles as radiosensitizer and contrast agent in radiation therapy and imaging due to the high atomic number (Z = 82), high photoelectric absorption, low cost, and low toxicity. This study aims to introduce a new multifunctional bismuth-based nanoparticle as a theranostic agent for radiotherapy, computed tomography (CT) and magnetic resonance imaging (MRI). We synthesized bismuth ferrite (BFO, BiFeO3) nanoparticles by sol-gel method and surface of the nanoparticles were modified by Polyethylene glycol (PEG). After proved biocompatibility of the nanoparticles, the ability of them as contract agent in Computed tomography (CT) and magnetic resonance imaging (MRI) was investigated. The relaxation time rate (R2) in MRI and Hounsfield unit (HU) in CT imaging were increased with the concentration of the nanoparticles. Moreover, the effect of nanoparticles on dose enhancement in low energy was investigated by clonogenic assay. According to clonogenic assay, sensitizer enhancement ratios (SERs) were obtained as 1.35 and 1.76 for nanoparticle concentrations of 0.05 mg/ml and 0.1 mg/ml, respectively. In conclusion, our experimental results demonstrate that the multifunctional nanoparticles have the ability to employ as multimodal imaging and therapy to enhance theranostic efficacy.

Keywords: molecular imaging, nanomedicine, radiotherapy, theranostics

Procedia PDF Downloads 317
20 Formulation and Evaluation of Silver Nanoparticles as Drug Carrier for Cancer Therapy

Authors: Abdelhadi Adam Salih Denei

Abstract:

Silver nanoparticles (AgNPs) have been used in cancer therapy, and the area of nanomedicine has made unheard-of strides in recent years. A thorough summary of the development and assessment of AgNPs for their possible use in the fight against cancer is the goal of this review. Targeted delivery methods have been designed to optimise therapeutic efficacy by using AgNPs' distinct physicochemical features, such as their size, shape, and surface chemistry. Firstly, the study provides an overview of the several synthesis routes—both chemical and green—that are used to create AgNPs. Natural extracts and biomolecules are used in green synthesis techniques, which are becoming more and more popular since they are biocompatible and environmentally benign. It is next described how synthesis factors affect the physicochemical properties of AgNPs, emphasising how crucial it is to modify these parameters for particular therapeutic uses. An extensive analysis is conducted on the anticancer potential of AgNPs, emphasising their capacity to trigger apoptosis, impede angiogenesis, and alter cellular signalling pathways. The analysis also investigates the potential benefits of combining AgNPs with currently used cancer treatment techniques, including radiation and chemotherapy. AgNPs' safety profile for use in clinical settings is clarified by a comprehensive evaluation of their cytotoxicity and biocompatibility.

Keywords: silver nanoparticles, cancer, nanocarrier system, targeted delivery

Procedia PDF Downloads 66
19 Trastuzumab Decorated Bioadhesive Nanoparticles for Targeted Breast Cancer Therapy

Authors: Kasi Viswanadh Matte, Abhisheh Kumar Mehata, M.S. Muthu

Abstract:

Brest cancer, up-regulated with human epidermal growth factor receptor type-2 (HER-2) led to the concept of developing HER-2 targeted anticancer therapeutics. Docetaxel-loaded D-α-tocopherol polyethylene glycol succinate 1000 conjugated chitosan (TPGS-g-chitosan) nanoparticles were prepared with or without Trastuzumab decoration. The particle size and entrapment efficiency of conventional, non-targeted and targeted nanoparticles were found to be in the range of 126-186 nm and 74-78% respectively. In-vitro, MDA-MB-231 cells showed that docetaxel-loaded non-targeted and HER-2 receptor targeted TPGS-g-chitosan nanoparticles have enhanced the cellular uptake and cytotoxicity with a promising bioadhesion property, in comparison to conventional nanoparticles. The IC50 values of non-targeted and targeted nanoparticles from cytotoxic assay were found to be 43 and 223 folds higher than DocelTM. The in-vivo pharmacokinetic study showed 2.33, and 2.82-fold enhancement in relative bioavailability of docetaxel for non-targeted and HER-2 receptor targeted nanoparticles, respectively than DocelTM, and after i.v administration, non-targeted and targeted nanoparticle achieved 3.48 and 5.94 times prolonged half-life in comparison to DocelTM. The area under the curve (AUC), relative bioavailability (FR) and mean residence time (MRT) were found to be higher for non-targeted and targeted nanoparticles compared to DocelTM. Further, histopathology results of non-targeted and targeted nanoparticles showed less toxicity on vital organs such as lungs, liver, and kidney compared to DocelTM.

Keywords: breast cancer, HER-2 receptor, targeted nanomedicine, chitosan, TPGS

Procedia PDF Downloads 240
18 Surface Characterization and Femtosecond-Nanosecond Transient Absorption Dynamics of Bioconjugated Gold Nanoparticles: Insight into the Warfarin Drug-Binding Site of Human Serum Albumin

Authors: Osama K. Abou-Zied, Saba A. Sulaiman

Abstract:

We studied the spectroscopy of 25-nm diameter gold nanoparticles (AuNPs), coated with human serum albumin (HSA) as a model drug carrier. The morphology and coating of the AuNPs were examined using transmission electron microscopy and dynamic light scattering. Resonance energy transfer from the sole tryptophan of HSA (Trp214) to the AuNPs was observed in which the fluorescence quenching of Trp214 is dominated by a static mechanism. Using fluorescein (FL) to probe the warfarin drug-binding site in HSA revealed the unchanged nature of the binding cavity on the surface of the AuNPs, indicating the stability of the protein structure on the metal surface. The transient absorption results of the surface plasmonic resonance (SPR) band of the AuNPs show three ultrafast dynamics that are involved in the relaxation process after excitation at 460 nm. The three decay components were assigned to the electron-electron (~ 400 fs), electron-phonon (~ 2.0 ps) and phonon-phonon (200–250 ps) interactions. These dynamics were not changed upon coating the AuNPs with HSA which indicates the chemical and physical stability of the AuNPs upon bioconjugation. Binding of FL in HSA did not have any measurable effect on the bleach recovery dynamics of the SPR band, although both FL and AuNPs were excited at 460 nm. The current study is important for a better understanding of the physical and dynamical properties of protein-coated metal nanoparticles which are expected to help in optimizing their properties for critical applications in nanomedicine.

Keywords: gold nanoparticles, human serum albumin, fluorescein, femtosecond transient absorption

Procedia PDF Downloads 333
17 Optical Analysis of the Plasmon Resonances of Gold Nano-Ring

Authors: Mehrnaz Mostafavi

Abstract:

The current research aims to explore a method for creating nano-ring structures through chemical reduction. By employing a direct reduction process at a controlled, slow pace, and concurrently introducing specific reduction agents, the goal is to fabricate these unique nano-ring formations. The deliberate slow reduction of nanoparticles within this process helps prevent spatial hindrances caused by the reduction agents. The timing of the reduction of metal atoms, facilitated by these agents, emerges as a crucial factor influencing the creation of nano-ring structures. In investigation involves a chemical approach utilizing bovine serum albumin and human serum albumin as organic reducing agents to produce gold nano-rings. The controlled reduction of metal atoms at a slow pace and under specific pH conditions plays a pivotal role in the successful fabrication of these nanostructures. Optical spectroscopic analyses revealed distinctive plasmonic behavior in both visible and infrared spectra, owing to the collective movement of electrons along the inner and outer walls of the gold nano-rings. Importantly, these ring-shaped nanoparticles exhibit customizable plasmon resonances in the near-infrared spectrum, a characteristic absent in solid particles of similar sizes. This unique attribute makes the generated samples valuable for applications in Nanomedicine and Nanobiotechnology, leveraging the distinct optical properties of these nanostructures.

Keywords: nano-ring structure, nano-particles, reductant agents, plasmon resonace

Procedia PDF Downloads 102
16 Surface Functionalized Biodegradable Polymersome for Targeted Drug Delivery

Authors: Susmita Roy, Madhavan Nallani

Abstract:

In recent years' polymersomes, self-assembled polymeric vesicles emerge from block copolymers, have been widely investigated due to their enhance stability and unique advantageous properties compared to their phospholipid counterpart, liposomes, dendrimers, and micelles. It provides a distinctive platform for advanced therapeutics and the creation of complex (bio) catalytically active systems for research in Nanomedicine and synthetic biology. Inspired by nature, where compartmentalization of biological components is all ubiquitous, we are interested in developing a platform technology of self-assembled multifunctional compartments with applications in areas from targeted drug/gene delivery, biosensing, pharmaceutical to cosmetics. Polymersome surfaces can be a proper choice of derivatization with a controlled amount of functional groups. To achieve site-specific targeting of polymersomes, biological recognition motives can be attached to the polymersomes surface by standard bioconjugation techniques, (like esterification, amidation, thiol-maleimide coupling, click-chemistry routes or other coupling methods). Herein, we are developing easy going, one-step bioconjugation strategies for site-specific surface functionalized biodegradable polymeric and/or polymer-lipid hybrid vesicles for targeted drug delivery. Biodegradable polymer, polycaprolactone-b-polyethylene glycol (PCL-PEG), polylactic acid-b-polyethylene glycol (PLA-PEG) and phospholipid, 1-palmitoyl-2- oleoyl-sn-glycero-3-phosphocholine (POPC) has been widely used for numerous vesicle formulations. Some of these drug-loaded formulations are being tested on mice for controlled release. These surface functionalized polymersomes are also appropriate for membrane protein reconstitution/insertion, antibodies conjugation and various bioconjugation with diverse targeted molecules for controlled drug delivery.

Keywords: drug delivery, membrane protein, polymersome, surface modification

Procedia PDF Downloads 154
15 Anti-Parasite Targeting with Amino Acid-Capped Nanoparticles Modulates Multiple Cellular Processes in Host

Authors: Oluyomi Stephen Adeyemi, Kentaro Kato

Abstract:

Toxoplasma gondii is the etiological agent of toxoplasmosis, a common parasitic disease capable of infecting a range of hosts, including nearly one-third of the human population. Current treatment options for toxoplasmosis patients are limited. In consequence, toxoplasmosis represents a large global burden that is further enhanced by the shortcomings of the current therapeutic options. These factors underscore the need for better anti-T. gondii agents and/or new treatment approach. In the present study, we sought to find out whether preparing and capping nanoparticles (NPs) in amino acids, would enhance specificity toward the parasite versus the host cell. The selection of amino acids was premised on the fact that T. gondii is auxotrophic for some amino acids. The amino acid-nanoparticles (amino-NPs) were synthesized, purified and characterized following established protocols. Next, we tested to determine the anti-T. gondii activity of the amino-NPs using in vitro experimental model of infection. Overall, our data show evidence that supports enhanced and excellent selective action against the parasite versus the host cells by amino-NPs. The findings are promising and provide additional support that warrants exploring the prospects of NPs as alternative anti-parasite agents. In addition, the anti-parasite action by amino-NPs indicates that nutritional requirement of parasite may represent a viable target in the development of better alternative anti-parasite agents. Furthermore, data suggest the anti-parasite mechanism of the amino-NPs involves multiple cellular processes including the production of reactive oxygen species (ROS), modulation of hypoxia-inducing factor-1 alpha (HIF-1α) as well as the activation of kynurenine pathway. Taken together, findings highlight further, the prospects of NPs as alternative source of anti-parasite agents.

Keywords: drug discovery, infectious diseases, mode of action, nanomedicine

Procedia PDF Downloads 112
14 Zinc Oxide Nanoparticles as Support for Classical Anti-cancer Therapies

Authors: Nadine Wiesmann, Melanie Viel, Christoph Buhr, Rachel Tanner, Wolfgang Tremel, Juergen Brieger

Abstract:

Recidivation of tumors and the development of resistances against the classical anti-tumor approaches represent a major challenge we face when treating cancer. In order to master this challenge, we are in desperate need of new treatment options beyond the beaten tracks. Zinc oxide nanoparticles (ZnO NPs) represent such an innovative approach. Zinc oxide is characterized by a high level of biocompatibility, concurrently ZnO NPs are able to exert anti-tumor effects. By concentration of the nanoparticles at the tumor site, tumor cells can specifically be exposed to the nanoparticles while low zinc concentrations at off-target sites are tolerated well and can be excreted easily. We evaluated the toxicity of ZnO NPs in vitro with the help of immortalized tumor cell lines and primary cells stemming from healthy tissue. Additionally, the Chorioallantoic Membrane Assay (CAM Assay) was employed to gain insights into the in vivo behavior of the nanoparticles. We could show that ZnO NPs interact with tumor cells as nanoparticulate matter. Furthermore, the extensive release of zinc ions from the nanoparticles nearby and within the tumor cells results in overload with zinc. Beyond that, ZnO NPs were found to further the generation of reactive oxygen species (ROS). We were able to show that tumor cells were more prone to the toxic effects of ZnO NPs at intermediate concentrations compared to fibroblasts. With the help of ZnO NPs covered by a silica shell in which FITC dye was incorporated, we were able to track ZnO NPs within tumor cells as well as within a whole organism in the CAM assay after injection into the bloodstream. Depending on the applied concentrations, selective tumor cell killing seems feasible. Furthermore, the combinational treatment of tumor cells with radiotherapy and ZnO NPs shows promising results. Still, further investigations are needed to gain a better understanding of the interaction between ZnO NPs and the human body to be able to pave the way for their application as an innovative anti-tumor agent in the clinics.

Keywords: metal oxide nanoparticles, nanomedicine, overcome resistances against classical treatment options, zinc oxide nanoparticles

Procedia PDF Downloads 129
13 Nanoscale Mapping of the Mechanical Modifications Occurring in the Brain Tumour Microenvironment by Atomic Force Microscopy: The Case of the Highly Aggressive Glioblastoma and the Slowly Growing Meningioma

Authors: Gabriele Ciasca, Tanya E. Sassun, Eleonora Minelli, Manila Antonelli, Massimiliano Papi, Antonio Santoro, Felice Giangaspero, Roberto Delfini, Marco De Spirito

Abstract:

Glioblastoma multiforme (GBM) is an extremely aggressive brain tumor, characterized by a diffuse infiltration of neoplastic cells into the brain parenchyma. Although rarely considered, mechanical cues play a key role in the infiltration process that is extensively mediated by the tumor microenvironment stiffness and, more in general, by the occurrence of aberrant interactions between neoplastic cells and the extracellular matrix (ECM). Here we provide a nano-mechanical characterization of the viscoelastic response of human GBM tissues by indentation-type atomic force microscopy. High-resolution elasticity maps show a large difference between the biomechanics of GBM tissues and the healthy peritumoral regions, opening possibilities to optimize the tumor resection area. Moreover, we unveil the nanomechanical signature of necrotic regions and anomalous vasculature, that are two major hallmarks useful for glioma staging. Actually, the morphological grading of GBM relies mainly on histopathological findings that make extensive use of qualitative parameters. Our findings have the potential to positively impact on the development of novel quantitative methods to assess the tumor grade, which can be used in combination with conventional histopathological examinations. In order to provide a more in-depth description of the role of mechanical cues in tumor progression, we compared the nano-mechanical fingerprint of GBM tissues with that of grade-I (WHO) meningioma, a benign lesion characterized by a completely different growth pathway with the respect to GBM, that, in turn hints at a completely different role of the biomechanical interactions.

Keywords: AFM, nano-mechanics, nanomedicine, brain tumors, glioblastoma

Procedia PDF Downloads 342
12 Inhalable Lipid-Coated-Chitosan Nano-Embedded Microdroplets of an Antifungal Drug for Deep Lung Delivery

Authors: Ranjot Kaur, Om P. Katare, Anupama Sharma, Sarah R. Dennison, Kamalinder K. Singh, Bhupinder Singh

Abstract:

Respiratory microbial infections being among the top leading cause of death worldwide are difficult to treat as the microbes reside deep inside the airways, where only a small fraction of drug can access after traditional oral or parenteral routes. As a result, high doses of drugs are required to maintain drug levels above minimum inhibitory concentrations (MIC) at the infection site, unfortunately leading to severe systemic side-effects. Therefore, delivering antimicrobials directly to the respiratory tract provides an attractive way out in such situations. In this context, current study embarks on the systematic development of lung lia pid-modified chitosan nanoparticles for inhalation of voriconazole. Following the principles of quality by design, the chitosan nanoparticles were prepared by ionic gelation method and further coated with major lung lipid by precipitation method. The factor screening studies were performed by fractional factorial design, followed by optimization of the nanoparticles by Box-Behnken Design. The optimized formulation has a particle size range of 170-180nm, PDI 0.3-0.4, zeta potential 14-17, entrapment efficiency 45-50% and drug loading of 3-5%. The presence of a lipid coating was confirmed by FESEM, FTIR, and X-RD. Furthermore, the nanoparticles were found to be safe upto 40µg/ml on A549 and Calu-3 cell lines. The quantitative and qualitative uptake studies also revealed the uptake of nanoparticles in lung epithelial cells. Moreover, the data from Spraytec and next-generation impactor studies confirmed the deposition of nanoparticles in lower airways. Also, the interaction of nanoparticles with DPPC monolayers signifies its biocompatibility with lungs. Overall, the study describes the methodology and potential of lipid-coated chitosan nanoparticles in futuristic inhalation nanomedicine for the management of pulmonary aspergillosis.

Keywords: dipalmitoylphosphatidylcholine, nebulization, DPPC monolayers, quality-by-design

Procedia PDF Downloads 143
11 Development of Novel Amphiphilic Block Copolymer of Renewable ε-Decalactone for Drug Delivery Application

Authors: Deepak Kakde, Steve Howdle, Derek Irvine, Cameron Alexander

Abstract:

The poor aqueous solubility is one of the major obstacles in the formulation development of many drugs. Around 70% of drugs are poorly soluble in aqueous media. In the last few decades, micelles have emerged as one of the major tools for solubilization of hydrophobic drugs. Micelles are nanosized structures (10-100nm) obtained by self-assembly of amphiphilic molecules into the water. The hydrophobic part of the micelle forms core which is surrounded by a hydrophilic outer shell called corona. These core-shell structures have been used as a drug delivery vehicle for many years. Although, the utility of micelles have been reduced due to the lack of sustainable materials. In the present study, a novel methoxy poly(ethylene glycol)-b-poly(ε-decalactone) (mPEG-b-PεDL) copolymer was synthesized by ring opening polymerization (ROP) of renewable ε-decalactone (ε-DL) monomers on methoxy poly(ethylene glycol) (mPEG) initiator using 1,5,7-triazabicyclo[4.4.0]dec-5-ene (TBD) as a organocatalyst. All the reactions were conducted in bulk to avoid the use of toxic organic solvents. The copolymer was characterized by nuclear magnetic resonance spectroscopy (NMR), gel permeation chromatography (GPC) and differential scanning calorimetry (DSC).The mPEG-b-PεDL block copolymeric micelles containing indomethacin (IND) were prepared by nanoprecipitation method and evaluated as drug delivery vehicle. The size of the micelles was less than 40nm with narrow polydispersity pattern. TEM image showed uniform distribution of spherical micelles defined by clear surface boundary. The indomethacin loading was 7.4% for copolymer with molecular weight of 13000 and drug/polymer weight ratio of 4/50. The higher drug/polymer ratio decreased the drug loading. The drug release study in PBS (pH7.4) showed a sustained release of drug over a period of 24hr. In conclusion, we have developed a new sustainable polymeric material for IND delivery by combining the green synthetic approach with the use of renewable monomer for sustainable development of polymeric nanomedicine.

Keywords: dopolymer, ε-decalactone, indomethacin, micelles

Procedia PDF Downloads 296
10 Biosynthesized Selenium Nanoparticles to Rescue Coccidiosis-mediated Oxidative Stress, Apoptosis and Inflammation in the Jejunum Of Mice

Authors: Esam Mohammed Al-shaebi

Abstract:

One of the most crucial approaches for treating human diseases, particularly parasite infections, is nanomedicine. One of the most significant protozoan diseases that impact farm and domestic animals is coccidiosis. While, amprolium is one of the traditional anticoccidial medication, the advent of drug-resistant strains of Eimeria necessitates the development of novel treatments. The goal of the current investigation was to determine whether biosynthesized selenium nanoparticles (Bio-SeNPs) using Azadirachta indica leaves extract might treat mice with Eimeria papillata infection in the jejunal tissue. Five groups of seven mice each were used, as follows: Group 1: Non-infected-non-treated (negative control). Group 2: Non-infected treated group with Bio-SeNPs (0.5 mg/kg of body weight). Groups 3-5 were orally inoculated with 1×103 sporulated oocysts of E. papillata. Group 3: Infected-non-treated (positive control). Group 4: Infected and treated group with Bio-SeNPs (0.5 mg/kg). Group 5: Infected and treated group with the Amprolium. Groups 4 and 5 daily received oral administration (for 5 days) of Bio-SeNPs and anticoccidial medication, respectively, after infection. Bio-SeNPs caused a considerable reduction in oocyst output in mice feces (97.21%). This was also accompanied by a significant reduction in the number of developmental parasitic stages in the jejunal tissues. Glutathione reduced (GSH), glutathione peroxidase (GPx), and superoxide dismutase (SOD) levels were dramatically reduced by the Eimeria parasite, whereas, nitric oxide (NO) and malonaldehyde (MDA) levels were markedly elevated. The amount of goblet cells and MUC2 gene expression were used as apoptotic indicators, and both were considerably downregulated by infection. However, infection markedly increased the expression of inflammatory cytokines (IL-6 and TNF-α) and the apoptotic genes (Caspase-3 and BCL2). Bio-SeNPs were administrated to mice to drastically lower body weight, oxidative stress, and inflammatory and apoptotic indicators in the jejunal tissue. Our research thus showed the involvement of Bio-SeNPs in protecting mice with E. papillata infections against jejunal damage.

Keywords: coccidiosis, nanoparticles, azadirachta indica, oxidative stress

Procedia PDF Downloads 93
9 Phage Capsid for Efficient Delivery of Cytotoxic Drugs

Authors: Simona Dostalova, Dita Munzova, Ana Maria Jimenez Jimenez, Marketa Vaculovicova, Vojtech Adam, Rene Kizek

Abstract:

The boom of nanomedicine in recent years has led to the development of numerous new nanomaterials that can be used as nanocarriers in the drug delivery. These nanocarriers can either be synthetic or natural-based. The disadvantage of many synthetic nanocarriers is their toxicity in patient’s body. Protein cages that can naturally be found in human body do not exhibit such disadvantage. However, the release of cargo from some protein cages in target cells can be problematic. As a special type of protein cages can serve the capsid of many viruses, including phage. Phages infect bacterial cells; therefore they are not harmful to human cells. The targeting of phage particles to cancer cells can be solved by producing of empty phage capsids during which the targeting moieties (e.g. peptides) can be cloned into genes of phage capsid to decorate its surface. Moreover, the produced capsids do not contain viral nucleic acid and are therefore not infectious to beneficial bacteria in the patient’s body. The protein cage composed of viral capsid is larger than other frequently used apoferritin cage but its size is still small enough to benefit from passive targeting by Enhanced Permeability and Retention effect. In this work, bacteriophage λ was used, both whole and its empty capsid for delivery of different cytotoxic drugs (cisplatin, carboplatin, oxaliplatin, etoposide and doxorubicin). Large quantities of phage λ were obtained from phage λ-producing strain of E. coli cultivated in medium with 0.2 % maltose. After killing of E. coli with chloroform and its removal by centrifugation, the phage was concentrated by ultracentrifugation at 130 000 g and 4 °C for 3 h. The encapsulation of the drugs was performed by infusion method and four different concentrations of the drugs were encapsulated (200; 100; 50; 25 µg/ml). Free molecules of drugs were removed by dialysis. The encapsulation was verified using spectrophotometric and electrochemical methods. The amount of encapsulated drug linearly increased with the amount of applied drug (determination coefficient R2=0.8013). 76% of applied drug was encapsulated in phage λ particles (concentration of 10 µg/ml), even with the highest applied concentration of drugs, 200 µg/ml. Only 1% of encapsulated drug was detected in phage DNA. Similar results were obtained with encapsulation in phage empty capsid. Therefore, it can be concluded that the encapsulation of drugs into phage particles is efficient and mostly occurs by interaction of drugs with protein capsid.

Keywords: cytostatics, drug delivery, nanocarriers, phage capsid

Procedia PDF Downloads 496
8 Drug Delivery Cationic Nano-Containers Based on Pseudo-Proteins

Authors: Sophio Kobauri, Temur Kantaria, Nina Kulikova, David Tugushi, Ramaz Katsarava

Abstract:

The elaboration of effective drug delivery vehicles is still topical nowadays since targeted drug delivery is one of the most important challenges of the modern nanomedicine. The last decade has witnessed enormous research focused on synthetic cationic polymers (CPs) due to their flexible properties, in particular as non-viral gene delivery systems, facile synthesis, robustness, not oncogenic and proven gene delivery efficiency. However, the toxicity is still an obstacle to the application in pharmacotherapy. For overcoming the problem, creation of new cationic compounds including the polymeric nano-size particles – nano-containers (NCs) loading with different pharmaceuticals and biologicals is still relevant. In this regard, a variety of NCs-based drug delivery systems have been developed. We have found that amino acid-based biodegradable polymers called as pseudo-proteins (PPs), which can be cleared from the body after the fulfillment of their function are highly suitable for designing pharmaceutical NCs. Among them, one of the most promising are NCs made of biodegradable Cationic PPs (CPPs). For preparing new cationic NCs (CNCs), we used CPPs composed of positively charged amino acid L-arginine (R). The CNCs were fabricated by two approaches using: (1) R-based homo-CPPs; (2) Blends of R-based CPPs with regular (neutral) PPs. According to the first approach NCs we prepared from CPPs 8R3 (composed of R, sebacic acid and 1,3-propanediol) and 8R6 (composed of R, sebacic acid and 1,6-hexanediol). The NCs prepared from these CPPs were 72-101 nm in size with zeta potential within +30 ÷ +35 mV at a concentration 6 mg/mL. According to the second approach, CPPs 8R6 was blended in organic phase with neutral PPs 8L6 (composed of leucine, sebacic acid and 1,6-hexanediol). The NCs prepared from the blends were 130-140 nm in size with zeta potential within +20 ÷ +28 mV depending on 8R6/8L6 ratio. The stability studies of fabricated NCs showed that no substantial change of the particle size and distribution and no big particles’ formation is observed after three months storage. In vitro biocompatibility study of the obtained NPs with four different stable cell lines: A549 (human), U-937 (human), RAW264.7 (murine), Hepa 1-6 (murine) showed both type cathionic NCs are biocompatible. The obtained data allow concluding that the obtained CNCs are promising for the application as biodegradable drug delivery vehicles. This work was supported by the joint grant from the Science and Technology Center in Ukraine and Shota Rustaveli National Science Foundation of Georgia #6298 'New biodegradable cationic polymers composed of arginine and spermine-versatile biomaterials for various biomedical applications'.

Keywords: biodegradable polymers, cationic pseudo-proteins, nano-containers, drug delivery vehicles

Procedia PDF Downloads 156