Search results for: micro heat pipe array
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5695

Search results for: micro heat pipe array

2365 Rapid Generation of Octagonal Pyramids on Silicon Wafer for Photovoltaics by Swift Anisotropic Chemical Etching Process

Authors: Sami Iqbal, Azam Hussain, Weiping Wu, Guo Xinli, Tong Zhang

Abstract:

A novel octagonal upright micro-pyramid structure was generated by wet chemical anisotropic etching on a monocrystalline silicon wafer (100). The primary objectives are to reduce front surface reflectance of silicon wafers, improve wettability, enhance surface morphology, and maximize the area coverage by generated octagonal pyramids. Under rigorous control and observation, the etching process' response time was maintained precisely. The experimental outcomes show a significant decrease in the optical surface reflectance of silicon wafers, with the lowest reflectance of 8.98%, as well as enhanced surface structure, periodicity, and surface area coverage of more than 85%. The octagonal silicon pyramid was formed with a high etch rate of 0.41 um/min and a much shorter reaction time with the addition of hydrofluoric acid coupled with magnetic stirring (mechanical agitation) at 300 rpm.

Keywords: octagonal pyramids, rapid etching, solar cells, surface engineering, surface reflectance

Procedia PDF Downloads 101
2364 Magnetic Properties of Layered Rare-Earth Oxy-Carbonates Ln2O2CO3 (Ln = Nd, Sm, and Dy)

Authors: U. Arjun, K. Brinda, M. Padmanabhan, R. Nath

Abstract:

Polycrystalline samples of rare-earth oxy-carbonates Ln2O2CO3 (Ln = Nd, Sm, and Dy) are synthesized, and their structural and magnetic properties are investigated. All of them crystallize in a hexagonal structure with space group P6_3/mmc. They form a double layered structure with frustrated triangular arrangement of rare-earth magnetic ions. An antiferromagnetic transition is observed at TN ≈ 1.25 K, 0.61 K, and 1.21 K for Nd2O2CO3, Sm2O2CO3, and Dy2O2CO3, respectively. From the analysis of magnetic susceptibility, the value of the Curie-Weiss temperature θ_CW is obtained to be ≈ 21.7 K, 18 K, and 10.6 K for Nd2O2CO3, Sm2O2CO3, and Dy2O2CO3, respectively. The magnetic frustration parameter f ( = |θ_CW|/T_N) is calculated to be ≈ 17.4, 31, and 8.8 for Nd2O2CO3, Sm2O2CO3, and Dy2O2CO3, respectively which indicates that Sm2O2CO3 is strongly frustrated compared to its Nd and Dy analogues.

Keywords: chemical synthesis, exchange and superexchange, heat capacity, magnetically ordered materials

Procedia PDF Downloads 355
2363 Stress Analysis of Turbine Blades of Turbocharger Using Structural Steel

Authors: Roman Kalvin, Anam Nadeem, Saba Arif

Abstract:

Turbocharger is a device that is driven by the turbine and increases efficiency and power output of the engine by forcing external air into the combustion chamber. This study focused on the distribution of stress on the turbine blades and total deformation that may occur during its working along with turbocharger to carry out its static structural analysis of turbine blades. Structural steel was selected as the material for turbocharger. Assembly of turbocharger and turbine blades was designed on PRO ENGINEER. Furthermore, the structural analysis is performed by using ANSYS. This research concluded that by using structural steel, the efficiency of engine is improved and by increasing number of turbine blades, more waste heat from combustion chamber is emitted.

Keywords: turbocharger, turbine blades, structural steel, ANSYS

Procedia PDF Downloads 244
2362 Experimental Investigation of Hydrogen Addition in the Intake Air of Compressed Engines Running on Biodiesel Blend

Authors: Hendrick Maxil Zárate Rocha, Ricardo da Silva Pereira, Manoel Fernandes Martins Nogueira, Carlos R. Pereira Belchior, Maria Emilia de Lima Tostes

Abstract:

This study investigates experimentally the effects of hydrogen addition in the intake manifold of a diesel generator operating with a 7% biodiesel-diesel oil blend (B7). An experimental apparatus setup was used to conduct performance and emissions tests in a single cylinder, air cooled diesel engine. This setup consisted of a generator set connected to a wirewound resistor load bank that was used to vary engine load. In addition, a flowmeter was used to determine hydrogen volumetric flowrate and a digital anemometer coupled with an air box to measure air flowrate. Furthermore, a digital precision electronic scale was used to measure engine fuel consumption and a gas analyzer was used to determine exhaust gas composition and exhaust gas temperature. A thermopar was installed near the exhaust collection to measure cylinder temperature. In-cylinder pressure was measured using an AVL Indumicro data acquisition system with a piezoelectric pressure sensor. An AVL optical encoder was installed in the crankshaft and synchronized with in-cylinder pressure in real time. The experimental procedure consisted of injecting hydrogen into the engine intake manifold at different mass concentrations of 2,6,8 and 10% of total fuel mass (B7 + hydrogen), which represented energy fractions of 5,15, 20 and 24% of total fuel energy respectively. Due to hydrogen addition, the total amount of fuel energy introduced increased and the generators fuel injection governor prevented any increases of engine speed. Several conclusions can be stated from the test results. A reduction in specific fuel consumption as a function of hydrogen concentration increase was noted. Likewise, carbon dioxide emissions (CO2), carbon monoxide (CO) and unburned hydrocarbons (HC) decreased as hydrogen concentration increased. On the other hand, nitrogen oxides emissions (NOx) increased due to average temperatures inside the cylinder being higher. There was also an increase in peak cylinder pressure and heat release rate inside the cylinder, since the fuel ignition delay was smaller due to hydrogen content increase. All this indicates that hydrogen promotes faster combustion and higher heat release rates and can be an important additive to all kind of fuels used in diesel generators.

Keywords: diesel engine, hydrogen, dual fuel, combustion analysis, performance, emissions

Procedia PDF Downloads 350
2361 Optimization of Submerged Arc Welding Parameters for Joining SS304 and MS1018

Authors: Jasvinder Singh, Manjinder Singh

Abstract:

Welding of dissimilar materials is a complicated process due to the difference in melting point of two materials. Thermal conductivity and coefficient of thermal expansion of dissimilar materials also different; therefore, residual stresses produced in the weldment and base metal are the most critical problem associated with the joining of dissimilar materials. Tensile strength and impact toughness also reduced due to the residual stresses. In the present research work, an attempt has been made to weld SS304 and MS1018 dissimilar materials by submerged arc welding (SAW). By conducting trail, runs most effective parameters welding current, Arc voltage, welding speed and nozzle to plate distance were selected to weld these materials. The fractional factorial technique was used to optimize the welding parameters. Effect on tensile strength (TS), fracture toughness (FT) and microhardness of weldment were studied. It was concluded that by optimizing welding current, voltage and welding speed the properties of weldment can be enhanced.

Keywords: SAW, Tensile Strength (TS), fracture toughness, micro hardness

Procedia PDF Downloads 538
2360 Effect of Aging Condition on Semisolid Cast 2024 Aluminum Alloy

Authors: S. Wisutmethangoon, S. Pannaray, T. Plookphol, J. Wannasin

Abstract:

2024 Aluminium alloy was squeezed cast by the Gas Induced Semi Solid (GISS) process. Effect of artificial aging on microstructure and mechanical properties of this alloy was studied in the present work. The solutionized specimens were aged hardened at temperatures of 175°C, 200°C, and 225°C under various time durations. The highest hardness of about 77.7 HRE was attained from specimen aged at the temperature of 175 °C for 36 h. Upon investigation the microstructure by using Transmission Electron Microscopy (TEM), the phase was mainly attributed to the strengthening effect in the aged alloy. The apparent activation energy for precipitation hardening of the alloy was calculated as 133,805 J/mol.

Keywords: 2024 aluminium alloy, gas induced semi solid, T6 heat treatment, aged hardening, transmission electron microscopy

Procedia PDF Downloads 312
2359 Rainwater Management in Smart City: Focus in Gomti Nagar Region, Lucknow, Uttar Pradesh, India

Authors: Priyanka Yadav, Rajkumar Ghosh, Alok Saini

Abstract:

Human civilization cannot exist and thrive in the absence of adequate water. As a result, even in smart cities, water plays an important role in human existence. The key causes of this catastrophic water scarcity crisis are lifestyle changes, over-exploitation of groundwater, water over usage, rapid urbanization, and uncontrolled population growth. Furthermore, salty water seeps into deeper aquifers, causing land subsidence. The purpose of this study on artificial groundwater recharge is to address the water shortage in Gomti Nagar, Lucknow. Submersibles are the most common methods of collecting freshwater from groundwater in Gomti Nagar neighbourhood of Lucknow. Gomti Nagar area has a groundwater depletion rate of 1968 m3/day/km2 and is categorized as Zone-A (very high levels) based on the existing groundwater abstraction pattern - A to D. Harvesting rainwater using roof top rainwater harvesting systems (RTRWHs) is an effective method for reducing aquifer depletion in a sustainable water management system. Rainwater collecting using roof top rainwater harvesting systems (RTRWHs) is an effective method for reducing aquifer depletion in a sustainable water conservation system. Due to a water imbalance of 24519 ML/yr, the Gomti Nagar region is facing severe groundwater depletion. According to the Lucknow Development Authority (LDA), the impact of installed RTRWHs (plot area 300 sq. m.) is 0.04 percent of rainfall collected through RTRWHs in Gomti Nagar region of Lucknow. When RTRWHs are deployed in all buildings, their influence will be greater. Bye-laws in India have mandated the installation of RTRWHs on plots greater than 300 sq.m. A better India without any water problem is a pipe dream that may be realized by installing residential and commercial rooftop rainwater collecting systems in every structure. According to the current study, RTRWHs should be used as an alternate source of water to bridge the gap between groundwater recharge and extraction in smart city viz. Gomti Nagar, Lucknow, India.

Keywords: groundwater recharge, RTRWHs, harvested rainwater, rainfall, water extraction

Procedia PDF Downloads 106
2358 The Issue of Online Fake News and Disinformation: Criminal and Criminological Aspects of Prevention

Authors: Fotios Spyropoulos, Evangelia Androulaki, Vasileios Karagiannopoulos, Aristotelis Kompothrekas, Nikolaos Karagiannis

Abstract:

The problem of 'fake news' and 'hoaxes' has dominated in recent years the field of news, politics, economy, safety, and security as dissemination of false information can intensively affect and mislead public discourse and public opinion. The widespread use of internet and social media platforms can substantially intensify these effects, which often include public fear and insecurity. Misinformation, malinformation, and disinformation have also been blamed for affecting election results in multiple countries, and since then, there have been efforts to tackle the phenomenon both on national and international level. The presentation will focus on methods of prevention of disseminating false information on social media and on the internet and will discuss relevant criminological views. The challenges that have arisen for criminal law will be covered, taking into account the potential need for a multi-national approach required in order to mitigate the extent and negative impact of the fake news phenomenon. Finally, the analysis will include a discussion on the potential usefulness of non-legal modalities of regulation and crime prevention, especially situational and social measures of prevention and the possibility of combining an array of methods to achieve better results on national and international level. This project has received funding from the Hellenic Foundation for Research and Innovation (HFRI) and the General Secretariat for Research and Technology (GSRT), under grant agreement No 80529.

Keywords: cybercrime, disinformation, fake news, prevention

Procedia PDF Downloads 142
2357 Voltage and Current Control of Microgrid in Grid Connected and Islanded Modes

Authors: Megha Chavda, Parth Thummar, Rahul Ghetia

Abstract:

This paper presents the voltage and current control of microgrid accompanied by the synchronization of microgrid with the main utility grid in both islanded and grid-connected modes. Distributed Energy Resources (DERs) satisfy the wide-spread power demand of consumer by behaving as a micro source for a low voltage (LV) grid or microgrid. Synchronization of the microgrid with the main utility grid is done using PLL and PWM gate pulse generation technique is used for the Voltage Source Converter. Potential Function method achieves the voltage and current control of this microgrid in both islanded and grid-connected modes. A low voltage grid consisting of three distributed generators (DG) is considered for the study and is simulated in time-domain using PSCAD/EMTDC software. The simulation results depict the appropriateness of voltage and current control of microgrid and synchronization of microgrid with the medium voltage (MV) grid.

Keywords: microgrid, distributed energy resources, voltage and current control, voltage source converter, pulse width modulation, phase locked loop

Procedia PDF Downloads 414
2356 A Literature Review on Emotion Recognition Using Wireless Body Area Network

Authors: Christodoulou Christos, Politis Anastasios

Abstract:

The utilization of Wireless Body Area Network (WBAN) is experiencing a notable surge in popularity as a result of its widespread implementation in the field of smart health. WBANs utilize small sensors implanted within the human body to monitor and record physiological indicators. These sensors transmit the collected data to hospitals and healthcare facilities through designated access points. Bio-sensors exhibit a diverse array of shapes and sizes, and their deployment can be tailored to the condition of the individual. Multiple sensors may be strategically placed within, on, or around the human body to effectively observe, record, and transmit essential physiological indicators. These measurements serve as a basis for subsequent analysis, evaluation, and therapeutic interventions. In conjunction with physical health concerns, numerous smartwatches are engineered to employ artificial intelligence techniques for the purpose of detecting mental health conditions such as depression and anxiety. The utilization of smartwatches serves as a secure and cost-effective solution for monitoring mental health. Physiological signals are widely regarded as a highly dependable method for the recognition of emotions due to the inherent inability of individuals to deliberately influence them over extended periods of time. The techniques that WBANs employ to recognize emotions are thoroughly examined in this article.

Keywords: emotion recognition, wireless body area network, WBAN, ERC, wearable devices, psychological signals, emotion, smart-watch, prediction

Procedia PDF Downloads 50
2355 Categorization of Biosolids, a Vital Biological Resource for Sustainable Agriculture

Authors: Susmita Sharma, Pankaj Pathak

Abstract:

Biosolids are by-products of municipal and industrial wastewater treatment process. The generation of the biosolids is increasing at an alarming rate due to the implementation of strict environmental legislation to improve the quality of discharges from wastewater treatment plant. As such, proper management and safe disposal of sewage sludge have become a worldwide topic of research. Biosolids, rich in organic matter and essential micro and macronutrients; can be used as a soil conditioner, to cut fertilizer costs and create favorable conditions for vegetation. However, it also contains pathogens and heavy metals which are undesirable as they are harmful to both humans and the environment. Therefore, for safe utilization of biosolids for land application purposes, categorization of the contaminant and pathogen is mandatory. In this context, biosolids collected from a wastewater treatment plant in Maharashtra are utilized to determine its physical, chemical and microbiological attributes. This study would ascertain, if the use of these materials from the specific site, are suitable for agriculture. Further, efforts have also been made to present the internationally acceptable legal standards and guidelines for biosolids management or application.

Keywords: biosolids, sewage, heavy metal, sustainable agriculture

Procedia PDF Downloads 327
2354 Shifting Paradigms for Micro, Small, and Medium Enterprises in the Global Construction Market: The Crucial Roles of Technology and Sustainability

Authors: Sohrab Donyavi

Abstract:

The global construction market is experiencing significant shifts, particularly for micro, small, and medium enterprises (MSMEs), driven by the dual imperatives of technological advancement and sustainability. MSMEs play a crucial role in the construction industry, often being the backbone of economic development and fostering entrepreneurial skills. However, their dominance has also led to industry fragmentation and challenges such as technological lag and declining profit margins, which threaten their global competitiveness. This paper explores the integration of technology and sustainability in reshaping the paradigms for MSMEs in the construction sector. The adoption of advanced technologies, such as building information modeling (BIM) and AI, are pivotal for promoting sustainable construction practices. These tools enable MSMEs to design and construct environmentally responsible buildings, thereby contributing to the industry's sustainability goals. The research highlights that achieving sustainability in construction involves significant efforts in conservation, recycling, and the development of new materials and technologies. This approach aligns with the broader goal of integrating economic, environmental, and social aims into firm objectives to create long-term value while ensuring the protection of natural resources for future generations. Critical factors for implementing sustainable oriented innovation (SOI) practices in MSMEs include top management support, government initiatives, and financial resources. These factors are essential for fostering an environment conducive to innovation and sustainability. Furthermore, the empowerment of MSMEs through improved governance, market-oriented programs, sustainable productivity growth, and access to financing is vital. In developing regions like Indonesia, these strategies are crucial for enabling MSMEs to thrive in the face of globalization. The tendency of large firms to grow larger with the help of technology and globalization has led to the emergence of a high-technology oligopoly, posing a significant challenge to traditional construction practices. This shift necessitates that MSMEs adapt by leveraging technology and embracing sustainable practices to remain competitive. The research underscores the importance of integrating technology and sustainability not only as a competitive strategy but also as a means to contribute to the global effort of environmental conservation and sustainable development. This paper concludes that the successful integration of technology and sustainability in MSMEs requires a multifaceted approach. It involves the adoption of advanced technological tools, strong support from top management, proactive government policies, and access to financial resources. By addressing these factors, MSMEs can overcome the challenges of industry fragmentation, technological lag, and declining profit margins. Ultimately, this integration will enable MSMEs to play a pivotal role in driving the construction industry towards a more sustainable and technologically advanced future. The findings and recommendations are based on a comprehensive case study utilizing semi-structured interviews, observations, questionnaires, and document reviews.

Keywords: MSMEs, construction, technology, sustainability, innovation

Procedia PDF Downloads 38
2353 Study on Liquid Nitrogen Gravity Circulation Loop for Cryopumps in Large Space Simulator

Authors: Weiwei Shan, Wenjing Ding, Juan Ning, Chao He, Zijuan Wang

Abstract:

Gravity circulation loop for the cryopumps of the space simulator is introduced, and two phase mathematic model of flow heat transfer is analyzed as well. Based on this model, the liquid nitrogen (LN2) gravity circulation loop including its equipment and layout is designed and has served as LN2 feeding system for cryopumps in one large space simulator. With the help of control software and human machine interface, this system can be operated flexibly, simply, and automatically under four conditions. When running this system, the results show that the cryopumps can be cooled down and maintained under the required temperature, 120 K.

Keywords: cryopumps, gravity circulation loop, liquid nitrogen, two-phase

Procedia PDF Downloads 401
2352 Practice and Understanding of Fracturing Renovation for Risk Exploration Wells in Xujiahe Formation Tight Sandstone Gas Reservoir

Authors: Fengxia Li, Lufeng Zhang, Haibo Wang

Abstract:

The tight sandstone gas reservoir in the Xujiahe Formation of the Sichuan Basin has huge reserves, but its utilization rate is low. Fracturing and stimulation are indispensable technologies to unlock their potential and achieve commercial exploitation. Slickwater is the most widely used fracturing fluid system in the fracturing and renovation of tight reservoirs. However, its viscosity is low, its sand-carrying performance is poor, and the risk of sand blockage is high. Increasing the sand carrying capacity by increasing the displacement will increase the frictional resistance of the pipe string, affecting the resistance reduction performance. The variable viscosity slickwater can flexibly switch between different viscosities in real-time online, effectively overcoming problems such as sand carrying and resistance reduction. Based on a self-developed indoor loop friction testing system, a visualization device for proppant transport, and a HAAKE MARS III rheometer, a comprehensive evaluation was conducted on the performance of variable viscosity slickwater, including resistance reduction, rheology, and sand carrying. The indoor experimental results show that: 1. by changing the concentration of drag-reducing agents, the viscosity of the slippery water can be changed between 2~30mPa. s; 2. the drag reduction rate of the variable viscosity slickwater is above 80%, and the shear rate will not reduce the drag reduction rate of the liquid; under indoor experimental conditions, 15mPa. s of variable viscosity and slickwater can basically achieve effective carrying and uniform placement of proppant. The layered fracturing effect of the JiangX well in the dense sandstone of the Xujiahe Formation shows that the drag reduction rate of the variable viscosity slickwater is 80.42%, and the daily production of the single layer after fracturing is over 50000 cubic meters. This study provides theoretical support and on-site experience for promoting the application of variable viscosity slickwater in tight sandstone gas reservoirs.

Keywords: slickwater, hydraulic fracturing, dynamic sand laying, drag reduction rate, rheological properties

Procedia PDF Downloads 75
2351 Experimental Study of the Microstructure and Properties of Aluminum Alloy Composites Reinforced with Pod Ash Nanoparticles Composites

Authors: A. P .I. Popoola, V. S. Aigbodion, O. S. I. Fayomi

Abstract:

The experimental study of the microstructure and properties of Al-Cu-Mg alloy/bean pod ash (BPA) nanoparticles was investigated. The aluminium matrix composites (AMCs) were produced by varying the BPA nanoparticles from 1-4wt%. The microstructure and phases of the composites produced were examined by SEM/EDS and XRD. Properties such as: hardness, tensile strength, impact energy, fatigue and wear were evaluated. The results showed that tensile strength and hardness values increased by 35 and 44.1% at 4wt% BPA nanoparticles with appreciable impact energy. The fatigue limit of 167MPa, 135 MPa and 75Mpa were obtained for the nano-particle (55nm), micro-particle (100µm) BPA composites and unreinforced alloy respectively. The wear properties of the as-cast Al–3.7%Cu-1.4%Mg/BPA nanoparticle have been improved significantly even with a low weight percent of BPA nanoparticle. The properties of the as-cast aluminium nanoparticles (MMNCs) have been improved significantly even with a low weight percent of nano-sized BPAp.

Keywords: bean pod ash nanoparticles, al-cu-mg alloy, mechanical properties, wear, microstructures

Procedia PDF Downloads 266
2350 Hydrometallurgical Production of Nickel Ores from Field Bugetkol

Authors: A. T. Zhakiyenova, E. E. Zhatkanbaev, Zh. K. Zhatkanbaeva

Abstract:

Nickel plays an important role in mechanical engineering and creation of military equipment; practically all steel are alloyed by nickel and other metals for receiving more durable, heat-resistant, corrosion-resistant steel and cast iron. There are many ways of processing of nickel in the world. Generally, it is igneous metallurgy methods. In this article, the review of majority existing ways of technologies of processing silicate nickel - cobalt ores is considered. Leaching of ores of a field Bugetkol is investigated by solution of sulfuric acid. We defined a specific consumption of sulfuric acid in relation to the mass of ore and to the mass of metal.

Keywords: cobalt, degree of extraction, hydrometallurgy, igneous metallurgy, leaching, matte, nickel

Procedia PDF Downloads 385
2349 Improving the Uniformity of Electrostatic Meter’s Spatial Sensitivity

Authors: Mohamed Abdalla, Ruixue Cheng, Jianyong Zhang

Abstract:

In pneumatic conveying, the solids are mixed with air or gas. In industries such as coal fired power stations, blast furnaces for iron making, cement and flour processing, the mass flow rate of solids needs to be monitored or controlled. However the current gas-solids two-phase flow measurement techniques are not as accurate as the flow meters available for the single phase flow. One of the problems that the multi-phase flow meters to face is that the flow profiles vary with measurement locations and conditions of pipe routing, bends, elbows and other restriction devices in conveying system as well as conveying velocity and concentration. To measure solids flow rate or concentration with non-even distribution of solids in gas, a uniform spatial sensitivity is required for a multi-phase flow meter. However, there are not many meters inherently have such property. The circular electrostatic meter is a popular choice for gas-solids flow measurement with its high sensitivity to flow, robust construction, low cost for installation and non-intrusive nature. However such meters have the inherent non-uniform spatial sensitivity. This paper first analyses the spatial sensitivity of circular electrostatic meter in general and then by combining the effect of the sensitivity to a single particle and the sensing volume for a given electrode geometry, the paper reveals first time how a circular electrostatic meter responds to a roping flow stream, which is much more complex than what is believed at present. The paper will provide the recent research findings on spatial sensitivity investigation at the University of Tees side based on Finite element analysis using Ansys Fluent software, including time and frequency domain characteristics and the effect of electrode geometry. The simulation results will be compared tothe experimental results obtained on a large scale (14” diameter) rig. The purpose of this research is paving a way to achieve a uniform spatial sensitivity for the circular electrostatic sensor by mean of compensation so as to improve overall accuracy of gas-solids flow measurement.

Keywords: spatial sensitivity, electrostatic sensor, pneumatic conveying, Ansys Fluent software

Procedia PDF Downloads 367
2348 Geophysical Exploration of Aquifer Zones by (Ves) Method at Ayma-Kharagpur, District Paschim Midnapore, West Bengal

Authors: Mayank Sharma

Abstract:

Groundwater has been a matter of great concern in the past years due to the depletion in the water table. This has resulted from the over-exploitation of groundwater resources. Sub-surface exploration of groundwater is a great way to identify the groundwater potential of an area. Thus, in order to meet the water needs for irrigation in the study area, there was a need for a tube well to be installed. Therefore, a Geophysical investigation was carried out to find the most suitable point of drilling and sinking of tube well that encounters an aquifer. Hence, an electrical resistivity survey of geophysical exploration was used to know the aquifer zones of the area. The Vertical Electrical Sounding (VES) method was employed to know the subsurface geology of the area. Seven vertical electrical soundings using Schlumberger electrode array were carried out, having the maximum AB electrode separation of 700m at selected points in Ayma, Kharagpur-1 block of Paschim Midnapore district, West Bengal. The VES was done using an IGIS DDR3 Resistivity meter up to an approximate depth of 160-180m. The data was interpreted, processed and analyzed. Based on all the interpretations using the direct method, the geology of the area at the points of sounding was interpreted. It was established that two deeper clay-sand sections exist in the area at a depth of 50-70m (having resistivity range of 40-60ohm-m) and 70-160m (having resistivity range of 25-35ohm-m). These aquifers will provide a high yield of water which would be sufficient for the desired irrigation in the study area.

Keywords: VES method, Schlumberger method, electrical resistivity survey, geophysical exploration

Procedia PDF Downloads 196
2347 Trends and Prospects for the Development of Georgian Wine Market

Authors: E. Kharaishvili, M. Chavleishvili, M. Natsvaladze

Abstract:

The article presents the trends in Georgian wine market development and evaluates the competitive advantages of Georgia to enter the wine market based on its customs, traditions and historical practices combined with modern technologies. In order to analyze the supply of wine, dynamics of vineyard land area and grape varieties are discussed, trends in wine production are presented, trends in export and import are evaluated, local wine market, its micro and macro environments are studied and analyzed based on the interviews with experts and analysis of initial recording materials. For strengthening its position on the international market, the level of competitiveness of Georgian wine is defined, which is evaluated by “ex-ante” and “ex-post” methods, as well as by four basic and two additional factors of the Porter’s diamond method; potential advantages and disadvantages of Georgian wine are revealed. Conclusions are made by identifying the factors that hinder the development of Georgian wine market. Based on the conclusions, relevant recommendations are developed.

Keywords: Georgian wine market, competitive advantage, bio wine, export-import, Porter's diamond model

Procedia PDF Downloads 388
2346 Development of Quasi Real-Time Comprehensive System for Earthquake Disaster

Authors: Zhi Liu, Hui Jiang, Jin Li, Kunhao Chen, Langfang Zhang

Abstract:

Fast acquisition of the seismic information and accurate assessment of the earthquake disaster is the key problem for emergency rescue after a destructive earthquake. In order to meet the requirements of the earthquake emergency response and rescue for the cities and counties, a quasi real-time comprehensive evaluation system for earthquake disaster is developed. Based on monitoring data of Micro-Electro-Mechanical Systems (MEMS) strong motion network, structure database of a county area and the real-time disaster information by the mobile terminal after an earthquake, fragility analysis method and dynamic correction algorithm are synthetically obtained in the developed system. Real-time evaluation of the seismic disaster in the county region is finally realized to provide scientific basis for seismic emergency command, rescue and assistant decision.

Keywords: quasi real-time, earthquake disaster data collection, MEMS accelerometer, dynamic correction, comprehensive evaluation

Procedia PDF Downloads 213
2345 Inhibitory Effect of P2Y1R Agonist 1-Indolinoalkyl 2-Phenolic Derivative on Prostate Cancer Cell Proliferation via the MAPK Signalling

Authors: Hien Thi Thu Le, Nuno Rafael Candeias, Olli Yli-Harja, Meenakshisundaram Kandhavelu

Abstract:

Purinergic receptor 1 (P2Y1R) is the potential therapeutic target for inducing prostate cancer (PCa) cell death. Recently, 1-indolinoalkyl 2-phenolic derivative, HIC, was identified as a P2Y1R agonist that increases apoptosis and inhibits cell proliferation of PCa. However, the biological effects of HIC have not been extensively studied at the molecular level. In the present study, we have investigated the anticancer effects of HIC and the molecular mechanisms underlying in PCa cells. Half maximal inhibitory concentration (IC₅₀) of HIC was measured as 15.98 μM and 15.64 μM for DU145 and PC3 cells, respectively. In addition, we found that HIC inhibited cell growth and metastasis of PC3 and DU145 cells colonies, spheroid areas, and migrated cells. RNA seq analysis revealed significant changes of over 3000 genes (p value < 0.05) upon HIC treatment in PC3 and DU145 cells. Genes involved in DNA damage, apoptosis, cell cycle arrest at G1/S phase were modulated by HIC treatment. MAPK and NF-κB protein array revealed the increased expression of ERK1/2, JNK1/2, p53 phosphorylation, and p53 protein. ERK1/2 and JNK1/2 activations are known to increase the stabilization of p53, a tumor suppressor protein, which is required to arrest the cell cycle at G1/S phase and cause cell death of PCa cells. Overall, our results suggest that HIC can serve as a multi-dimensional chemotherapeutic agent possessing strong cytotoxic, anti-cancer, and anti-metastasis against PCa growth.

Keywords: prostate cancer, P2Y1 receptor, apoptosis, metastasis

Procedia PDF Downloads 133
2344 A Qualitative Study Examining the Process of EFL Course Design from the Perspectives of Teachers

Authors: Iman Al Khalidi

Abstract:

Recently, English has become the language of globalization and technology. In turn, this has resulted in a seemingly bewildering array of influences and trends in the domain of TESOL curriculum. In light of these changes, higher education has to provide a new and more powerful kind of education. It should prepare students to be more engaged citizens, more capable to solve complex problems at work, and well prepared to lead meaningful life. In response to this, universities, colleges, schools, and departments have to work out in light of the requirements and challenges of the global and technological era. Consequently they have to focus on the adoption of contemporary curriculum which goes in line with the pedagogical shifts from teaching –centered approach to learning centered approach. Ideally, there has been noticeable emphasis on the crucial importance of developing and professionalizing teachers in order to engage them in the process of curriculum development and action research. This is a qualitative study that aims at understanding and exploring the process of designing EFL courses by teachers at the tertiary level from the perspectives of the participants in a professional context in TESOL, Department of English, a private college in Oman. It is a case study that stands on the philosophy of the qualitative approach. It employs multi methods for collecting qualitative data: semi-structured interviews with teachers, focus group discussions with students, and document analysis. The collected data have been analyzed qualitatively by adopting Miles and Huberman's Approach using procedures of reduction, coding, displaying and conclusion drawing and verification.

Keywords: course design, components of course design, case study, data analysis

Procedia PDF Downloads 545
2343 A Qualitative Study Examining the Process of Course Design from the Perspectives of Teachers

Authors: Iman Al Khalidi

Abstract:

Recently, English has become the language of globalization and technology. In turn, this has resulted in a seemingly bewildering array of influences and trends in the domain of TESOL curriculum. In light of these changes, higher education has to provide a new and more powerful kind of education. It should prepare students to be more engaged citizens, more capable to solve complex problems at work, and well prepared to lead a meaningful life. In response to this, universities, colleges, schools, and departments have to work out in light of the requirements and challenges of the global and technological era. Consequently, they have to focus on the adoption of contemporary curriculum which goes in line with the pedagogical shifts from teaching –centered approach to learning centered approach. Ideally, there has been noticeable emphasis on the crucial importance of developing and professionalizing teachers in order to engage them in the process of curriculum development and action research. This is a qualitative study that aims at understanding and exploring the process of designing EFL courses by teachers at the tertiary level from the perspectives of the participants in a professional context in TESOL, Department of English, a private college in Oman. It is a case study that stands on the philosophy of the qualitative approach. It employs multi-methods for collecting qualitative data: semi-structured interviews with teachers, focus group discussions with students, and document analysis. The collected data have been analyzed qualitatively by adopting Miles and Huberman's Approach using procedures of reduction, coding, displaying, and conclusion drawing and verification.

Keywords: course design, components of course design, case study, data analysis

Procedia PDF Downloads 442
2342 Limiting Fracture Stress of Composite Ceramics with Symmetric Triangle Eutectic

Authors: Jian Zheng, Jinfeng Yu, Xinhua Ni

Abstract:

The limiting fracture stress predicting model of composite ceramics with symmetric triangle eutectic was established based on its special microscopic structure. The symmetric triangle eutectic is consisted of matrix, the strong constraint inter-phase and reinforced fiber inclusions which are 120 degrees uniform symmetrical distribution. Considering the conditions of the rupture of the cohesive bond between matrix and fibers in eutectic and the stress concentration effect at the fiber end, the intrinsic fracture stress of eutectic was obtained. Based on the biggest micro-damage strain in eutectic, defining the load function, the macro-damage fracture stress of symmetric triangle eutectic was determined by boundary conditions. Introducing the conception of critical zone, the theoretical limiting fracture stress forecasting model of composite ceramics was got, and the stress was related to the fiber size and fiber volume fraction in eutectic. The calculated results agreed with the experimental results in the literature.

Keywords: symmetric triangle eutectic, composite ceramics, limiting stress, intrinsic fracture stress

Procedia PDF Downloads 258
2341 Antiulcer Potential of Heme Oxygenase-1 Inducers

Authors: Gaweł Magdalena, Lipkowska Anna, Olbert Magdalena, Frąckiewicz Ewelina, Librowski Tadeusz, Nowak Gabriel, Pilc Andrzej

Abstract:

Heme oxygenase-1 (HO-1), also known as heat shock protein 32 (HSP32), has been shown to be implicated in cytoprotection in various organs. Its activation plays a significant role in acute and chronic inflammation, protecting cells from oxidative injury and apoptosis. This inducible isoform of HO catalyzes the first and rate-limiting step in heme degradation to produce equimolar quantities of biologically active products: carbon monoxide (CO), free iron and biliverdin. CO has been reported to possess anti-apoptotic properties. Moreover, it inhibits the production of proinflammatory cytokines and stimulates the synthesis of the anti-inflammatory interleukin-10 (IL-10), as well as promotes vasodilatation at sites of inflammation. The second product of catalytic HO-1 activity, free cytotoxic iron, is promptly sequestered into the iron storage protein ferritin, which lowers the pro-oxidant state of the cell. The third product, biliverdin, is subsequently converted by biliverdin reductase into the bile pigment bilirubin, the most potent endogenous antioxidant among the constituents of human serum, which modulates immune effector functions and suppresses inflammatory response. Furthermore, being one of the so-called stress proteins, HO-1 adaptively responds to different stressors, such as reactive oxygen species (ROS), inflammatory cytokines and heavy metals and thus protects cells against such conditions as ischemia, hemorrhagic shock, heat shock or hypoxia. It is suggested that pharmacologic modulation of HO-1 may represent an effective strategy for prevention of stress and drug-induced gastrointestinal toxicity. HO-1 is constitutively expressed in normal gastric, intestinal and colonic mucosa and up-regulated during inflammation. It has been proven that HO-1 up-regulated by hemin, heme and cobalt-protoporphyrin ameliorates experimental colitis. In addition, the up-regulation of HO-1 partially explains the mechanism of action of 5-aminosalicylic acid (5-ASA), which is used clinically as an anti-colitis agent. In 2009 Ueda et al. has reported for the first time that mucosal protection by Polaprezinc, a chelate compound of zinc and L-carnosine used as an anti-ulcer drug in Japan, is also attributed to induction of HO-1 in the stomach. Since then, inducers of HO-1 are desired subject of research, as they may constitute therapeutically effective anti-ulcer drugs.

Keywords: heme oxygenase-1, gastric lesions, gastroprotection, Polaprezinc

Procedia PDF Downloads 504
2340 Study of the Microstructural Evolution and Precipitation Kinetic in AZ91 Alloys

Authors: A. Azizi, M. Toubane, L. Chetibi

Abstract:

Differential scanning calorimetry (DSC) is a widely used technique for the study of phase transformations, particularly in the study of precipitation. The kinetic of the precipitation and dissolution is always related to the concept of activation energy Ea. The determination of the activation energy gives important information about the kinetic of the precipitation reaction. In this work, we were interested in the study of the isothermal and non-isothermal treatments on the decomposition of the supersaturated solid solution in the alloy AZ91 (Mg-9 Al-Zn 1-0.2 Mn. mass fraction %), using Differential Calorimetric method. Through this method, the samples were heat treated up to 425° C, using different rates. To calculate the apparent activation energies associated with the formation of precipitated phases, we used different isoconversional methods. This study was supported by other analysis: X-ray diffraction and microhardness measurements.

Keywords: calorimetric, activation energy, AZ91 alloys, microstructural evolution

Procedia PDF Downloads 440
2339 Properties of Cement Pastes with Different Particle Size Fractions of Metakaolin

Authors: M. Boháč, R. Novotný, F. Frajkorová, R. S. Yadav, T. Opravil, M. Palou

Abstract:

Properties of Portland cement mixtures with various fractions of metakaolin were studied. 10 % of Portland cement CEM I 42.5 R was replaced by different fractions of high reactivity metakaolin with defined chemical and mineralogical properties. Various fractions of metakaolin were prepared by jet mill classifying system. There is a clear trend between fineness of metakaolin and hydration heat development. Due to metakaolin presence in mixtures the compressive strength development of mortars is rather slower for coarser fractions but 28-day flexural strengths are improved for all fractions of metakaoline used in mixtures compared to reference sample of pure Portland cement. Yield point, plastic viscosity and adhesion of fresh pastes are considerably influenced by fineness of metakaolin used in cement pastes.

Keywords: calorimetry, cement, metakaolin fineness, rheology, strength

Procedia PDF Downloads 414
2338 A Precision Medicine Approach to Sickle Cell Disease by Targeting the Adhesion Interactome

Authors: Anthara Vivek, Manisha Shukla, Mahesh Narayan, Prakash Narayan

Abstract:

Sickle cell disease disproportionately affects sub-Saharan Africa and certain tribal populaces in India and has consequently drawn little intertest from Pharma. In sickle cell patients, adhesion of erythrocytes or reticulocytes to one another and the vessel wall results in painful ischemic episodes with few, if any, effective treatments for vaso-occlusive crises. Identification of disease-associated adhesion markers on erythrocytes or reticulocytes might inform the use of more effective therapies against vaso-occlusive crises. Increased expression of one or more of bcam, itga4, cd44, cd47, rap1a, vcam1, or icam4 has been reported in sickle cell subjects. Using the miRNet ontology knowledgebase, peripheral blood interactomes were generated by seeding various combinations of the afore-referenced mRNA. These interactomes yielded an array of miR targets. As examples, targeting hsa-miR-155-5p can potentially neutralize the rap1a-bcam-cd44-itga4-vcam1 erythrocyte/reticulocyte adhesion interactome whereas targeting hsa-miRs-103a-3p or 107 can potentially neutralize adhesion in cells overexpressing icam4-cd47-bcam-itga4-cd36. AM3380 (MIRacle™) is an off-the shelf hsa-miR-155-5p agomiR that can potentially neutralize the rap1a-bcam-cd44-itga4-vcam1 signaling axis. Phlebotomy coupled with transcriptomics represents a potentially feasible and effective precision medicine strategy to mitigate vaso-occlusive crises in sickle cell patients.

Keywords: adhesion, interactome, precision, medicine

Procedia PDF Downloads 77
2337 Thermodynamic Trends in Co-Based Alloys via Inelastic Neutron Scattering

Authors: Paul Stonaha, Mariia Romashchenko, Xaio Xu

Abstract:

Magnetic shape memory alloys (MSMAs) are promising technological materials for a range of fields, from biomaterials to energy harvesting. We have performed inelastic neutron scattering on two powder samples of cobalt-based high-entropy MSMAs across a range of temperatures in an effort to compare calculations of thermodynamic properties (entropy, specific heat, etc.) to the measured ones. The measurements were correct for multiphonon scattering and multiple scattering contributions. We present herein the neutron-weighted vibrational density of states. Future work will utilize DFT calculations of the disordered lattice to correct for the neutron weighting and retrieve the true thermodynamical properties.

Keywords: neutron scattering, vibrational dynamics, computational physics, material science

Procedia PDF Downloads 32
2336 Climate Physical Processes Mathematical Modeling for Dome-Like Traditional Residential Building

Authors: Artem Sedov, Aigerim Uyzbayeva, Valeriya Tyo

Abstract:

The presented article is showing results of dynamic modeling with Mathlab software of optimal automatic room climate control system for two experimental houses in Astana, one of which has circle plan and the other one has square plan. These results are showing that building geometry doesn't influence on climate system PID-controls configuring. This confirms theoretical implication that optimal automatic climate control system parameters configuring should depend on building's internal space volume, envelope heat transfer, number of people inside, supply ventilation air flow and outdoor temperature.

Keywords: climate control system, climate physics, dome-like building, mathematical modeling

Procedia PDF Downloads 366