Search results for: Green's Matrix
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4254

Search results for: Green's Matrix

924 Examining the Relationship between Concussion and Neurodegenerative Disorders: A Review on Amyotrophic Lateral Sclerosis and Alzheimer’s Disease

Authors: Edward Poluyi, Eghosa Morgan, Charles Poluyi, Chibuikem Ikwuegbuenyi, Grace Imaguezegie

Abstract:

Background: Current epidemiological studies have examined the associations between moderate and severe traumatic brain injury (TBI) and their risks of developing neurodegenerative diseases. Concussion, also known as mild TBI (mTBI), is however quite distinct from moderate or severe TBIs. Only few studies in this burgeoning area have examined concussion—especially repetitive episodes—and neurodegenerative diseases. Thus, no definite relationship has been established between them. Objectives : This review will discuss the available literature linking concussion and amyotrophic lateral sclerosis (ALS) and Alzheimer’s disease (AD). Materials and Methods: Given the complexity of this subject, a realistic review methodology was selected which includes clarifying the scope and developing a theoretical framework, developing a search strategy, selection and appraisal, data extraction, and synthesis. A detailed literature matrix was set out in order to get relevant and recent findings on this topic. Results: Presently, there is no objective clinical test for the diagnosis of concussion because the features are less obvious on physical examination. Absence of an objective test in diagnosing concussion sometimes leads to skepticism when confirming the presence or absence of concussion. Intriguingly, several possible explanations have been proposed in the pathological mechanisms that lead to the development of some neurodegenerative disorders (such as ALS and AD) and concussion but the two major events are deposition of tau proteins (abnormal microtubule proteins) and neuroinflammation, which ranges from glutamate excitotoxicity pathways and inflammatory pathways (which leads to a rise in the metabolic demands of microglia cells and neurons), to mitochondrial function via the oxidative pathways.

Keywords: amyotrophic lateral sclerosis, Alzheimer's disease, mild traumatic brain injury, neurodegeneration

Procedia PDF Downloads 87
923 Viscoelastic Properties of Sn-15%Pb Measured in an Oscillation Test

Authors: Gerardo Sanjuan Sanjuan, Ángel Enrique Chavéz Castellanos

Abstract:

The knowledge of the rheological behavior of partially solidified metal alloy is an important issue when modeling and simulation of die filling in semisolid processes. Many experiments for like steady state, the step change in shear rate tests, shear stress ramps have been carried out leading that semi-solid alloys exhibit shear thinning, thixotropic behavior and yield stress. More advanced investigation gives evidence some viscoelastic features can be observed. The viscoelastic properties of materials are determinate by transient or dynamic methods; unfortunately, sparse information exists about oscillation experiments. The aim of this present work is to use small amplitude oscillatory tests for knowledge properties such as G´ and G´´. These properties allow providing information about materials structure. For this purpose, we investigated tin-lead alloy (Sn-15%Pb) which exhibits a similar microstructure to aluminum alloys and is the classic alloy for semisolid thixotropic studies. The experiments were performed with parallel plates rheometer AR-G2. Initially, the liquid alloy is cooled down to the semisolid range, a specific temperature to guarantee a constant fraction solid. Oscillation was performed within the linear viscoelastic regime with a strain sweep. So, the loss modulus G´´, the storage modulus G´ and the loss angle (δ) was monitored. In addition a frequency sweep at a strain below the critical strain for characterized its structure. This provides more information about the interactions among solid particles on a liquid matrix. After testing, the sample was removed then cooled, sectioned and examined metallographically. These experiments demonstrate that the viscoelasticity is sensitive to the solid fraction, and is strongly influenced by the shape and size of particles solid.

Keywords: rheology, semisolid alloys, thixotropic, viscoelasticity

Procedia PDF Downloads 373
922 Hedgerow Detection and Characterization Using Very High Spatial Resolution SAR DATA

Authors: Saeid Gharechelou, Stuart Green, Fiona Cawkwell

Abstract:

Hedgerow has an important role for a wide range of ecological habitats, landscape, agriculture management, carbon sequestration, wood production. Hedgerow detection accurately using satellite imagery is a challenging problem in remote sensing techniques, because in the special approach it is very similar to line object like a road, from a spectral viewpoint, a hedge is very similar to a forest. Remote sensors with very high spatial resolution (VHR) recently enable the automatic detection of hedges by the acquisition of images with enough spectral and spatial resolution. Indeed, recently VHR remote sensing data provided the opportunity to detect the hedgerow as line feature but still remain difficulties in monitoring the characterization in landscape scale. In this research is used the TerraSAR-x Spotlight and Staring mode with 3-5 m resolution in wet and dry season in the test site of Fermoy County, Ireland to detect the hedgerow by acquisition time of 2014-2015. Both dual polarization of Spotlight data in HH/VV is using for detection of hedgerow. The varied method of SAR image technique with try and error way by integration of classification algorithm like texture analysis, support vector machine, k-means and random forest are using to detect hedgerow and its characterization. We are applying the Shannon entropy (ShE) and backscattering analysis in single and double bounce in polarimetric analysis for processing the object-oriented classification and finally extracting the hedgerow network. The result still is in progress and need to apply the other method as well to find the best method in study area. Finally, this research is under way to ahead to get the best result and here just present the preliminary work that polarimetric image of TSX potentially can detect the hedgerow.

Keywords: TerraSAR-X, hedgerow detection, high resolution SAR image, dual polarization, polarimetric analysis

Procedia PDF Downloads 228
921 Low-Impact Development Strategies Assessment for Urban Design

Authors: Y. S. Lin, H. L. Lin

Abstract:

Climate change and land-use change caused by urban expansion increase the frequency of urban flooding. To mitigate the increase in runoff volume, low-impact development (LID) is a green approach for reducing the area of impervious surface and managing stormwater at the source with decentralized micro-scale control measures. However, the current benefit assessment and practical application of LID in Taiwan is still tending to be development plan in the community and building site scales. As for urban design, site-based moisture-holding capacity has been common index for evaluating LID’s effectiveness of urban design, which ignore the diversity, and complexity of the urban built environments, such as different densities, positive and negative spaces, volumes of building and so on. Such inflexible regulations not only probably make difficulty for most of the developed areas to implement, but also not suitable for every different types of built environments, make little benefits to some types of built environments. Looking toward to enable LID to strength the link with urban design to reduce the runoff in coping urban flooding, the research consider different characteristics of different types of built environments in developing LID strategy. Classify the built environments by doing the cluster analysis based on density measures, such as Ground Space Index (GSI), Floor Space Index (FSI), Floors (L), and Open Space Ratio (OSR), and analyze their impervious surface rates and runoff volumes. Simulate flood situations by using quasi-two-dimensional flood plain flow model, and evaluate the flood mitigation effectiveness of different types of built environments in different low-impact development strategies. The information from the results of the assessment can be more precisely implement in urban design. In addition, it helps to enact regulations of low-Impact development strategies in urban design more suitable for every different type of built environments.

Keywords: low-impact development, urban design, flooding, density measures

Procedia PDF Downloads 330
920 Response of Post-harvest Treatments on Shelf Life, Biochemical and Microbial Quality of Banana Variety Red Banana

Authors: Karishma Sebastian, Pavethra A., Manjula B. S., K. N. Satheeshan, Jenita Thinakaran

Abstract:

Red Banana is a popular variety of banana with strong market demand. Its ripe fruits are less resistant to transportation, complicating logistics. Moreover, as it is a climacteric fruit, its post-harvest shelf life is limited. The current study aimed to increase the postharvest shelf life of Red Banana fruits by adopting different postharvest treatments. Fruit bunches of Red Banana were harvested at the mature green stage, separated into hands, precooled, subjected to 12 treatments, and stored in Corrugated Fibre Board boxes till the end of shelf life under ambient conditions. Fruits coated with 10% bee wax + 0.5% clove oil (T₄), fruits subjected to coating with 10% bee wax and packaging with potassium permanganate (T₉), and fruits dipped in hot water at 50°C for 10 minutes and packaging with potassium permanganate (T₁₁) registered the highest shelf life of 18.67 days. The highest TSS of 26.33°Brix was noticed in fruits stored with potassium permanganate (T₈) after 12.67 days of storage, and lowest titratable acidity of 0.19%, and the highest sugar-acid ratio of 79.76 was noticed in control (T₁₂) after 11.33 days of storage. Moreover, the highest vitamin C content (7.74 mg 100 g⁻¹), total sugar content (18.47%), reducing sugar content (15.49%), total carotenoid content (24.13 µg 100 g-¹) was noticed in treatments T₇ (hot water dipping at 50 °C for 10 minutes) after 17.67 days, T₁₀ (coating with 40% aloe vera extract and packaged with potassium permanganate) after 13.33 days, T₄ (coating with 10% bee wax + 0.5% clove oil) after 18.67 days and T₉ (coating with 10% bee wax + potassium permanganate) after 18.67 days of storage respectively. Furthermore, the lowest fungal and bacterial counts were observed in treatments T₂ (dipping in 30ppm sodium hypochlorite solution), T₇ (hot water dipping at 50 °C for 10 minutes), T₉ (coating with 10% bee wax + potassium permanganate), and T₁₀ (coating with 40% aloe vera extract + potassium permanganate).

Keywords: bee wax, post-harvest treatments, potassium permanganate, Red Banana, shelf life

Procedia PDF Downloads 46
919 Discussion on the Impact and Improvement Strategy of Bike Sharing on Urban Space

Authors: Bingying Liu, Dandong Ge, Xinlan Zhang, Haoyang Liang

Abstract:

Over the past two years, a new generation of No-Pile Bike sharing, represented by the Ofo, Mobike and HelloBike, has sprung up in various cities in China, and spread rapidly in countries such as Britain, Japan, the United States and Singapore. As a new green public transportation mode, bike sharing can bring a series of benefits to urban space. At first, this paper analyzes the specific impact of bike sharing on urban space in China. Based on the market research and data analyzing, it is found that bike sharing can improve the quality of urban space in three aspects: expanding the radius of public transportation service, filling service blind spots, alleviating urban traffic congestion, and enhancing the vitality of urban space. On the other hand, due to the immature market and the imperfect system, bike sharing has gradually revealed some difficulties, such as parking chaos, malicious damage, safety problems, imbalance between supply and demand, and so on. Then the paper investigates the characteristics of shared bikes, business model, operating mechanism on Chinese market currently. Finally, in order to make bike sharing serve urban construction better, this paper puts forward some specific countermeasures from four aspects. In terms of market operations, it is necessary to establish a public-private partnership model and set up a unified bike-sharing integrated management platform. From technical methods level, the paper proposes to develop an intelligent parking system for regulating parking. From policy formulation level, establishing a bike-sharing assessment mechanism would strengthen supervision. As to urban planning, sharing data and redesigning slow roadway is beneficial for transportation and spatial planning.

Keywords: bike sharing, impact analysis, improvement strategy, urban space

Procedia PDF Downloads 167
918 Inhibition Effect of Natural Junipers Extract towards Steel Corrosion in HCl Solution

Authors: L. Bammou, M. Belkhaouda R. Salghi, L. Bazzi, B. Hammouti

Abstract:

Steel and steel-based alloys of different grades steel are extensively used in numerous applications where acid solutions are widely applied such as industrial acid pickling, industrial acid cleaning and oil-well acidizing. The use of chemical inhibitors is one of the most practical methods for the protection against corrosion in acidic media. Most of the excellent acid inhibitors are organic compounds containing nitrogen, oxygen, phosphorus and sulphur. The use of non-toxic inhibitors called green or eco-friendly environmental inhibitors is one of the solutions possible to prevent the corrosion of the material. These advantages have incited us to draw a large part of program of our laboratory to examine natural substances as corrosion inhibitors such as: prickly pear seed oil, Argan oil, Argan extract, Fennel oil, Rosemary oil, Thymus oil, Lavender oil, Jojoba oil, Pennyroyal Mint oil, and Artemisia. In the present work, we investigate the corrosion inhibition of steel in 1 M HCl by junipers extract using weight loss, potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) methods. The result obtained of junipers extract (JE) shows excellent inhibition properties for the corrosion of C38 steel in 1M HCl at 298K, and the inhibition efficiency increases with increasing of the JE concentration. The inhibitor efficiencies determined by weight loss, Tafel polarisation and EIS methods are in reasonable agreement. Based on the polarisation results, the investigated junipers extract can be classified as mixed inhibitor. The calculated structural parameters show increase of the obtained Rct values and decrease of the capacitance, Cdl, with JE concentration increase. It is suggested to attribute this to the increase of the thickness of the adsorption layer at steel surface. The adsorption model obeys to the Langmuir adsorption isotherm. The adsorption process is a spontaneous and exothermic process.

Keywords: corrosion inhibition, steel, friendly inhibitors, Tafel polarisation

Procedia PDF Downloads 515
917 Relationship between Matrilin-3 (MATN-3) Gene Single Nucleotide Six Polymorphism, Transforming Growth Factor Beta 2 and Radiographic Grading in Primary Osteoarthritis

Authors: Heba Esaily, Rawhia Eledl, Daila Aboelela, Rasha Noreldin

Abstract:

Objective: Assess serum level of Transforming growth factor beta 2 (TGF-β2) and Matrilin-3 (MATN3) SNP6 polymorphism in osteoarthritic patients Background: Osteoarthritis (OA) is a musculoskeletal disease characterized by pain and joint stiffness. TGF-β 2 is involved in chondrogenesis and osteogenesis, It has found that MATN3 gene and protein expression was correlated with the extent of tissue damage in OA. Findings suggest that regulation of MATN3 expression is essential for maintenance of the cartilage extracellular matrix microenvironment Subjects and Methods: 72 cases of primary OA (56 with knee OA and 16 with generalized OA were compared with that of 18 healthy controls. Radiographs were scored with the Kellgren-Lawrence scale. Serum TGF-β2 was measured by using (ELISA), levels of marker were correlated to radiographic grading of disease and MATN3 SNP6 polymorphism was determined by (PCR-RFLP). Results: MATN3 SNP6 polymorphism and serum level of TGF-β2 were higher in OA compared with controls. Genotype, NN and N allele frequency were higher in patients with OA compared with controls. NN genotype and N allele frequency were higher in knee osteoarthritis than generalized OA. Significant positive correlation between level of TGFβ2 and radiographic grading in group with knee OA, but no correlation between serum level of TGFβ2 and radiographic grading in generalized OA. Conclusion: MATN3 SNP6 polymorphism and TGF-β2 implicated in the pathogenesis of osteoarthritis. Association of N/N genotype with primary osteoarthritis emphasizes on the need for prospective study include larger sample size to confirm the results of the present study.

Keywords: Matrilin-3, transforming growth factor beta 2, primary osteoarthritis, knee osteoarthritis

Procedia PDF Downloads 267
916 Filling the Gaps with Representation: Netflix’s Anne with an E as a Way to Reveal What the Text Hid

Authors: Arkadiusz Adam Gardaś

Abstract:

In his theory of gaps, Wolfgang Iser states that literary texts often lack direct messages. Instead of using straightforward descriptions, authors leave the gaps or blanks, i.e., the spaces within the text that come into existence only when readers fill them with their understanding and experiences. This paper’s aim is to present Iser’s literary theory in an intersectional way by comparing it to the idea of intersemiotic translation. To be more precise, the author uses the example of Netflix’s adaption of Lucy Maud Montgomery’s Anne of Green Gables as a form of rendering a book into a film in such a way that certain textual gaps are filled with film images. Intersemiotic translation is a rendition in which signs of one kind of media are translated into the signs of the other media. Film adaptions are the most common, but not the only, type of intersemiotic translation. In this case, the role of the translator is taken by a screenwriter. A screenwriter’s role can reach beyond the direct meaning presented by the author, and instead, it can delve into the source material (here – a novel) in a deeper way. When it happens, a screenwriter is able to spot the gaps in the text and fill them with images that can later be presented to the viewers. Anne with an E, the Netflix adaption of Montgomery’s novel, may be used as a highly meaningful example of such a rendition. It is due to the fact that the 2017 series was broadcasted more than a hundred years after the first edition of the novel was published. This means that what the author might not have been able to show in her text can now be presented in a more open way. The screenwriter decided to use this opportunity to represent certain groups in the film, i.e., racial and sexual minorities, and women. Nonetheless, the series does not alter the novel; in fact, it adds to it by filling the blanks with more direct images. In the paper, fragments of the first season of Anne with an E are analysed in comparison to its source, the novel by Montgomery. The main purpose of that is to show how intersemiotic translation connected with the Iser’s literary theory can enrich the understanding of works of art, culture, media, and literature.

Keywords: intersemiotic translation, film, literary gaps, representation

Procedia PDF Downloads 311
915 Study of Virus/es Threatening Large Cardamom Cultivation in Sikkim and Darjeeling Hills of Northeast India

Authors: Dharmendra Pratap

Abstract:

Large Cardamom (Amomum subulatum), family Zingiberaceae is an aromatic spice crop and has rich medicinal value. Large Cardamom is as synonymous to Sikkim as Tea is to Darjeeling. Since Sikkim alone contributes up to 88% of India's large cardamom production which is the world leader by producing over 50% of the global yield. However, the production of large cardamom has declined almost to half since last two decade. The economic losses have been attributed to two viral diseases namely, chirke and Foorkey. Chirke disease is characterized by light and dark green streaks on leaves. The affected leaves exhibit streak mosaic, which gradually coalesce, turn brown and eventually dry up. Excessive sprouting and formation of bushy dwarf clumps at the base of mother plants that gradually die characterize the foorkey disease. In our surveys in Sikkim–Darjeeling hill area during 2012-14, 40-45% of plants were found to be affected with foorkey disease and 10-15% with chirke. Mechanical and aphid transmission study showed banana as an alternate host for both the disease. For molecular identification, total genomic DNA and RNA was isolated from the infected leaf tissues and subjected to Rolling circle amplification (RCA) and RT-PCR respectively. The DNA concatamers produced in the RCA reaction were monomerized by different restriction enzymes and the bands corresponding to ~1 kb genomes were purified and cloned in the respective sites. The nucleotide sequencing results revealed the association of Nanovirus with the foorkey disease of large cardamom. DNA1 showed 74% identity with Replicase gene of FBNYV, DNA2 showed 77% identity with the NSP gene of BBTV and DNA3 showed 74% identity with CP gene of BBTV. The finding suggests the presence of a new species of nanovirus associated with foorkey disease of large cardamom in Sikkim and Darjeeling hills. The details of their epidemiology and other factors would be discussed.

Keywords: RCA, nanovirus, large cardamom, molecular virology and microbiology

Procedia PDF Downloads 491
914 Metal-Based Deep Eutectic Solvents for Extractive Desulfurization of Fuels: Analysis from Molecular Dynamics Simulations

Authors: Aibek Kukpayev, Dhawal Shah

Abstract:

Combustion of sour fuels containing high amount of sulfur leads to the formation of sulfur oxides, which adversely harm the environment and has a negative impact on human health. Considering this, several legislations have been imposed to bring down the sulfur content in fuel to less than 10 ppm. In recent years, novel deep eutectic solvents (DESs) have been developed to achieve deep desulfurization, particularly to extract thiophenic compounds from liquid fuels. These novel DESs, considered as analogous to ionic liquids are green, eco-friendly, inexpensive, and sustainable. We herein, using molecular dynamic simulation, analyze the interactions of metal-based DESs with model oil consisting of thiophenic compounds. The DES used consists of polyethylene glycol (PEG-200) as a hydrogen bond donor, choline chloride (ChCl) or tetrabutyl ammonium chloride (TBAC) as a hydrogen bond acceptor, and cobalt chloride (CoCl₂) as metal salt. In particular, the combination of ChCl: PEG-200:CoCl₂ at a ratio 1:2:1 and the combination of TBAC:PEG-200:CoCl₂ at a ratio 1:2:0.25 were simulated, separately, with model oil consisting of octane and thiophenes at 25ᵒC and 1 bar. The results of molecular dynamics simulations were analyzed in terms of interaction energies between different components. The simulations revealed a stronger interaction between DESs/thiophenes as compared with octane/thiophenes, suggestive of an efficient desulfurization process. In addition, our analysis suggests that the choice of hydrogen bond acceptor strongly influences the efficiency of the desulfurization process. Taken together, the results also show the importance of the metal ion, although present in small amount, in the process, and the role of the polymer in desulfurization of the model fuel.

Keywords: deep eutectic solvents, desulfurization, molecular dynamics simulations, thiophenes

Procedia PDF Downloads 141
913 Implications of Optimisation Algorithm on the Forecast Performance of Artificial Neural Network for Streamflow Modelling

Authors: Martins Y. Otache, John J. Musa, Abayomi I. Kuti, Mustapha Mohammed

Abstract:

The performance of an artificial neural network (ANN) is contingent on a host of factors, for instance, the network optimisation scheme. In view of this, the study examined the general implications of the ANN training optimisation algorithm on its forecast performance. To this end, the Bayesian regularisation (Br), Levenberg-Marquardt (LM), and the adaptive learning gradient descent: GDM (with momentum) algorithms were employed under different ANN structural configurations: (1) single-hidden layer, and (2) double-hidden layer feedforward back propagation network. Results obtained revealed generally that the gradient descent with momentum (GDM) optimisation algorithm, with its adaptive learning capability, used a relatively shorter time in both training and validation phases as compared to the Levenberg- Marquardt (LM) and Bayesian Regularisation (Br) algorithms though learning may not be consummated; i.e., in all instances considering also the prediction of extreme flow conditions for 1-day and 5-day ahead, respectively especially using the ANN model. In specific statistical terms on the average, model performance efficiency using the coefficient of efficiency (CE) statistic were Br: 98%, 94%; LM: 98 %, 95 %, and GDM: 96 %, 96% respectively for training and validation phases. However, on the basis of relative error distribution statistics (MAE, MAPE, and MSRE), GDM performed better than the others overall. Based on the findings, it is imperative to state that the adoption of ANN for real-time forecasting should employ training algorithms that do not have computational overhead like the case of LM that requires the computation of the Hessian matrix, protracted time, and sensitivity to initial conditions; to this end, Br and other forms of the gradient descent with momentum should be adopted considering overall time expenditure and quality of the forecast as well as mitigation of network overfitting. On the whole, it is recommended that evaluation should consider implications of (i) data quality and quantity and (ii) transfer functions on the overall network forecast performance.

Keywords: streamflow, neural network, optimisation, algorithm

Procedia PDF Downloads 150
912 Marine Fishing and Climate Change: A China’s Perspective on Fisheries Economic Development and Greenhouse Gas Emissions

Authors: Yidan Xu, Pim Martens, Thomas Krafft

Abstract:

Marine fishing, an energy-intensive activity, directly emits greenhouse gases through fuel combustion, making it a significant contributor to oceanic greenhouse gas (GHG) emissions and worsening climate change. China is the world’s second-largest economy and the top emitter of GHG emissions, and it carries a significant energy conservation and emission reduction burden. However, the increasing GHG emissions from marine fishing is an easily overlooked but essential issue in China. This study offers a diverse perspective by integrating the concepts of total carbon emissions, carbon intensity, and per capita carbon emissions as indicators into calculation and discussion. To better understand the GHG emissions-Gross marine fishery product (GFP) relationship and influencing factors in Chinese marine fishing, the relationship between GHG emissions and economic development in marine fishing, a comprehensive framework is developed by combining the environmental Kuznets curve, the Tapio elasticity index, and the decomposition model. Results indicated that (1) The GHG emissions increased from 16.479 to 18.601 million tons in 2001-2020, in which trawlers and gillnetter are the main source in fishing operation. (2) Total carbon emissions (TC) and CI presented the same decline as GHG emissions, while per capita carbon emissions (PC) displayed an uptrend. (32) GHG emissions and gross marine fishery product (GFP) presented an inverted U-shaped relationship in China; the turning point came in the 13th Five-year Plan period (2016-2020). (43) Most provinces strongly decoupled GFP and CI. Still, PC and TC need more effort to decouple. (54) GHG emissions promoted by an industry structure driven, though carbon intensity and industry scale aid in GHG emissions reduced. (5) Compare with TC and PC, CI has been relatively affected by COVID-19 in 2020. The rise in fish and seafood prices during COVID-19 has boosted the GFP.

Keywords: marine fishing economy, greenhouse gas emission, fishery management, green development

Procedia PDF Downloads 65
911 Humoral and Cellular Immune Responses to Major Human Cytomegalovirus Antigens in Mice Model

Authors: S. Essa, H. Safar, R. Raghupathy

Abstract:

Human cytomegalovirus (CMV) continues to be a source of severe complications to immunologically immature and immune-compromised hosts. Effective CMV vaccine that diminishes CMV disease in transplant patients and avoids congenital infection remains of high importance as no approved vaccines exist. Though the exact links of defense mechanisms are unidentified, viral-specific antibodies and Th1/Th2 cytokine responses have been involved in controlling viral infections. CMV envelope glycoprotein B (UL55/gB), the matrix proteins (UL83/pp65, UL99/pp28, UL32/pp150), and the assembly protein UL80a/pp38 are known to be targets of antiviral immune responses. In this study, mice were immunized with five HCMV antigens (UL32/pp150, UL80a/pp38, UL99/pp28, and UL83/pp65), and serum samples were collected and evaluated for eliciting viral-specific antibody responses. Moreover, Splenocytes were collected, stimulated, and assessed for cytokine responses. The results demonstrated a CMV-antigen-specific antibody response to pp38 and pp65 (E/C >2.0). The highest titers were detected with pp38 (average E/C 16.275) followed by pp65 (average E/C 7.72). Compared to control cells, splenocytes from PP38 antigen immunized mice gave a significantly higher concentration of GM-CSF, IFN-γ, IL-2 IL-4, IL-5, and IL-17A (P<0.05). Also, splenocytes from pp65 antigen immunized mice resulted in a significantly higher concentration of GM-CSF, IFN-γ, IL-2 IL-4, IL-10, IL-12, IL-17A, and TNF- α. The designation of target CMV peptides by identifying viral-specific antibodies and cytokine responses is vital for understanding the protective immune mechanisms during CMV infection and identifying appropriate viral antigens to develop novel vaccines.

Keywords: hepatitis C virus, peripheral blood mononuclear cells, neutrophils, cytokines

Procedia PDF Downloads 135
910 Qusai-Solid-State Electrochromic Device Based on PolyMethyl Methacrylate (PMMA)/Succinonitrile Gel Polymer Electrolyte

Authors: Jen-Yuan Wang, Min-Chuan Wang, Der-Jun Jan

Abstract:

Polymer electrolytes can be classified into four major categories, solid polymer electrolytes (SPEs), gel polymer electrolytes (GPEs), polyelectrolytes and composite polymer electrolytes. SPEs suffer from low ionic conductivity at room temperature. The main problems for GPEs are the poor thermal stability and mechanical properties. In this study, a GPE containing PMMA and succinonitrile is prepared to solve the problems mentioned above, and applied to the assembly of a quasi-solid-state electrochromic device (ECD). In the polymer electrolyte, poly(methyl methacrylate) (PMMA) is the polymer matrix and propylene carbonate (PC) is used as the plasticizer. To enhance the mechanical properties of this GPE, succinonitrile (SN) is introduced as the additive. For the electrochromic materials, tungsten oxide (WO3) is used as the cathodic coloring film, which is fabricated by pulsed dc magnetron reactive sputtering. For the anodic coloring material, Prussian blue nanoparticles (PBNPs) are synthesized and coated on the transparent Sn-doped indium oxide (ITO) glass. The thickness of ITO, WO3 and PB film is 110, 170 and 200 nm, respectively. The size of the ECD is 5×5 cm2. The effect of the introduction of SN into the GPEs is discussed by observing the electrochromic behaviors of the WO3-PB ECD. Besides, the composition ratio of PC to SN is also investigated by measuring the ionic conductivity. The optimized ratio of PC to SN is 4:1, and the ionic conductivity under this condition is 6.34x10-5 S∙cm-1, which is higher than that of PMMA/PC (1.35x10-6 S∙cm-1) and PMMA/EC/PC (4.52x10-6 S∙cm-1). This quasi-solid-state ECD fabricated with the PMMA/SN based GPE shows an optical contrast of ca. 53% at 690 nm. The optical transmittance of the ECD can be reversibly modulated from 72% (bleached) to 19% (darkened), by applying potentials of 1.5 and -2.2 V, respectively. During the durability test, the optical contrast of this ECD remains 44.5% after 2400 cycles, which is 83% of the original one.

Keywords: electrochromism, tungsten oxide, prussian blue, poly(methyl methacrylate), succinonitrile

Procedia PDF Downloads 290
909 Promises versus Realities: A Critical Assessment of the Integrated Design Process

Authors: Firdous Nizar, Carmela Cucuzzella

Abstract:

This paper explores how the integrated design process (IDP) was adopted for an architectural project. The IDP is a relatively new approach to collaborative design in architectural design projects in Canada. It has gained much traction recently as the closest possible approach to the successful management of low energy building projects and has been advocated as a productive method for multi-disciplinary collaboration within complex projects. This study is based on the premise that there are explicit and implicit dimensions of power within the integrated design process (IDP) in the green building industry that may or may not lead to irreconcilable differences in a process that demands consensus. To gain insight on the potential gap between the theoretical promises and practical realities of the IDP, a review of existing IDP literature is compared with a case study analysis of a competition-based architectural project in Canada, a first to incorporate the IDP in its overall design format. This paper aims to address the undertheorized power relations of the IDP in a real project. It presents a critical assessment through the lens of the combined theories of deliberative democracy by Jürgen Habermas, with that of agonistic pluralism by political theorist Chantal Mouffe. These two theories are intended to more appropriately embrace the conflictual situations in collaborative environments, and shed light on the relationships of power, between engineers, city officials, architects, and designers in this conventional consensus-based model. In addition, propositions for a shift in approach that embraces conflictual differences among its participants are put forth based on concepts of critical spatial practice by Markus Meissen. As IDP is a relatively new design process, it requires much deliberation on its structure from the theoretical framework built in this paper in order to unlock its true potential.

Keywords: agonistic pluralism, critical spatial practice, deliberative democracy, integrated design process

Procedia PDF Downloads 171
908 Role of Energy Storage in Renewable Electricity Systems in The Gird of Ethiopia

Authors: Dawit Abay Tesfamariam

Abstract:

Ethiopia’s Climate- Resilient Green Economy (ECRGE) strategy focuses mainly on generating and proper utilization of renewable energy (RE). Nonetheless, the current electricity generation of the country is dominated by hydropower. The data collected in 2016 by Ethiopian Electric Power (EEP) indicates that the intermittent RE sources from solar and wind energy were only 8 %. On the other hand, the EEP electricity generation plan in 2030 indicates that 36.1 % of the energy generation share will be covered by solar and wind sources. Thus, a case study was initiated to model and compute the balance and consumption of electricity in three different scenarios: 2016, 2025, and 2030 using the EnergyPLAN Model (EPM). Initially, the model was validated using the 2016 annual power-generated data to conduct the EnergyPLAN (EP) analysis for two predictive scenarios. The EP simulation analysis using EPM for 2016 showed that there was no significant excess power generated. Thus, the EPM was applied to analyze the role of energy storage in RE in Ethiopian grid systems. The results of the EP simulation analysis showed there will be excess production of 402 /7963 MW average and maximum, respectively, in 2025. The excess power was in the three rainy months of the year (June, July, and August). The outcome of the model also showed that in the dry seasons of the year, there would be excess power production in the country. Consequently, based on the validated outcomes of EP indicates, there is a good reason to think about other alternatives for the utilization of excess energy and storage of RE. Thus, from the scenarios and model results obtained, it is realistic to infer that if the excess power is utilized with a storage system, it can stabilize the grid system and be exported to support the economy. Therefore, researchers must continue to upgrade the current and upcoming storage system to synchronize with potentials that can be generated from renewable energy.

Keywords: renewable energy, power, storage, wind, energy plan

Procedia PDF Downloads 76
907 Effect of Microstructure on Wear Resistance of Polycrystalline Diamond Composite Cutter of Bit

Authors: Fanyuan Shao, Wei Liu, Deli Gao

Abstract:

Polycrystalline diamond composite (PDC) cutter is made of diamond powder as raw material, cobalt metal or non-metallic elements as a binder, mixed with WC cemented carbide matrix assembly, through high temperature and high-pressure sintering. PDC bits with PDC cutters are widely used in oil and gas drilling because of their high hardness, good wear resistance and excellent impact toughness. And PDC cutter is the main cutting tool of bit, which seriously affects the service of the PDC bit. The wear resistance of the PDC cutter is measured by cutting granite with a vertical turret lathe (VTL). This experiment can achieve long-distance cutting to obtain the relationship between the wear resistance of the PDC cutter and cutting distance, which is more closely to the real drilling situation. Load cell and 3D optical profiler were used to obtain the value of cutting forces and wear area, respectively, which can also characterize the damage and wear of the PDC cutter. PDC cutters were cut via electrical discharge machining (EDM) and then flattened and polished. A scanning electron microscope (SEM) was used to observe the distribution of binder cobalt and the size of diamond particles in a diamond PDC cutter. The cutting experimental results show that the wear area of the PDC cutter has a good linear relationship with the cutting distance. Simultaneously, the larger the wear area is and the greater the cutting forces are required to maintain the same cutting state. The size and distribution of diamond particles in the polycrystalline diamond layer have a great influence on the wear resistance of the diamond layer. And PDC cutter with fine diamond grains shows more wear resistance than that with coarse grains. The deep leaching process is helpful to reduce the effect of binder cobalt on the wear resistance of the polycrystalline diamond layer. The experimental study can provide an important basis for the application of PDC cutters in oil and gas drilling.

Keywords: polycrystalline diamond compact, scanning electron microscope, wear resistance, cutting distance

Procedia PDF Downloads 196
906 Mechanical Behavior of Laminated Glass Cylindrical Shell with Hinged Free Boundary Conditions

Authors: Ebru Dural, M. Zulfu Asık

Abstract:

Laminated glass is a kind of safety glass, which is made by 'sandwiching' two glass sheets and a polyvinyl butyral (PVB) interlayer in between them. When the glass is broken, the interlayer in between the glass sheets can stick them together. Because of this property, the hazards of sharp projectiles during natural and man-made disasters reduces. They can be widely applied in building, architecture, automotive, transport industries. Laminated glass can easily undergo large displacements even under their own weight. In order to explain their true behavior, they should be analyzed by using large deflection theory to represent nonlinear behavior. In this study, a nonlinear mathematical model is developed for the analysis of laminated glass cylindrical shell which is free in radial directions and restrained in axial directions. The results will be verified by using the results of the experiment, carried out on laminated glass cylindrical shells. The behavior of laminated composite cylindrical shell can be represented by five partial differential equations. Four of the five equations are used to represent axial displacements and radial displacements and the fifth one for the transverse deflection of the unit. Governing partial differential equations are derived by employing variational principles and minimum potential energy concept. Finite difference method is employed to solve the coupled differential equations. First, they are converted into a system of matrix equations and then iterative procedure is employed. Iterative procedure is necessary since equations are coupled. Problems occurred in getting convergent sequence generated by the employed procedure are overcome by employing variable underrelaxation factor. The procedure developed to solve the differential equations provides not only less storage but also less calculation time, which is a substantial advantage in computational mechanics problems.

Keywords: laminated glass, mathematical model, nonlinear behavior, PVB

Procedia PDF Downloads 317
905 Development of Broad Spectrum Nitrilase Biocatalysts and Bioprocesses for Nitrile Biotransformation

Authors: Avinash Vellore Sunder, Shikha Shah, Pramod P. Wangikar

Abstract:

The enzymatic conversion of nitriles to carboxylic acids by nitrilases has gained significance in the green synthesis of several pharmaceutical precursors and fine chemicals. While nitrilases have been characterized from different sources, the industrial application requires the identification of nitrilases that possess higher substrate tolerance, wider specificity and better thermostability, along with the development of an efficient bioprocess for producing large amounts of nitrilase. To produce large amounts of nitrilase, we developed a fed-batch fermentation process on defined media for the high cell density cultivation of E. coli cells expressing the well-studied nitrilase from Alcaligenes fecalis. A DO-stat feeding approach was employed combined with an optimized post-induction strategy to achieve nitrilase titer of 2.5*105 U/l and 78 g/l dry cell weight. We also identified 16 novel nitrilase sequences from genome mining and analysis of substrate binding residues. The nitrilases were expressed in E. coli and their biocatalytic potential was evaluated on a panel of 22 industrially relevant nitrile substrates using high-throughput screening and HPLC analysis. Nine nitrilases were identified to exhibit high activity on structurally diverse nitriles including aliphatic and aromatic dinitriles, heterocyclic, -hydroxy and -keto nitriles. With fed-batch biotransformation, whole-cell Zobelia galactanivorans nitrilase achieved yields of 2.4 M nicotinic acid and 1.8 M isonicotinic acid from 3-cyanopyridine and 4-cyanopyridine respectively within 5 h, while Cupravidus necator nitrilase enantioselectively converted 740 mM mandelonitrile to (R)–mandelic acid. The nitrilase from Achromobacter insolitus could hydrolyze 542 mM iminodiacetonitrile in 1 h. The availability of highly active nitrilases along with bioprocesses for enzyme production expands the toolbox for industrial biocatalysis.

Keywords: biocatalysis, isonicotinic acid, iminodiacetic acid, mandelic acid, nitrilase

Procedia PDF Downloads 230
904 Influence of Hygro-Thermo-Mechanical Loading on Buckling and Vibrational Behavior of FG-CNT Composite Beam with Temperature Dependent Characteristics

Authors: Puneet Kumar, Jonnalagadda Srinivas

Abstract:

The authors report here vibration and buckling analysis of functionally graded carbon nanotube-polymer composite (FG-CNTPC) beams under hygro-thermo-mechanical environments using higher order shear deformation theory. The material properties of CNT and polymer matrix are often affected by temperature and moisture content. A micromechanical model with agglomeration effect is employed to compute the elastic, thermal and moisture properties of the composite beam. The governing differential equation of FG-CNTRPC beam is developed using higher-order shear deformation theory to account shear deformation effects. The elastic, thermal and hygroscopic strain terms are derived from variational principles. Moreover, thermal and hygroscopic loads are determined by considering uniform, linear and sinusoidal variation of temperature and moisture content through the thickness. Differential equations of motion are formulated as an eigenvalue problem using appropriate displacement fields and solved by using finite element modeling. The obtained results of natural frequencies and critical buckling loads show a good agreement with published data. The numerical illustrations elaborate the dynamic as well as buckling behavior under uniaxial load for different environmental conditions, boundary conditions and volume fraction distribution profile, beam slenderness ratio. Further, comparisons are shown at different boundary conditions, temperatures, degree of moisture content, volume fraction as well as agglomeration of CNTs, slenderness ratio of beam for different shear deformation theories.

Keywords: hygrothermal effect, free vibration, buckling load, agglomeration

Procedia PDF Downloads 261
903 Mixed Tetravalent Cs₂RuₘPt₁-ₘX₆ (X = Cl-, Br-) Based Vacancy-Ordered Halide Double Perovskites for Enhanced Solar Water Oxidation

Authors: Jigar Shaileshumar Halpati, Aravind Kumar Chandiran

Abstract:

Vacancy ordered double perovskites (VOPs) have been significantly attracting researchers due to their chemical structure diversity and interesting optoelectronic properties. Some VOPs have been recently reported to be suitable photoelectrodes for photoelectrochemical water-splitting reactions due to their high stability and panchromatic absorption. In this work, we systematically synthesized mixed tetravalent VOPs based on Cs₂RuₘPt₁-ₘX₆ (X = Cl-, Br-) and reported their structural, optical, electrochemical and photoelectrochemical properties. The structural characterization confirms that the mixed tetravalent site intermediates formed their own phases. The parent materials, as well as their intermediates, were found to be stable in ambient conditions for over 1 year and also showed incredible stability in harsh pH media ranging from pH 1 to pH 11. Moreover, these materials showed panchromatic absorption with onset up to 1000 nm depending upon the mixture stoichiometry. The extraordinary stability and excellent absorption properties make them suitable materials for photoelectrochemical water-splitting applications. PEC studies of these series of materials showed a high water oxidation photocurrent of 0.56 mA cm-² for Cs₂Ru₀.₅Pt₀.₅Cl₆. Fundamental investigation from photoelectrochemical reactions revealed that the intrinsic ruthenium-based VOP showed enhanced hole transfer to the electrolyte, while the intrinsic platinum-based VOP showed higher photovoltage. The mix of these end members at the tetravalent site showed a synergic effect of reduced charge transfer resistance from the material to the electrolyte and increased photovoltage, which led to increased PEC performance of the intermediate materials.

Keywords: solar water splitting, photo electrochemistry, photo absorbers, material characterization, device characterization, green hydrogen

Procedia PDF Downloads 74
902 Biostimulant and Abiotic Plant Stress Interactions in Malting Barley: A Glasshouse Study

Authors: Conor Blunt, Mariluz del Pino-de Elias, Grace Cott, Saoirse Tracy, Rainer Melzer

Abstract:

The European Green Deal announced in 2021 details agricultural chemical pesticide use and synthetic fertilizer application to be reduced by 50% and 20% by 2030. Increasing and maintaining expected yields under these ambitious goals has strained the agricultural sector. This intergovernmental plan has identified plant biostimulants as one potential input to facilitate this new phase of sustainable agriculture; these products are defined as microorganisms or substances that can stimulate soil and plant functioning to enhance crop nutrient use efficiency, quality and tolerance to abiotic stresses. Spring barley is Ireland’s most widely sown tillage crop, and grain destined for malting commands the most significant market price. Heavy erratic rainfall is forecasted in Ireland’s climate future, and barley is particularly susceptible to waterlogging. Recent findings suggest that plant receptivity to biostimulants may depend on the level of stress inflicted on crops to elicit an assisted plant response. In this study, three biostimulants of different genesis (seaweed, protein hydrolysate and bacteria) are applied to ‘RGT Planet’ malting barley fertilized at three different rates (0 kg/ha, 40 kg/ha, 75 kg/ha) of calcium ammonium nitrogen (27% N) under non-stressed and waterlogged conditions. This 4x3x2 factorial trial design was planted in a completed randomized block with one plant per experimental unit. Leaf gas exchange data and key agronomic and grain quality parameters were analyzed via ANOVA. No penalty on productivity was evident on plants receiving 40 kg/ha of N and bio stimulant compared to 75 kg/ha of N treatments. The main effects of nitrogen application and waterlogging provided the most significant variation in the dataset.

Keywords: biostimulant, Barley, malting, NUE, waterlogging

Procedia PDF Downloads 72
901 Damage Mesomodel Based Low-Velocity Impact Damage Analysis of Laminated Composite Structures

Authors: Semayat Fanta, P.M. Mohite, C.S. Upadhyay

Abstract:

Damage meso-model for laminates is one of the most widely applicable approaches for the analysis of damage induced in laminated fiber-reinforced polymeric composites. Damage meso-model for laminates has been developed over the last three decades by many researchers in experimental, theoretical, and analytical methods that have been carried out in micromechanics as well as meso-mechanics analysis approaches. It has been fundamentally developed based on the micromechanical description that aims to predict the damage initiation and evolution until the failure of structure in various loading conditions. The current damage meso-model for laminates aimed to act as a bridge between micromechanics and macro-mechanics of the laminated composite structure. This model considers two meso-constituents for the analysis of damage in ply and interface that imparted from low-velocity impact. The damages considered in this study include fiber breakage, matrix cracking, and diffused damage of the lamina, and delamination of the interface. The damage initiation and evolution in laminae can be modeled in terms of damaged strain energy density using damage parameters and the thermodynamic irreversible forces. Interface damage can be modeled with a new concept of spherical micro-void in the resin-rich zone of interface material. The damage evolution is controlled by the damage parameter (d) and the radius of micro-void (r) from the point of damage nucleation to its saturation. The constitutive martial model for meso-constituents is defined in a user material subroutine VUMAT and implemented in ABAQUS/Explicit finite element modeling tool. The model predicts the damages in the meso-constituents level very accurately and is considered the most effective technique of modeling low-velocity impact simulation for laminated composite structures.

Keywords: mesomodel, laminate, low-energy impact, micromechanics

Procedia PDF Downloads 217
900 Modified Weibull Approach for Bridge Deterioration Modelling

Authors: Niroshan K. Walgama Wellalage, Tieling Zhang, Richard Dwight

Abstract:

State-based Markov deterioration models (SMDM) sometimes fail to find accurate transition probability matrix (TPM) values, and hence lead to invalid future condition prediction or incorrect average deterioration rates mainly due to drawbacks of existing nonlinear optimization-based algorithms and/or subjective function types used for regression analysis. Furthermore, a set of separate functions for each condition state with age cannot be directly derived by using Markov model for a given bridge element group, which however is of interest to industrial partners. This paper presents a new approach for generating Homogeneous SMDM model output, namely, the Modified Weibull approach, which consists of a set of appropriate functions to describe the percentage condition prediction of bridge elements in each state. These functions are combined with Bayesian approach and Metropolis Hasting Algorithm (MHA) based Markov Chain Monte Carlo (MCMC) simulation technique for quantifying the uncertainty in model parameter estimates. In this study, factors contributing to rail bridge deterioration were identified. The inspection data for 1,000 Australian railway bridges over 15 years were reviewed and filtered accordingly based on the real operational experience. Network level deterioration model for a typical bridge element group was developed using the proposed Modified Weibull approach. The condition state predictions obtained from this method were validated using statistical hypothesis tests with a test data set. Results show that the proposed model is able to not only predict the conditions in network-level accurately but also capture the model uncertainties with given confidence interval.

Keywords: bridge deterioration modelling, modified weibull approach, MCMC, metropolis-hasting algorithm, bayesian approach, Markov deterioration models

Procedia PDF Downloads 724
899 Alternating Expectation-Maximization Algorithm for a Bilinear Model in Isoform Quantification from RNA-Seq Data

Authors: Wenjiang Deng, Tian Mou, Yudi Pawitan, Trung Nghia Vu

Abstract:

Estimation of isoform-level gene expression from RNA-seq data depends on simplifying assumptions, such as uniform reads distribution, that are easily violated in real data. Such violations typically lead to biased estimates. Most existing methods provide a bias correction step(s), which is based on biological considerations, such as GC content–and applied in single samples separately. The main problem is that not all biases are known. For example, new technologies such as single-cell RNA-seq (scRNA-seq) may introduce new sources of bias not seen in bulk-cell data. This study introduces a method called XAEM based on a more flexible and robust statistical model. Existing methods are essentially based on a linear model Xβ, where the design matrix X is known and derived based on the simplifying assumptions. In contrast, XAEM considers Xβ as a bilinear model with both X and β unknown. Joint estimation of X and β is made possible by simultaneous analysis of multi-sample RNA-seq data. Compared to existing methods, XAEM automatically performs empirical correction of potentially unknown biases. XAEM implements an alternating expectation-maximization (AEM) algorithm, alternating between estimation of X and β. For speed XAEM utilizes quasi-mapping for read alignment, thus leading to a fast algorithm. Overall XAEM performs favorably compared to other recent advanced methods. For simulated datasets, XAEM obtains higher accuracy for multiple-isoform genes, particularly for paralogs. In a differential-expression analysis of a real scRNA-seq dataset, XAEM achieves substantially greater rediscovery rates in an independent validation set.

Keywords: alternating EM algorithm, bias correction, bilinear model, gene expression, RNA-seq

Procedia PDF Downloads 137
898 A Flexible Real-Time Eco-Drive Strategy for Electric Minibus

Authors: Felice De Luca, Vincenzo Galdi, Piera Stella, Vito Calderaro, Adriano Campagna, Antonio Piccolo

Abstract:

Sustainable mobility has become one of the major issues of recent years. The challenge in reducing polluting emissions as much as possible has led to the production and diffusion of vehicles with internal combustion engines that are less polluting and to the adoption of green energy vectors, such as vehicles powered by natural gas or LPG and, more recently, with hybrid and electric ones. While on the one hand, the spread of electric vehicles for private use is becoming a reality, albeit rather slowly, not the same is happening for vehicles used for public transport, especially those that operate in the congested areas of the cities. Even if the first electric buses are increasingly being offered on the market, it remains central to the problem of autonomy for battery fed vehicles with high daily routes and little time available for recharging. In fact, at present, solid-state batteries are still too large in size, heavy, and unable to guarantee the required autonomy. Therefore, in order to maximize the energy management on the vehicle, the optimization of driving profiles offer a faster and cheaper contribution to improve vehicle autonomy. In this paper, following the authors’ precedent works on electric vehicles in public transport and energy management strategies in the electric mobility area, an eco-driving strategy for electric bus is presented and validated. Particularly, the characteristics of the prototype bus are described, and a general-purpose eco-drive methodology is briefly presented. The model is firstly simulated in MATLAB™ and then implemented on a mobile device installed on-board of a prototype bus developed by the authors in a previous research project. The solution implemented furnishes the bus-driver suggestions on the guide style to adopt. The result of the test in a real case will be shown to highlight the effectiveness of the solution proposed in terms of energy saving.

Keywords: eco-drive, electric bus, energy management, prototype

Procedia PDF Downloads 136
897 Incorporation of Growth Factors onto Hydrogels via Peptide Mediated Binding for Development of Vascular Networks

Authors: Katie Kilgour, Brendan Turner, Carly Catella, Michael Daniele, Stefano Menegatti

Abstract:

In vivo, the extracellular matrix (ECM) provides biochemical and mechanical properties that are instructional to resident cells to form complex tissues with characteristics to develop and support vascular networks. In vitro, the development of vascular networks can be guided by biochemical patterning of substrates via spatial distribution and display of peptides and growth factors to prompt cell adhesion, differentiation, and proliferation. We have developed a technique utilizing peptide ligands that specifically bind vascular endothelial growth factor (VEGF), erythropoietin (EPO), or angiopoietin-1 (ANG1) to spatiotemporally distribute growth factors to cells. This allows for the controlled release of each growth factor, ultimately enhancing the formation of a vascular network. Our engineered tissue constructs (ETCs) are fabricated out of gelatin methacryloyl (GelMA), which is an ideal substrate for tailored stiffness and bio-functionality, and covalently patterned with growth factor specific peptides. These peptides mimic growth factor receptors, facilitating the non-covalent binding of the growth factors to the ETC, allowing for facile uptake by the cells. We have demonstrated in the absence of cells the binding affinity of VEGF, EPO, and ANG1 to their respective peptides and the ability for each to be patterned onto a GelMA substrate. The ability to organize growth factors on an ETC provides different functionality to develop organized vascular networks. Our results demonstrated a method to incorporate biochemical cues into ETCs that enable spatial and temporal control of growth factors. Future efforts will investigate the cellular response by evaluating gene expression, quantifying angiogenic activity, and measuring the speed of growth factor consumption.

Keywords: growth factor, hydrogel, peptide, angiogenesis, vascular, patterning

Procedia PDF Downloads 159
896 Myomectomy and Blood Loss: A Quality Improvement Project

Authors: Ena Arora, Rong Fan, Aleksandr Fuks, Kolawole Felix Akinnawonu

Abstract:

Introduction: Leiomyomas are benign tumors that are derived from the overgrowth of uterine smooth muscle cells. Women with symptomatic leiomyomas who desire future fertility, myomectomy should be the standard surgical treatment. Perioperative hemorrhage is a common complication in myomectomy. We performed the study to investigate blood transfusion rate in abdominal myomectomies, risk factors influencing blood loss and modalities to improve perioperative blood loss. Methods: Retrospective chart review was done for patients who underwent myomectomy from 2016 to 2022 at Queens hospital center, New York. We looked at preoperative patient demographics, clinical characteristics, intraoperative variables, and postoperative outcomes. Mann-Whitney U test were used for parametric and non-parametric continuous variable comparisons, respectively. Results: A total of 159 myomectomies were performed between 2016 and 2022, including 1 laparoscopic, 65 vaginal and 93 abdominal. 44 patients received blood transfusion during or within 72 hours of abdominal myomectomy. The blood transfusion rate was 47.3%. Blood transfusion rate was found to be twice higher than the average documented rate in literature which is 20%. Risk factors identified were black race, preoperative hematocrit<30%, preoperative blood transfusion within 72 hours, large fibroid burden, prolonged surgical time, and abdominal approach. Conclusion: Preoperative optimization with iron supplements or GnRH agonists is important for patients undergoing myomectomy. Interventions to decrease intra operative blood loss should include cell saver, tourniquet, vasopressin, misoprostol, tranexamic acid and gelatin-thrombin matrix hemostatic sealant.

Keywords: myomectomy, perioperative blood loss, cell saver, tranexamic acid

Procedia PDF Downloads 81
895 Development of Functional Cosmetic Materials from Demilitarized Zone Habiting Plants

Authors: Younmin Shin, Jin Kyu Kim, Mirim Jin, Jeong June Choi

Abstract:

Demilitarized Zone (DMZ) is a peace region located between South and North Korea border to avoid accidental armed conflict. Because human accessing to the area was forced to be prohibited for more than 60 years, DMZ is one of the cleanest land keeping wild lives as nature itself in South Korea. In this study, we evaluated the biological efficacies of plants (SS, PC, and AR) inhabiting in DMZ for the development of functional cosmetics. First, we tested the cytotoxicity of plant extracts in keratinocyte and melanocyte, which are the major cell components of skin. By 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay with the cell lines, we determined the safety concentrations of the extracts for the efficacy tests. Next, we assessed the anti-wrinkle cosmetic function of SS by demonstrating that SS treatment decreased the expression of Matrix metalloproteinase-1 (MMP-1) in UV-irradiated keratinocytes via real-time PCR. The suppressive effect of SS was greatly potentiated by combination with other DMZ-inhabiting plants, PC and AR. The expression of tyrosinase, which is one the main enzyme that producing melanin in melanocyte, was also down-regulated by the DMZ-inhabiting SS extract. Wound healing activity was also investigated by in vitro test with HaCat cell line, a human fibroblast cell line. All the natural materials extracted form DMZ habiting plants accelerated the recovery of the cells. These results suggested that DMZ is a treasure island of functional plants and DMZ-inhabiting natural products are warranted to develop functional cosmetic materials. This study was carried out with the support of R&D Program for Forest Science Technology (Project No. 2017027A00-1819-BA01) provided by Korea Forest Service (Korea Forestry Promotion Institute).

Keywords: anti-wrinkle, Demilitarized Zone, functional cosmetics, whitening

Procedia PDF Downloads 143