Search results for: socioeconomic features
4121 Human-Machine Cooperation in Facial Comparison Based on Likelihood Scores
Authors: Lanchi Xie, Zhihui Li, Zhigang Li, Guiqiang Wang, Lei Xu, Yuwen Yan
Abstract:
Image-based facial features can be classified into category recognition features and individual recognition features. Current automated face recognition systems extract a specific feature vector of different dimensions from a facial image according to their pre-trained neural network. However, to improve the efficiency of parameter calculation, an algorithm generally reduces the image details by pooling. The operation will overlook the details concerned much by forensic experts. In our experiment, we adopted a variety of face recognition algorithms based on deep learning, compared a large number of naturally collected face images with the known data of the same person's frontal ID photos. Downscaling and manual handling were performed on the testing images. The results supported that the facial recognition algorithms based on deep learning detected structural and morphological information and rarely focused on specific markers such as stains and moles. Overall performance, distribution of genuine scores and impostor scores, and likelihood ratios were tested to evaluate the accuracy of biometric systems and forensic experts. Experiments showed that the biometric systems were skilled in distinguishing category features, and forensic experts were better at discovering the individual features of human faces. In the proposed approach, a fusion was performed at the score level. At the specified false accept rate, the framework achieved a lower false reject rate. This paper contributes to improving the interpretability of the objective method of facial comparison and provides a novel method for human-machine collaboration in this field.Keywords: likelihood ratio, automated facial recognition, facial comparison, biometrics
Procedia PDF Downloads 1304120 Kannada HandWritten Character Recognition by Edge Hinge and Edge Distribution Techniques Using Manhatan and Minimum Distance Classifiers
Authors: C. V. Aravinda, H. N. Prakash
Abstract:
In this paper, we tried to convey fusion and state of art pertaining to SIL character recognition systems. In the first step, the text is preprocessed and normalized to perform the text identification correctly. The second step involves extracting relevant and informative features. The third step implements the classification decision. The three stages which involved are Data acquisition and preprocessing, Feature extraction, and Classification. Here we concentrated on two techniques to obtain features, Feature Extraction & Feature Selection. Edge-hinge distribution is a feature that characterizes the changes in direction of a script stroke in handwritten text. The edge-hinge distribution is extracted by means of a windowpane that is slid over an edge-detected binary handwriting image. Whenever the mid pixel of the window is on, the two edge fragments (i.e. connected sequences of pixels) emerging from this mid pixel are measured. Their directions are measured and stored as pairs. A joint probability distribution is obtained from a large sample of such pairs. Despite continuous effort, handwriting identification remains a challenging issue, due to different approaches use different varieties of features, having different. Therefore, our study will focus on handwriting recognition based on feature selection to simplify features extracting task, optimize classification system complexity, reduce running time and improve the classification accuracy.Keywords: word segmentation and recognition, character recognition, optical character recognition, hand written character recognition, South Indian languages
Procedia PDF Downloads 4974119 Artistic and Technological Features of Bukhara Copper Embossing in the 20th Century
Authors: Zebiniso Mukhsinova
Abstract:
This article discusses the dynamics of the historical development of the Bukhara school of copper-stamped products. Copper embossing is one of the leading crafts of Uzbek decorative and applied art. A critical and analytical assessment of innovative ideas, artistic and technological features, which arose as a result of the inter-regional synthesis of a local school, is presented. The article includes a detailed analysis of exhibits in museum collections, a research of the scientific papers of leading art critics and differs from previous studies in this area.Keywords: applied art, copper embossing, metalwork, ewer, tray, Bukhara school
Procedia PDF Downloads 1464118 Preprocessing and Fusion of Multiple Representation of Finger Vein patterns using Conventional and Machine Learning techniques
Authors: Tomas Trainys, Algimantas Venckauskas
Abstract:
Application of biometric features to the cryptography for human identification and authentication is widely studied and promising area of the development of high-reliability cryptosystems. Biometric cryptosystems typically are designed for patterns recognition, which allows biometric data acquisition from an individual, extracts feature sets, compares the feature set against the set stored in the vault and gives a result of the comparison. Preprocessing and fusion of biometric data are the most important phases in generating a feature vector for key generation or authentication. Fusion of biometric features is critical for achieving a higher level of security and prevents from possible spoofing attacks. The paper focuses on the tasks of initial processing and fusion of multiple representations of finger vein modality patterns. These tasks are solved by applying conventional image preprocessing methods and machine learning techniques, Convolutional Neural Network (SVM) method for image segmentation and feature extraction. An article presents a method for generating sets of biometric features from a finger vein network using several instances of the same modality. Extracted features sets were fused at the feature level. The proposed method was tested and compared with the performance and accuracy results of other authors.Keywords: bio-cryptography, biometrics, cryptographic key generation, data fusion, information security, SVM, pattern recognition, finger vein method.
Procedia PDF Downloads 1524117 Detection and Classification of Mammogram Images Using Principle Component Analysis and Lazy Classifiers
Authors: Rajkumar Kolangarakandy
Abstract:
Feature extraction and selection is the primary part of any mammogram classification algorithms. The choice of feature, attribute or measurements have an important influence in any classification system. Discrete Wavelet Transformation (DWT) coefficients are one of the prominent features for representing images in frequency domain. The features obtained after the decomposition of the mammogram images using wavelet transformations have higher dimension. Even though the features are higher in dimension, they were highly correlated and redundant in nature. The dimensionality reduction techniques play an important role in selecting the optimum number of features from the higher dimension data, which are highly correlated. PCA is a mathematical tool that reduces the dimensionality of the data while retaining most of the variation in the dataset. In this paper, a multilevel classification of mammogram images using reduced discrete wavelet transformation coefficients and lazy classifiers is proposed. The classification is accomplished in two different levels. In the first level, mammogram ROIs extracted from the dataset is classified as normal and abnormal types. In the second level, all the abnormal mammogram ROIs is classified into benign and malignant too. A further classification is also accomplished based on the variation in structure and intensity distribution of the images in the dataset. The Lazy classifiers called Kstar, IBL and LWL are used for classification. The classification results obtained with the reduced feature set is highly promising and the result is also compared with the performance obtained without dimension reduction.Keywords: PCA, wavelet transformation, lazy classifiers, Kstar, IBL, LWL
Procedia PDF Downloads 3354116 A Recognition Method of Ancient Yi Script Based on Deep Learning
Authors: Shanxiong Chen, Xu Han, Xiaolong Wang, Hui Ma
Abstract:
Yi is an ethnic group mainly living in mainland China, with its own spoken and written language systems, after development of thousands of years. Ancient Yi is one of the six ancient languages in the world, which keeps a record of the history of the Yi people and offers documents valuable for research into human civilization. Recognition of the characters in ancient Yi helps to transform the documents into an electronic form, making their storage and spreading convenient. Due to historical and regional limitations, research on recognition of ancient characters is still inadequate. Thus, deep learning technology was applied to the recognition of such characters. Five models were developed on the basis of the four-layer convolutional neural network (CNN). Alpha-Beta divergence was taken as a penalty term to re-encode output neurons of the five models. Two fully connected layers fulfilled the compression of the features. Finally, at the softmax layer, the orthographic features of ancient Yi characters were re-evaluated, their probability distributions were obtained, and characters with features of the highest probability were recognized. Tests conducted show that the method has achieved higher precision compared with the traditional CNN model for handwriting recognition of the ancient Yi.Keywords: recognition, CNN, Yi character, divergence
Procedia PDF Downloads 1654115 A Method of the Semantic on Image Auto-Annotation
Authors: Lin Huo, Xianwei Liu, Jingxiong Zhou
Abstract:
Recently, due to the existence of semantic gap between image visual features and human concepts, the semantic of image auto-annotation has become an important topic. Firstly, by extract low-level visual features of the image, and the corresponding Hash method, mapping the feature into the corresponding Hash coding, eventually, transformed that into a group of binary string and store it, image auto-annotation by search is a popular method, we can use it to design and implement a method of image semantic auto-annotation. Finally, Through the test based on the Corel image set, and the results show that, this method is effective.Keywords: image auto-annotation, color correlograms, Hash code, image retrieval
Procedia PDF Downloads 4974114 Epileptic Seizure Prediction by Exploiting Signal Transitions Phenomena
Authors: Mohammad Zavid Parvez, Manoranjan Paul
Abstract:
A seizure prediction method is proposed by extracting global features using phase correlation between adjacent epochs for detecting relative changes and local features using fluctuation/deviation within an epoch for determining fine changes of different EEG signals. A classifier and a regularization technique are applied for the reduction of false alarms and improvement of the overall prediction accuracy. The experiments show that the proposed method outperforms the state-of-the-art methods and provides high prediction accuracy (i.e., 97.70%) with low false alarm using EEG signals in different brain locations from a benchmark data set.Keywords: Epilepsy, seizure, phase correlation, fluctuation, deviation.
Procedia PDF Downloads 4674113 Evaluating and Examining Pictures of Children of Five Years Old
Authors: Emine Yılmaz Bolat
Abstract:
Early childhood is a very important period in terms of identifying and developing early skills and abilities. It is likely that the child's development will be in the same direction in the future. This study was conducted with 26 children for the purpose of examining pictures of children of five years old. In the survey, children were asked to draw a picture with pastel dyes. The drawings were collected and evaluated by the researcher. At the end of the research, it was found that the children used the yellow color (N = 17, 16,34%) and the least gray color (N = 1, 0,96%). When the features of children's pictures are examined, the children's paintings have been found to have hierarchy, transparency, completion, the use of vivid colors, and the presence of vertical and horizontal painting lines.Keywords: early childhood, kindergarten, pictures of children, features of pictures
Procedia PDF Downloads 3094112 The Developing of Teaching Materials Online for Students in Thailand
Authors: Pitimanus Bunlue
Abstract:
The objectives of this study were to identify the unique characteristics of Salaya Old market, Phutthamonthon, Nakhon Pathom and develop the effective video media to promote the homeland awareness among local people and the characteristic features of this community were collectively summarized based on historical data, community observation, and people’s interview. The acquired data were used to develop a media describing prominent features of the community. The quality of the media was later assessed by interviewing local people in the old market in terms of content accuracy, video, and narration qualities, and sense of homeland awareness after watching the video. The result shows a 6-minute video media containing historical data and outstanding features of this community was developed. Based on the interview, the content accuracy was good. The picture quality and the narration were very good. Most people developed a sense of homeland awareness after watching the video also as well.Keywords: audio-visual, creating homeland awareness, Phutthamonthon Nakhon Pathom, research and development
Procedia PDF Downloads 2934111 Product Features Extraction from Opinions According to Time
Authors: Kamal Amarouche, Houda Benbrahim, Ismail Kassou
Abstract:
Nowadays, e-commerce shopping websites have experienced noticeable growth. These websites have gained consumers’ trust. After purchasing a product, many consumers share comments where opinions are usually embedded about the given product. Research on the automatic management of opinions that gives suggestions to potential consumers and portrays an image of the product to manufactures has been growing recently. After launching the product in the market, the reviews generated around it do not usually contain helpful information or generic opinions about this product (e.g. telephone: great phone...); in the sense that the product is still in the launching phase in the market. Within time, the product becomes old. Therefore, consumers perceive the advantages/ disadvantages about each specific product feature. Therefore, they will generate comments that contain their sentiments about these features. In this paper, we present an unsupervised method to extract different product features hidden in the opinions which influence its purchase, and that combines Time Weighting (TW) which depends on the time opinions were expressed with Term Frequency-Inverse Document Frequency (TF-IDF). We conduct several experiments using two different datasets about cell phones and hotels. The results show the effectiveness of our automatic feature extraction, as well as its domain independent characteristic.Keywords: opinion mining, product feature extraction, sentiment analysis, SentiWordNet
Procedia PDF Downloads 4154110 Awareness, Use and Searching Behavior of 'Virtua' Online Public Access Catalog Users
Authors: Saira Soroya, Khalid Mahmood
Abstract:
Library catalogs open the door to the library collection. OPAC (Online Public Access Catalog) are one of the services offered by automated libraries. The present study aims to explore user’s awareness, the level of use and their searching behavior of OPAC with a purpose to give suggestions and ways to improve user-friendly features of library OPAC. The population consisted of OPAC users of Lahore University of Management Sciences (LUMS). Convenient sampling technique was carried out. Total sample size was 100 OPAC users. Quantitative research design, based on survey method used to carry out the study. The data collection instrument was adopted. Data was analyzed using SPSS. Results revealed that a considerable number of users were not aware of OPAC i.e. (30%); however, those who were aware were using basic features of the OPAC. It was found that lack of knowledge was considered the frequent reason for not using all features of OPAC. In this regard, it is strongly recommended that compulsory information literacy programme should be established.Keywords: catalog, OPAC, library automation, usability study, university library
Procedia PDF Downloads 3384109 DWT-SATS Based Detection of Image Region Cloning
Authors: Michael Zimba
Abstract:
A duplicated image region may be subjected to a number of attacks such as noise addition, compression, reflection, rotation, and scaling with the intention of either merely mating it to its targeted neighborhood or preventing its detection. In this paper, we present an effective and robust method of detecting duplicated regions inclusive of those affected by the various attacks. In order to reduce the dimension of the image, the proposed algorithm firstly performs discrete wavelet transform, DWT, of a suspicious image. However, unlike most existing copy move image forgery (CMIF) detection algorithms operating in the DWT domain which extract only the low frequency sub-band of the DWT of the suspicious image thereby leaving valuable information in the other three sub-bands, the proposed algorithm simultaneously extracts features from all the four sub-bands. The extracted features are not only more accurate representation of image regions but also robust to additive noise, JPEG compression, and affine transformation. Furthermore, principal component analysis-eigenvalue decomposition, PCA-EVD, is applied to reduce the dimension of the features. The extracted features are then sorted using the more computationally efficient Radix Sort algorithm. Finally, same affine transformation selection, SATS, a duplication verification method, is applied to detect duplicated regions. The proposed algorithm is not only fast but also more robust to attacks compared to the related CMIF detection algorithms. The experimental results show high detection rates.Keywords: affine transformation, discrete wavelet transform, radix sort, SATS
Procedia PDF Downloads 2304108 The Language of Fliptop among Filipino Youth: A Discourse Analysis
Authors: Bong Borero Lumabao
Abstract:
This qualitative research is a study on the lines of Fliptop talks performed by the Fliptop rappers employing Finnegan’s (2008) discourse analysis. This paper aimed to analyze the phonological, morphological, and semantic features of the fliptop talk, to explore the structures in the lines of Fliptop among Filipino youth, and to uncover the various insights that can be gained from it. The corpora of the study included all the 20 Fliptop Videos downloaded from the Youtube Channel of Fliptop. Results revealed that Fliptop contains phonological features such as assonance, consonance, deletion, lengthening, and rhyming. Morphological features include acronym, affixation, blending, borrowing, code-mixing and switching, compounding, conversion or functional shifts, and dysphemism. Semantics presented the lexical category, meaning, and words used in the fliptop talks. Structure of Fliptop revolves on the personal attack (physical attributes), attack on the bars (rapping skills), extension: family members and friends, antithesis, profane words, figurative languages, sexual undertones, anime characters, homosexuality, and famous celebrities involvement.Keywords: discourse analysis, fliptop talks, filipino youth, fliptop videos, Philippines
Procedia PDF Downloads 2454107 Automated Localization of Palpebral Conjunctiva and Hemoglobin Determination Using Smart Phone Camera
Authors: Faraz Tahir, M. Usman Akram, Albab Ahmad Khan, Mujahid Abbass, Ahmad Tariq, Nuzhat Qaiser
Abstract:
The objective of this study was to evaluate the Degree of anemia by taking the picture of the palpebral conjunctiva using Smartphone Camera. We have first localized the region of interest from the image and then extracted certain features from that Region of interest and trained SVM classifier on those features and then, as a result, our system classifies the image in real-time on their level of hemoglobin. The proposed system has given an accuracy of 70%. We have trained our classifier on a locally gathered dataset of 30 patients.Keywords: anemia, palpebral conjunctiva, SVM, smartphone
Procedia PDF Downloads 5074106 The Culture of Journal Writing among Manobo Senior High School Students
Authors: Jessevel Montes
Abstract:
This study explored on the culture of journal writing among the Senior High School Manobo students. The purpose of this qualitative morpho-semantic and syntactic study was to discover the morphological, semantic, and syntactic features of the written output through morphological, semantic, and syntactic categories present in their journal writings. Also, beliefs and practices embedded in the norms, values, and ideologies were identified. The study was conducted among the Manobo students in the Senior High Schools of Central Mindanao, particularly in the Division of North Cotabato. Findings revealed that morphologically, the features that flourished are the following: subject-verb concordance, tenses, pronouns, prepositions, articles, and the use of adjectives. Semantically, the features are the following: word choice, idiomatic expression, borrowing, and vernacular. Syntactically, the features are the types of sentences according to structure and function; and the dominance of code switching and run-on sentences. Lastly, as to the beliefs and practices embedded in the norms, values, and ideologies of their journal writing, the major themes are: valuing education, family, and friends as treasure, preservation of culture, and emancipation from the bondage of poverty. This study has shed light on the writing capabilities and weaknesses of the Manobo students when it comes to English language. Further, such an insight into language learning problems is useful to teachers because it provides information on common trouble-spots in language learning, which can be used in the preparation of effective teaching materials.Keywords: applied linguistics, culture, morpho-semantic and syntactic analysis, Manobo Senior High School, Philippines
Procedia PDF Downloads 1214105 Exploring the Profiles of Militants in the SWAT Valley of Pakistan
Authors: Lateef Hakim Zai Khyber, Syed Rashid Ali
Abstract:
In the post 9/11 era, a new trend has developed of terrorist profiling on the basis of the ethnic, religious, political, psychological, social, and economic background of the terrorists to anticipate and assess the possible risk and to prevent and prosecute the suspected before they commit any violent act. The same profiling approach was adopted in different militant or terrorist de-radicalization and rehabilitation programs across the world in order to evaluate and identify the reasons and causes for joining terrorism in terms of push and pull factors. This paper attempts to explore and investigate the profiles of the detainees in the Sabaoon de-radicalization and Emancipation program, which aimed at de-radicalizing the former militants of Tehrik-e-Taliban (TTP) Pakistan in the Swat valley of Pakistan. This research attempted to use qualitative methods for collecting data, including a number of formal and informal open-ended interviews with the former staff members of Sabaoon to explore various aspects of the program, such as various approaches used at Sabaoon for terrorist profiling. It conducts a thorough examination of the profiles of the terrorist through their socioeconomic, ideological, emotional, intellectual, and psychological conditions and orientations, personal details, family issues, social preferences, etc. The study finds out that the majority of the terrorists belonged to the marginalized groups or lower class, including underprivileged tenants and poor laborers, of society having no access to land. They possess almost the same profiles, including low socioeconomic status, absence of a father or strict behavior of parents, large and combined families, lack of education, lack of religious understanding, etc. They also possess some common traits such as anxiety disorder, emotional instability, aggressive impulses and insecurity, depression, inferiority complex, lack of critical thinking and logical reasoning, authority-seeking behavior, and revenge-seeking behavior.Keywords: terrorist profiling, Sabaoon, de-radicalization, rehabilitation, Swat, Pakistan, juvenile militants
Procedia PDF Downloads 1564104 Grammatical and Lexical Explorations on ‘Outer Circle’ Englishes and ‘Expanding Circle’ Englishes: A Corpus-Based Comparative Analysis
Authors: Orlyn Joyce D. Esquivel
Abstract:
This study analyzed 50 selected research papers from professional language and linguistic academic journals to portray the differences between Kachru’s (1994) outer circle and expanding circle Englishes. The selected outer circle Englishes include those of Bangladesh, Malaysia, the Philippines, India, and Singapore; and the selected expanding circle Englishes are those of China, Indonesia, Japan, Korea, and Thailand. The researcher built ten corpora (five research papers for each corpus) to represent each variety of Englishes. The corpora were examined under grammatical and lexical features using Modified English TreeTagger in Sketch Engine. Results revealed the distinct grammatical and lexical features through the table and textual analyses, illustrated from the most to least dominant linguistic elements. In addition, comparative analyses were done to distinguish the features of each of the selected Englishes. The Language Change Theory was used as a basis in the discussion. Hence, the findings suggest that the ‘outer circle’ Englishes and ‘expanding circle’ Englishes will continue to drift from International English.Keywords: applied linguistics, English as a global language, expanding circle Englishes, global Englishes, outer circle Englishes
Procedia PDF Downloads 1624103 Clinical and Epidemiological Profile in Patients with Preeclampsia in a Private Institution in Medellin, Colombia 2015
Authors: Camilo Andrés Agudelo Vélez, Lina María Martínez Sánchez, Isabel Cristina Ortiz Trujillo, Evert Armando Jiménez Cotes, Natalia Perilla Hernández, María de los Ángeles Rodríguez Gázquez, Daniel Duque Restrepo, Felipe Hernández Restrepo, Dayana Andrea Quintero Moreno, Juan José Builes Gómez, Camilo Ruiz Mejía, Ana Lucia Arango Gómez
Abstract:
Preeclampsia is a clinical complication during pregnancy with high incidence in Colombia; therefore, it is important to evaluate the influence of external conditions and medical interventions, in order to promote measures that encourage improvements in the quality of life. Objective: Determine clinical and sociodemographic variables in women with preeclampsia. Methods: This cross-sectional study enrolled 50 patients with the diagnosis of preeclampsia, from a private institution in Medellin, during 2015. We used the software SPSS ver.20 for statistical analysis. For the qualitative variables, we calculated the mean and standard deviation, while, for ordinal and nominal levels of quantitative variables, ratios were estimated. Results: The average age was 26.8±5.9 years. The predominant characteristics were socioeconomic stratum 2 (48%), students (55%), mixed race (46%) and middle school as level of education (38%). As for clinical features, 72% of the cases were mild preeclampsia, and 22% were severe forms. The most common clinical manifestations were edema (46%), headache (62%), and proteinuria (55%). As for the Gyneco-obstetric history, 8% reported previous episodes of this disease and it was the first pregnancy for 60% of the patients. Conclusions: Preeclampsia is a frequent condition in young women; on the other hand, headache and edema were the most common reasons for consultation, therefore, doctors need to be aware of these symptoms in pregnant women.Keywords: pre-eclampsia, hypertension, pregnancy complications, pregnancy, abdominal, edema
Procedia PDF Downloads 3654102 A Communication Signal Recognition Algorithm Based on Holder Coefficient Characteristics
Authors: Hui Zhang, Ye Tian, Fang Ye, Ziming Guo
Abstract:
Communication signal modulation recognition technology is one of the key technologies in the field of modern information warfare. At present, communication signal automatic modulation recognition methods are mainly divided into two major categories. One is the maximum likelihood hypothesis testing method based on decision theory, the other is a statistical pattern recognition method based on feature extraction. Now, the most commonly used is a statistical pattern recognition method, which includes feature extraction and classifier design. With the increasingly complex electromagnetic environment of communications, how to effectively extract the features of various signals at low signal-to-noise ratio (SNR) is a hot topic for scholars in various countries. To solve this problem, this paper proposes a feature extraction algorithm for the communication signal based on the improved Holder cloud feature. And the extreme learning machine (ELM) is used which aims at the problem of the real-time in the modern warfare to classify the extracted features. The algorithm extracts the digital features of the improved cloud model without deterministic information in a low SNR environment, and uses the improved cloud model to obtain more stable Holder cloud features and the performance of the algorithm is improved. This algorithm addresses the problem that a simple feature extraction algorithm based on Holder coefficient feature is difficult to recognize at low SNR, and it also has a better recognition accuracy. The results of simulations show that the approach in this paper still has a good classification result at low SNR, even when the SNR is -15dB, the recognition accuracy still reaches 76%.Keywords: communication signal, feature extraction, Holder coefficient, improved cloud model
Procedia PDF Downloads 1574101 Indoor Fingerprint Localization Using 5G NR Multi-SSB Beam Features with GAN-Based Interpolation
Authors: LiRen Kang, LingXia Li, KaiKai Liu, Yue Jin, ZengShan Tian
Abstract:
With the widespread adoption of 5G technology in the Internet of Things (IoT), indoor localization methods based on 5G signals have gradually become a research hotspot. However, traditional methods often perform poorly in multipath interference and signal attenuation environments. To address these challenges, this paper proposes an innovative fingerprint localization method that utilizes the multiple synchronization signal block (SSB) beam features of 5G signals combined with generative adversarial networks (GANs) for interpolation. Our method incorporates a ray tracing model as an auxiliary, integrating signal propagation models to enhance the interpolation process. We precisely extract the multiple SSB beam features from 5G signals; in the localization stage, deep learning neural networks (DNN) are used for localization. Field tests show that localization errors of less than 1.5 meters can be achieved within about 200 square meters of indoor environment. Our method represents a 56.7% improvement compared to traditional methods that use received signal strength (RSS) as a single feature.Keywords: 5G NR, fingerprint localization, generative adversarial networks, Internet of Things, indoor localization systems
Procedia PDF Downloads 74100 Urban Security through Urban Transformation: Case of Saraycik District
Authors: Emir Sunguroglu, Merve Sunguroglu, Yesim Aliefendioglu, Harun Tanrivermis
Abstract:
Basic human needs range from physiological needs such as food, water and shelter to safety needs such as security, protection from natural disasters and even urban terrorism which are extant and not fulfilled even in urban areas where people live civilly in large communities. These basic needs when arose in urban life lead to a different kind of crime set defined as urban crimes. Urban crimes mostly result from differences between socioeconomic conditions in society. Income inequality increases tendency towards urban crimes. Especially in slum areas and suburbs, urban crimes not only threaten public security but they also affect deliverance of public services. It is highlighted that, construction of urban security against problems caused by urban crimes is not only achieved by involvement of urban security in security of the community but also comprises juridical development and staying above a level of legal standards concurrently. The idea of urban transformation emerged as interventions to demolishment and rebuilding of built environment to solve the unhealthy urban environment, inadequate infrastructure and socioeconomic problems came up during the industrialization process. Considering the probability of urbanization process driving citizens to commit crimes, The United Nations Commission on Human Security’s focus on this theme is conferred to be a proper approach. In this study, the analysis and change in security before, through and after urban transformation, which is one of the tools related to urbanization process, is strived to be discussed through the case of Sincan County Saraycik District. The study also aims to suggest improvements to current legislation on public safety, urban resilience, and urban transformation. In spite of Saraycik District residing in a developing County in Ankara, Turkey, from urbanization perspective as well as socioeconomic and demographic indicators the District exhibits a negative view throughout the County and the country. When related to the county, rates of intentional harm reports, burglary reports, the offense of libel and threat reports and narcotic crime reports are higher. The District is defined as ‘crime hotspot’. Interviews with residents of Saraycik claim that the greatest issue of the neighborhood is Public Order and Security (82.44 %). The District becomes prominent with negative aspects, especially with the presence of unlicensed constructions, occurrence of important social issues such as crime and insecurity and complicated lives of inhabitants from poverty and low standard conditions of living. Additionally, the social structure and demographic properties and crime and insecurity of the field have been addressed in this study. Consequently, it is claimed that urban crime rates were related to level of education, employment and household income, poverty trap, physical condition of housing and structuration, accessibility of public services, security, migration, safety in terms of disasters and emphasized that urban transformation is one of the most important tools in order to provide urban security.Keywords: urban security, urban crimes, urban transformation, Saraycik district
Procedia PDF Downloads 3064099 Classifier for Liver Ultrasound Images
Authors: Soumya Sajjan
Abstract:
Liver cancer is the most common cancer disease worldwide in men and women, and is one of the few cancers still on the rise. Liver disease is the 4th leading cause of death. According to new NHS (National Health Service) figures, deaths from liver diseases have reached record levels, rising by 25% in less than a decade; heavy drinking, obesity, and hepatitis are believed to be behind the rise. In this study, we focus on Development of Diagnostic Classifier for Ultrasound liver lesion. Ultrasound (US) Sonography is an easy-to-use and widely popular imaging modality because of its ability to visualize many human soft tissues/organs without any harmful effect. This paper will provide an overview of underlying concepts, along with algorithms for processing of liver ultrasound images Naturaly, Ultrasound liver lesion images are having more spackle noise. Developing classifier for ultrasound liver lesion image is a challenging task. We approach fully automatic machine learning system for developing this classifier. First, we segment the liver image by calculating the textural features from co-occurrence matrix and run length method. For classification, Support Vector Machine is used based on the risk bounds of statistical learning theory. The textural features for different features methods are given as input to the SVM individually. Performance analysis train and test datasets carried out separately using SVM Model. Whenever an ultrasonic liver lesion image is given to the SVM classifier system, the features are calculated, classified, as normal and diseased liver lesion. We hope the result will be helpful to the physician to identify the liver cancer in non-invasive method.Keywords: segmentation, Support Vector Machine, ultrasound liver lesion, co-occurance Matrix
Procedia PDF Downloads 4134098 Artificial Intelligence and Canva App
Authors: Lamar Alhindi, Madhawi Alsharif
Abstract:
This report explores Canva, a user-friendly graphic design platform designed to empower individuals of all skill levels in creating diverse visual content. The study provides a comprehensive overview of Canva’s features, such as its drag-and-drop interface, AI tools, and extensive asset library. A survey was conducted to assess users’ perceptions of Canva’s AI-driven features, highlighting their utility in saving time and improving efficiency. Key insights include the popularity of design suggestions and accessibility for beginners. The report underscores Canva’s versatility for personal and professional applications, emphasizing its role as a go-to design tool for individuals and businesses alike.Keywords: Canva, Ai, Ai driven tools, beginner, editing
Procedia PDF Downloads 54097 Enhancing the Recruitment Process through Machine Learning: An Automated CV Screening System
Authors: Kaoutar Ben Azzou, Hanaa Talei
Abstract:
Human resources is an important department in each organization as it manages the life cycle of employees from recruitment training to retirement or termination of contracts. The recruitment process starts with a job opening, followed by a selection of the best-fit candidates from all applicants. Matching the best profile for a job position requires a manual way of looking at many CVs, which requires hours of work that can sometimes lead to choosing not the best profile. The work presented in this paper aims at reducing the workload of HR personnel by automating the preliminary stages of the candidate screening process, thereby fostering a more streamlined recruitment workflow. This tool introduces an automated system designed to help with the recruitment process by scanning candidates' CVs, extracting pertinent features, and employing machine learning algorithms to decide the most fitting job profile for each candidate. Our work employs natural language processing (NLP) techniques to identify and extract key features from unstructured text extracted from a CV, such as education, work experience, and skills. Subsequently, the system utilizes these features to match candidates with job profiles, leveraging the power of classification algorithms.Keywords: automated recruitment, candidate screening, machine learning, human resources management
Procedia PDF Downloads 574096 The Direct and Indirect Effects of Buddhism on Fertility Rates in General and in Specific Socioeconomic Circumstances of Women
Authors: Szerena Vajkovszki
Abstract:
Our worldwide aging society, especially in developed countries, including members of EU, raise sophisticated sociological and economic issues and challenges to be met. As declining fertility has outstanding influence underlying this trend, numerous studies have attempted to identify, describe, measure and interpret contributing factors of the fertility rate, out of which relatively few revealed the impact of religion. Identified, examined and influential factors affecting birth rate as stated by the present scientific publications are more than a dozen out of which religious beliefs, traditions, and cultural norms were examined first with a special focus on abortion and forms of birth control. Nevertheless, connected to religion, not only these topics are crucial regarding fertility, but many others as well. Among many religious guidelines, we can separate two major categories: direct and indirect. The aim of this research was to understand what are the most crucial identified (family values, gender related behaviors, religious sentiments) and not yet identified most influential contributing religious factors. Above identifying these direct or indirect factors, it is also important to understand to what extent and how do they influence fertility, which requires a wider (inter-discipline) perspective. As proved by previous studies religion has also an influential role on health, mental state, well-being, working activity and many other components that are also related to fertility rates. All these components are inter-related. Hence direct and indirect religious effects can only be well understood if we figure out all necessary fields and their interaction. With the help of semi-structured opened interviews taking place in different countries, it was showed that indeed Buddhism has significant direct and indirect effect on fertility. Hence the initial hypothesis was proved. However, the interviews showed an overall positive effect; the results could only serve for a general understanding of how Buddhism affects fertility. Evolution of Buddhism’s direct and indirect influence may vary in different nations and circumstances according to their specific environmental attributes. According to the local patterns, with special regard to women’s position and role in the society, outstandingly indirect influences could show diversifications. So it is advisory to investigate more for a deeper and clearer understanding of how Buddhism function in different socioeconomic circumstances. For this purpose, a specific and detailed analysis was developed from recent related researches about women’s position (including family roles and economic activity) in Hungary with the intention to be able to have a complex vision of crucial socioeconomic factors influencing fertility. Further interviews and investigations are to be done in order to show a complex vision of Buddhism’s direct and indirect effect on fertility in Hungary to be able to support recommendations and policies pointing to higher fertility rates in the field of social policies. The present research could serve as a general starting point or a common basis for further specific national investigations.Keywords: Buddhism, children, fertility, gender roles, religion, women
Procedia PDF Downloads 1524095 Underwater Image Enhancement and Reconstruction Using CNN and the MultiUNet Model
Authors: Snehal G. Teli, R. J. Shelke
Abstract:
CNN and MultiUNet models are the framework for the proposed method for enhancing and reconstructing underwater images. Multiscale merging of features and regeneration are both performed by the MultiUNet. CNN collects relevant features. Extensive tests on benchmark datasets show that the proposed strategy performs better than the latest methods. As a result of this work, underwater images can be represented and interpreted in a number of underwater applications with greater clarity. This strategy will advance underwater exploration and marine research by enhancing real-time underwater image processing systems, underwater robotic vision, and underwater surveillance.Keywords: convolutional neural network, image enhancement, machine learning, multiunet, underwater images
Procedia PDF Downloads 794094 TikTok: AI Driven Features and Participants' Reaction
Authors: Baylasan Al-Amoudi, Hala Abdulmajeed, Amjad Jilani
Abstract:
This project explores the role of artificial intelligence (AI) in enhancing user engagement on TikTok by examining the app’s AI-driven features. Through a structured survey of 4 main questions and experimental analysis, we tried to examine how TikTok’s recommendations, algorithms, search engine, and filter tools influence user interactions and satisfaction. A diverse cohort of 20 participants, including casual users and content creators, were involved to provide a broad perspective on user experiences. The examination highlights the recommendation algorithm’s ability to deliver highly personalized content, creating a seamless and engaging experience. TikTok’s search engine is shown to simplify content discovery by enabling users to find specific topics or trends related to their preferences. Meanwhile, the filter tools are found to encourage creativity, particularly for content creators, by offering versatile options to enhance video quality and visual appeal. By evaluating the unique roles of these AI features, the project underscores their significance in maintaining TikTok’s appeal and driving consistent user engagement.Keywords: TikTok, hashtags, filters, viral sounds, for you page
Procedia PDF Downloads 24093 The Psychological Impact of War Trauma on Refugees
Authors: Anastasia Papachristou, Anastasia Ntikoudi, Vasileios Saridakis
Abstract:
The safety and health care needs of refugees have become an increasingly important issue all over the world especially during last few decades. Wars are the primary reason for refugees to leave their countries. Moreover, refugees are frequently exposed to a variety of stressors such as socioeconomic disadvantages, poverty, changes in family structure and functioning, losing social support, difficulty to access education, living in very crowded places, experiencing racism and isolation. This systematic review included research studies published between 2007-2017 from the search databases Medline, Scopus, Cinahl and PubMed, with keywords 'war survivors', 'war trauma', 'psychiatric disorders', 'refugees'. In order to meet the purpose of the systematic review, further research for complementary studies was conducted into the literature references of the research articles included in this study that would meet the criteria. Overall, 14 studies were reviewed and evaluated. The majority of them demonstrated that the most common psychiatric disorders observed among war refugees are post-traumatic stress disorder (PTSD), depression, anxiety and multiple somatic complaints. Moreover, significant relationship was shown between the number of traumatic events experienced by the refugees and sociodemographic features such as gender, age and previous family history of any psychological disorder. War violence is highly traumatic, causing multiple, long-term negative outcomes such as the aforementioned psychiatric disorders. The number of the studies reviewed in this systematic review is not representative of the problem and its significance. The need for care of the survivors and their families is vital. Further research is necessary in order to clarify the role of predictive factors in the development and maintenance of post-traumatic stress and the rest psychiatric disorders following war trauma. In conclusion, it is necessary to have large multicenter studies in the future in order to be able to draw reliable conclusions about the effects of war.Keywords: psychiatric disorders, refugees, war survivors, war trauma
Procedia PDF Downloads 2014092 Dentofacial-Targeted Bullying: A Review
Authors: Mai Ashraf Talaat
Abstract:
Bullying is an aggressive behavior and a serious issue that should be addressed by everyone and should be avoided at all costs. It is very common among adolescents and schoolchildren and the effects can be devastating and long-lasting. Students are most commonly bullied about physical appearance, race, gender, disability, ethnicity, religion, and sexual orientation. Appearance-targeted bullying is a form of bullying that targets an aspect of a person's appearance, which includes facial and dental features. Deviation from accepted dentofacial aesthetics leads to elevated incidences of bullying in schoolchildren. The aim of this review article is to assess the prevalence of bullying due to dentofacial characteristics and evaluate the importance of dentofacial appearance on perceived social attractiveness based on multiple studies.Keywords: dentofacial features, orthodontics, malocclusion, adolescents, bullying
Procedia PDF Downloads 80