Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 87686
TikTok: AI Driven Features and Participants' Reaction
Authors: Baylasan Al-Amoudi, Hala Abdulmajeed, Amjad Jilani
Abstract:
This project explores the role of artificial intelligence (AI) in enhancing user engagement on TikTok by examining the app’s AI-driven features. Through a structured survey of 4 main questions and experimental analysis, we tried to examine how TikTok’s recommendations, algorithms, search engine, and filter tools influence user interactions and satisfaction. A diverse cohort of 20 participants, including casual users and content creators, were involved to provide a broad perspective on user experiences. The examination highlights the recommendation algorithm’s ability to deliver highly personalized content, creating a seamless and engaging experience. TikTok’s search engine is shown to simplify content discovery by enabling users to find specific topics or trends related to their preferences. Meanwhile, the filter tools are found to encourage creativity, particularly for content creators, by offering versatile options to enhance video quality and visual appeal. By evaluating the unique roles of these AI features, the project underscores their significance in maintaining TikTok’s appeal and driving consistent user engagement.Keywords: TikTok, hashtags, filters, viral sounds, for you page
Procedia PDF Downloads 0