Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 842

Search results for: color correlograms

842 A Method of the Semantic on Image Auto-Annotation

Authors: Lin Huo, Xianwei Liu, Jingxiong Zhou

Abstract:

Recently, due to the existence of semantic gap between image visual features and human concepts, the semantic of image auto-annotation has become an important topic. Firstly, by extract low-level visual features of the image, and the corresponding Hash method, mapping the feature into the corresponding Hash coding, eventually, transformed that into a group of binary string and store it, image auto-annotation by search is a popular method, we can use it to design and implement a method of image semantic auto-annotation. Finally, Through the test based on the Corel image set, and the results show that, this method is effective.

Keywords: image auto-annotation, color correlograms, Hash code, image retrieval

Procedia PDF Downloads 345
841 Evaluating the Performance of Color Constancy Algorithm

Authors: Damanjit Kaur, Avani Bhatia

Abstract:

Color constancy is significant for human vision since color is a pictorial cue that helps in solving different visions tasks such as tracking, object recognition, or categorization. Therefore, several computational methods have tried to simulate human color constancy abilities to stabilize machine color representations. Two different kinds of methods have been used, i.e., normalization and constancy. While color normalization creates a new representation of the image by canceling illuminant effects, color constancy directly estimates the color of the illuminant in order to map the image colors to a canonical version. Color constancy is the capability to determine colors of objects independent of the color of the light source. This research work studies the most of the well-known color constancy algorithms like white point and gray world.

Keywords: color constancy, gray world, white patch, modified white patch

Procedia PDF Downloads 206
840 A Way of Converting Color Images to Gray Scale Ones for the Color-Blind: Applying to the part of the Tokyo Subway Map

Authors: Katsuhiro Narikiyo, Shota Hashikawa

Abstract:

This paper proposes a way of removing noises and reducing the number of colors contained in a JPEG image. Main purpose of this project is to convert color images to monochrome images for the color-blind. We treat the crispy color images like the Tokyo subway map. Each color in the image has an important information. But for the color blinds, similar colors cannot be distinguished. If we can convert those colors to different gray values, they can distinguish them. Therefore we try to convert color images to monochrome images.

Keywords: color-blind, JPEG, monochrome image, denoise

Procedia PDF Downloads 246
839 Towards Integrating Statistical Color Features for Human Skin Detection

Authors: Mohd Zamri Osman, Mohd Aizaini Maarof, Mohd Foad Rohani

Abstract:

Human skin detection recognized as the primary step in most of the applications such as face detection, illicit image filtering, hand recognition and video surveillance. The performance of any skin detection applications greatly relies on the two components: feature extraction and classification method. Skin color is the most vital information used for skin detection purpose. However, color feature alone sometimes could not handle images with having same color distribution with skin color. A color feature of pixel-based does not eliminate the skin-like color due to the intensity of skin and skin-like color fall under the same distribution. Hence, the statistical color analysis will be exploited such mean and standard deviation as an additional feature to increase the reliability of skin detector. In this paper, we studied the effectiveness of statistical color feature for human skin detection. Furthermore, the paper analyzed the integrated color and texture using eight classifiers with three color spaces of RGB, YCbCr, and HSV. The experimental results show that the integrating statistical feature using Random Forest classifier achieved a significant performance with an F1-score 0.969.

Keywords: color space, neural network, random forest, skin detection, statistical feature

Procedia PDF Downloads 346
838 Spectra Analysis in Sunset Color Demonstrations with a White-Color LED as a Light Source

Authors: Makoto Hasegawa, Seika Tokumitsu

Abstract:

Spectra of light beams emitted from white-color LED torches are different from those of conventional electric torches. In order to confirm if white-color LED torches can be used as light sources for popular sunset color demonstrations in spite of such differences, spectra of travelled light beams and scattered light beams with each of a white-color LED torch (composed of a blue LED and yellow-color fluorescent material) and a conventional electric torch as a light source were measured and compared with each other in a 50 cm-long water tank for sunset color demonstration experiments. Suspension liquid was prepared from acryl-emulsion and tap-water in the water tank, and light beams from the white-color LED torch or the conventional electric torch were allowed to travel in this suspension liquid. Sunset-like color was actually observed when the white-color LED torch was used as the light source in sunset color demonstrations. However, the observed colors when viewed with naked eye look slightly different from those obtainable with the conventional electric torch. At the same time, with the white-color LED, changes in colors in short to middle wavelength regions were recognized with careful observations. From those results, white-color LED torches are confirmed to be applicable as light sources in sunset color demonstrations, although certain attentions have to be paid. Further advanced classes will be successfully performed with white-color LED torches as light sources.

Keywords: blue sky demonstration, sunset color demonstration, white LED torch, physics education

Procedia PDF Downloads 206
837 A Neural Approach for Color-Textured Images Segmentation

Authors: Khalid Salhi, El Miloud Jaara, Mohammed Talibi Alaoui

Abstract:

In this paper, we present a neural approach for unsupervised natural color-texture image segmentation, which is based on both Kohonen maps and mathematical morphology, using a combination of the texture and the image color information of the image, namely, the fractal features based on fractal dimension are selected to present the information texture, and the color features presented in RGB color space. These features are then used to train the network Kohonen, which will be represented by the underlying probability density function, the segmentation of this map is made by morphological watershed transformation. The performance of our color-texture segmentation approach is compared first, to color-based methods or texture-based methods only, and then to k-means method.

Keywords: segmentation, color-texture, neural networks, fractal, watershed

Procedia PDF Downloads 260
836 The Impact of the “Cold Ambient Color = Healthy” Intuition on Consumer Food Choice

Authors: Yining Yu, Bingjie Li, Miaolei Jia, Lei Wang

Abstract:

Ambient color temperature is one of the most ubiquitous factors in retailing. However, there is limited research regarding the effect of cold versus warm ambient color on consumers’ food consumption. This research investigates an unexplored lay belief named the “cold ambient color = healthy” intuition and its impact on food choice. We demonstrate that consumers have built the “cold ambient color = healthy” intuition, such that they infer that a restaurant with a cold-colored ambiance is more likely to sell healthy food than a warm-colored restaurant. This deep-seated intuition also guides consumers’ food choices. We find that using a cold (vs. warm) ambient color increases the choice of healthy food, which offers insights into healthy diet promotion for retailers and policymakers. Theoretically, our work contributes to the literature on color psychology, sensory marketing, and food consumption.

Keywords: ambient color temperature, cold ambient color, food choice, consumer wellbeing

Procedia PDF Downloads 27
835 Costume Design Influenced by Seventeenth Century Color Palettes on a Contemporary Stage

Authors: Michele L. Dormaier

Abstract:

The purpose of the research was to design costumes based on historic colors used by artists during the seventeenth century. The researcher investigated European art, primarily paintings and portraiture, as well as the color palettes used by the artists. The methodology examined the artists, their work, the color palettes used in their work, and the practices of color usage within their palettes. By examining portraits of historic figures, as well as paintings of ordinary scenes, subjects, and people, further information about color palettes was revealed. Related to the color palettes, was the use of ‘broken colors’ which was a relatively new practice, dating from the sixteenth century. The color palettes used by the artists of the seventeenth century had their limitations due to available pigments. With an examination of not only their artwork, and with a closer look at their palettes, the researcher discovered the exciting choices they made, despite those restrictions. The research was also initiated with the historical elements of the era’s clothing, as well as that of available materials and dyes. These dyes were also limited in much the same manner as the pigments which the artist had at their disposal. The color palettes of the paintings have much to tell us about the lives, status, conditions, and relationships from the past. From this research, informed decisions regarding color choices for a production on a contemporary stage of a period piece could then be made. The designer’s choices were a historic gesture to the colors which might have been worn by the character’s real-life counterparts of the era.

Keywords: broken color palette, costume color research, costume design, costume history, seventeenth century color palette, sixteenth century color palette

Procedia PDF Downloads 96
834 Effect of Blanching and Drying Methods on the Degradation Kinetics and Color Stability of Radish (Raphanus sativus) Leaves

Authors: K. Radha Krishnan, Mirajul Alom

Abstract:

Dehydrated powder prepared from fresh radish (Raphanus sativus) leaves were investigated for the color stability by different drying methods (tray, sun and solar). The effect of blanching conditions, drying methods as well as drying temperatures (50 – 90°C) were considered for studying the color degradation kinetics of chlorophyll in the dehydrated powder. The hunter color parameters (L*, a*, b*) and total color difference (TCD) were determined in order to investigate the color degradation kinetics of chlorophyll. Blanching conditions, drying method and drying temperature influenced the changes in L*, a*, b* and TCD values. The changes in color values during processing were described by a first order kinetic model. The temperature dependence of chlorophyll degradation was adequately modeled by Arrhenius equation. To predict the losses in green color, a mathematical model was developed from the steady state kinetic parameters. The results from this study indicated the protective effect of blanching conditions on the color stability of dehydrated radish powder.

Keywords: chlorophyll, color stability, degradation kinetics, drying

Procedia PDF Downloads 275
833 Image Segmentation Using 2-D Histogram in RGB Color Space in Digital Libraries

Authors: El Asnaoui Khalid, Aksasse Brahim, Ouanan Mohammed

Abstract:

This paper presents an unsupervised color image segmentation method. It is based on a hierarchical analysis of 2-D histogram in RGB color space. This histogram minimizes storage space of images and thus facilitates the operations between them. The improved segmentation approach shows a better identification of objects in a color image and, at the same time, the system is fast.

Keywords: image segmentation, hierarchical analysis, 2-D histogram, classification

Procedia PDF Downloads 285
832 Parallel Version of Reinhard’s Color Transfer Algorithm

Authors: Abhishek Bhardwaj, Manish Kumar Bajpai

Abstract:

An image with its content and schema of colors presents an effective mode of information sharing and processing. By changing its color schema different visions and prospect are discovered by the users. This phenomenon of color transfer is being used by Social media and other channel of entertainment. Reinhard et al’s algorithm was the first one to solve this problem of color transfer. In this paper, we make this algorithm efficient by introducing domain parallelism among different processors. We also comment on the factors that affect the speedup of this problem. In the end by analyzing the experimental data we claim to propose a novel and efficient parallel Reinhard’s algorithm.

Keywords: Reinhard et al’s algorithm, color transferring, parallelism, speedup

Procedia PDF Downloads 516
831 Content-Based Image Retrieval Using HSV Color Space Features

Authors: Hamed Qazanfari, Hamid Hassanpour, Kazem Qazanfari

Abstract:

In this paper, a method is provided for content-based image retrieval. Content-based image retrieval system searches query an image based on its visual content in an image database to retrieve similar images. In this paper, with the aim of simulating the human visual system sensitivity to image's edges and color features, the concept of color difference histogram (CDH) is used. CDH includes the perceptually color difference between two neighboring pixels with regard to colors and edge orientations. Since the HSV color space is close to the human visual system, the CDH is calculated in this color space. In addition, to improve the color features, the color histogram in HSV color space is also used as a feature. Among the extracted features, efficient features are selected using entropy and correlation criteria. The final features extract the content of images most efficiently. The proposed method has been evaluated on three standard databases Corel 5k, Corel 10k and UKBench. Experimental results show that the accuracy of the proposed image retrieval method is significantly improved compared to the recently developed methods.

Keywords: content-based image retrieval, color difference histogram, efficient features selection, entropy, correlation

Procedia PDF Downloads 176
830 The Role of Metallic Mordant in Natural Dyeing Process: Experimental and Quantum Study on Color Fastness

Authors: Bo-Gaun Chen, Chiung-Hui Huang, Mei-Ching Chiang, Kuo-Hsing Lee, Chia-Chen Ho, Chin-Ping Huang, Chin-Heng Tien

Abstract:

It is known that the natural dyeing of cloth results moderate color, but with poor color fastness. This study points out the correlation between the macroscopic color fastness of natural dye to the cotton fiber and the microscopic binding energy of dye molecule to the cellulose. With the additive metallic mordant, the new-formed coordination bond bridges the dye to the fiber surface and thus affects the color fastness as well as the color appearance. The density functional theory (DFT) calculation is therefore used to explore the most possible mechanism during the dyeing process. Finally, the experimental results reflect the strong effect of three different metal ions on the natural dyeing clothes.

Keywords: binding energy, color fastness, density functional theory (DFT), natural dyeing, metallic mordant

Procedia PDF Downloads 419
829 Tomato Fruit Color Changes during Ripening of Vine

Authors: A.Radzevičius, P. Viškelis, J. Viškelis, R. Karklelienė, D. Juškevičienė

Abstract:

Tomato (Lycopersicon esculentum Mill.) hybrid 'Brooklyn' was investigated at the LRCAF Institute of Horticulture. For investigation, five green tomatoes, which were grown on vine, were selected. Color measurements were made in the greenhouse with the same selected tomato fruits (fruits were not harvested and were growing and ripening on tomato vine through all experiment) in every two days while tomatoes fruits became fully ripen. Study showed that color index L has tendency to decline and established determination coefficient (R2) was 0.9504. Also, hue angle has tendency to decline during tomato fruit ripening on vine and it’s coefficient of determination (R2) reached–0.9739. Opposite tendency was determined with color index a, which has tendency to increase during tomato ripening and that was expressed by polynomial trendline where coefficient of determination (R2) reached–0.9592.

Keywords: color, color index, ripening, tomato

Procedia PDF Downloads 401
828 Contrast Enhancement of Color Images with Color Morphing Approach

Authors: Javed Khan, Aamir Saeed Malik, Nidal Kamel, Sarat Chandra Dass, Azura Mohd Affandi

Abstract:

Low contrast images can result from the wrong setting of image acquisition or poor illumination conditions. Such images may not be visually appealing and can be difficult for feature extraction. Contrast enhancement of color images can be useful in medical area for visual inspection. In this paper, a new technique is proposed to improve the contrast of color images. The RGB (red, green, blue) color image is transformed into normalized RGB color space. Adaptive histogram equalization technique is applied to each of the three channels of normalized RGB color space. The corresponding channels in the original image (low contrast) and that of contrast enhanced image with adaptive histogram equalization (AHE) are morphed together in proper proportions. The proposed technique is tested on seventy color images of acne patients. The results of the proposed technique are analyzed using cumulative variance and contrast improvement factor measures. The results are also compared with decorrelation stretch. Both subjective and quantitative analysis demonstrates that the proposed techniques outperform the other techniques.

Keywords: contrast enhacement, normalized RGB, adaptive histogram equalization, cumulative variance.

Procedia PDF Downloads 297
827 Design and Development of 5-DOF Color Sorting Manipulator for Industrial Applications

Authors: Atef A. Ata, Sohair F. Rezeka, Ahmed El-Shenawy, Mohammed Diab

Abstract:

Image processing in today’s world grabs massive attentions as it leads to possibilities of broaden application in many fields of high technology. The real challenge is how to improve existing sorting system applications which consists of two integrated stations of processing and handling with a new image processing feature. Existing color sorting techniques use a set of inductive, capacitive, and optical sensors to differentiate object color. This research presents a mechatronics color sorting system solution with the application of image processing. A 5-DOF robot arm is designed and developed with pick and place operation to be main part of the color sorting system. Image processing procedure senses the circular objects in an image captured in real time by a webcam attached at the end-effector then extracts color and position information out of it. This information is passed as a sequence of sorting commands to the manipulator that has pick-and-place mechanism. Performance analysis proves that this color based object sorting system works very accurate under ideal condition in term of adequate illumination, circular objects shape and color. The circular objects tested for sorting are red, green and blue. For non-ideal condition, such as unspecified color the accuracy reduces to 80%.

Keywords: robotics manipulator, 5-DOF manipulator, image processing, color sorting, pick-and-place

Procedia PDF Downloads 292
826 Clustering Color Space, Time Interest Points for Moving Objects

Authors: Insaf Bellamine, Hamid Tairi

Abstract:

Detecting moving objects in sequences is an essential step for video analysis. This paper mainly contributes to the Color Space-Time Interest Points (CSTIP) extraction and detection. We propose a new method for detection of moving objects. Two main steps compose the proposed method. First, we suggest to apply the algorithm of the detection of Color Space-Time Interest Points (CSTIP) on both components of the Color Structure-Texture Image Decomposition which is based on a Partial Differential Equation (PDE): a color geometric structure component and a color texture component. A descriptor is associated to each of these points. In a second stage, we address the problem of grouping the points (CSTIP) into clusters. Experiments and comparison to other motion detection methods on challenging sequences show the performance of the proposed method and its utility for video analysis. Experimental results are obtained from very different types of videos, namely sport videos and animation movies.

Keywords: Color Space-Time Interest Points (CSTIP), Color Structure-Texture Image Decomposition, Motion Detection, clustering

Procedia PDF Downloads 303
825 FISCEAPP: FIsh Skin Color Evaluation APPlication

Authors: J. Urban, Á. S. Botella, L. E. Robaina, A. Bárta, P. Souček, P. Císař, Š. Papáček, L. M. Domínguez

Abstract:

Skin coloration in fish is of great physiological, behavioral and ecological importance and can be considered as an index of animal welfare in aquaculture as well as an important quality factor in the retail value. Currently, in order to compare color in animals fed on different diets, biochemical analysis, and colorimetry of fished, mildly anesthetized or dead body, are very accurate and meaningful measurements. The noninvasive method using digital images of the fish body was developed as a standalone application. This application deals with the computation burden and memory consumption of large input files, optimizing piece wise processing and analysis with the memory/computation time ratio. For the comparison of color distributions of various experiments and different color spaces (RGB, CIE L*a*b*) the comparable semi-equidistant binning of multi channels representation is introduced. It is derived from the knowledge of quantization levels and Freedman-Diaconis rule. The color calibrations and camera responsivity function were necessary part of the measurement process.

Keywords: color distribution, fish skin color, piecewise transformation, object to background segmentation

Procedia PDF Downloads 180
824 Best-Performing Color Space for Land-Sea Segmentation Using Wavelet Transform Color-Texture Features and Fusion of over Segmentation

Authors: Seynabou Toure, Oumar Diop, Kidiyo Kpalma, Amadou S. Maiga

Abstract:

Color and texture are the two most determinant elements for perception and recognition of the objects in an image. For this reason, color and texture analysis find a large field of application, for example in image classification and segmentation. But, the pioneering work in texture analysis was conducted on grayscale images, thus discarding color information. Many grey-level texture descriptors have been proposed and successfully used in numerous domains for image classification: face recognition, industrial inspections, food science medical imaging among others. Taking into account color in the definition of these descriptors makes it possible to better characterize images. Color texture is thus the subject of recent work, and the analysis of color texture images is increasingly attracting interest in the scientific community. In optical remote sensing systems, sensors measure separately different parts of the electromagnetic spectrum; the visible ones and even those that are invisible to the human eye. The amounts of light reflected by the earth in spectral bands are then transformed into grayscale images. The primary natural colors Red (R) Green (G) and Blue (B) are then used in mixtures of different spectral bands in order to produce RGB images. Thus, good color texture discrimination can be achieved using RGB under controlled illumination conditions. Some previous works investigate the effect of using different color space for color texture classification. However, the selection of the best performing color space in land-sea segmentation is an open question. Its resolution may bring considerable improvements in certain applications like coastline detection, where the detection result is strongly dependent on the performance of the land-sea segmentation. The aim of this paper is to present the results of a study conducted on different color spaces in order to show the best-performing color space for land-sea segmentation. In this sense, an experimental analysis is carried out using five different color spaces (RGB, XYZ, Lab, HSV, YCbCr). For each color space, the Haar wavelet decomposition is used to extract different color texture features. These color texture features are then used for Fusion of Over Segmentation (FOOS) based classification; this allows segmentation of the land part from the sea one. By analyzing the different results of this study, the HSV color space is found as the best classification performance while using color and texture features; which is perfectly coherent with the results presented in the literature.

Keywords: classification, coastline, color, sea-land segmentation

Procedia PDF Downloads 154
823 Crystallized Colored Towels Obtained by Special Coloration of Yarns

Authors: Hasan Eskin, Gizem Özmen, A. Nazmi Çeler

Abstract:

When we examine the home textile development process, it follows a parallel line with the other textile products especially in the garment fabrics in terms of raw materials, production technologies and pattern characteristics. As a result, the expectations of people regarding textile, comfort, pattern (texture) and color properties are increasing. One of the places where comfort is most sought after is bath, pool, sea and baths. In addition to the material and technique that make up the physical structure in woven fabrics, color has an impressive importance with its strong effects. Color is the most prominent element in the fabric, and the color and texture are visually reinforcing. Evaluation of color in fabric is a personal phenomenon. Factors that determine color determination in fabric are the amount of color used, color ratio and its relationship with other colors. In this project; Considering the effect of color dimensions on human, we are talking about the crystallized colored towel that we developed in terms of comfort and texture properties. The basis of the effect created in the towel; It is formed by bending the yarn from its own special blend and the harmonious appearance of the natural crystallized rainbow colors with the pattern effect it determines on the warp yarns by using the weft yarns in the weaving. In addition, by using different weaving techniques and colors, alternatives can be created and personalized patterns can be created. One side of the towel determines the properties related to color, while the pile part determines the comfort characteristics with its soft touch and water absorbency.

Keywords: color effect, comfort, towel, weaving technique

Procedia PDF Downloads 73
822 SCNet: A Vehicle Color Classification Network Based on Spatial Cluster Loss and Channel Attention Mechanism

Authors: Fei Gao, Xinyang Dong, Yisu Ge, Shufang Lu, Libo Weng

Abstract:

Vehicle color recognition plays an important role in traffic accident investigation. However, due to the influence of illumination, weather, and noise, vehicle color recognition still faces challenges. In this paper, a vehicle color classification network based on spatial cluster loss and channel attention mechanism (SCNet) is proposed for vehicle color recognition. A channel attention module is applied to extract the features of vehicle color representative regions and reduce the weight of nonrepresentative color regions in the channel. The proposed loss function, called spatial clustering loss (SC-loss), consists of two channel-specific components, such as a concentration component and a diversity component. The concentration component forces all feature channels belonging to the same class to be concentrated through the channel cluster. The diversity components impose additional constraints on the channels through the mean distance coefficient, making them mutually exclusive in spatial dimensions. In the comparison experiments, the proposed method can achieve state-of-the-art performance on the public datasets, VCD, and VeRi, which are 96.1% and 96.2%, respectively. In addition, the ablation experiment further proves that SC-loss can effectively improve the accuracy of vehicle color recognition.

Keywords: feature extraction, convolutional neural networks, intelligent transportation, vehicle color recognition

Procedia PDF Downloads 60
821 Bringing the Confidence Intervals into Choropleth Mortality Map: An Example of Tainan, Taiwan

Authors: Tzu-Jung Tseng, Pei-Hsuen Han, Tsung-Hsueh Lu

Abstract:

Background: Choropleth mortality map is commonly used to identify areas with higher mortality risk. However, the use of choropleth map alone might result in the misinterpretation of differences in mortality rates between areas. Two areas with different color shades might not actually have a significant difference in mortality rates. The mortality rates estimated for an area with a small population would be less stable. We suggest of bringing the 95% confidence intervals (CI) into the choropleth mortality map to help users interpret the areal mortality rate difference more properly. Method: In the first choropleth mortality map, we used only three color to indicate standardized mortality ratio (SMR) for each district in Tainan, Taiwan. The red color denotes that the SMR of that district was significantly higher than the Tainan average; on the contrary, the green color suggests that the SMR of that district was significantly lower than the Tainan average. The yellow color indicates that the SMR of that district was not statistically significantly different from the Tainan average. In the second choropleth mortality map, we used traditional sequential color scheme (color ramp) for different SMR in 37 districts in Tainan City with bar chart of each SMR with 95% CI in which the users could examine if the line of 95% CI of SMR of two districts overlapped (nonsignificant difference). Results: The all-causes SMR of each district in Tainan for 2008 to 2013 ranged from 0.77 (95% CI 0.75 to 0.80) in East District to 1.39 Beimen (95% CI 1.25 to 1.52). In the first choropleth mortality map, only 16 of 37 districts had red color and 8 districts had green color. For different causes of death, the number of districts with red color differed. In the first choropleth mortality map we added a bar chart with line of 95% CI of SMR in each district, in which the users could visualize the SMR differences between districts. Conclusion: Through the use of 95% CI the users could interpret the aral mortality differences more properly.

Keywords: choropleth map, small area variation, standardized mortality ratio (SMR), Taiwan

Procedia PDF Downloads 196
820 Visual Thing Recognition with Binary Scale-Invariant Feature Transform and Support Vector Machine Classifiers Using Color Information

Authors: Wei-Jong Yang, Wei-Hau Du, Pau-Choo Chang, Jar-Ferr Yang, Pi-Hsia Hung

Abstract:

The demands of smart visual thing recognition in various devices have been increased rapidly for daily smart production, living and learning systems in recent years. This paper proposed a visual thing recognition system, which combines binary scale-invariant feature transform (SIFT), bag of words model (BoW), and support vector machine (SVM) by using color information. Since the traditional SIFT features and SVM classifiers only use the gray information, color information is still an important feature for visual thing recognition. With color-based SIFT features and SVM, we can discard unreliable matching pairs and increase the robustness of matching tasks. The experimental results show that the proposed object recognition system with color-assistant SIFT SVM classifier achieves higher recognition rate than that with the traditional gray SIFT and SVM classification in various situations.

Keywords: color moments, visual thing recognition system, SIFT, color SIFT

Procedia PDF Downloads 326
819 Defining the Customers' Color Preference for the Apparel Industry in Terms of Chromaticity Coordinates

Authors: Banu Hatice Gürcüm, Pınar Arslan, Mahmut Yalçın

Abstract:

Fashion designers create lots of dresses, suits, shoes, and other clothing and accessories, which are purchased every year by consumers. Fashion trends, sketches of designs, accessories affect the apparel goods, but colors make the finishing touches to an outfit. In all fields of apparel men's, women's, and children's wear, including casual wear, suits, sportswear, formal wear, outerwear, maternity, and intimate apparel, color sells. Thus, specialization in color in apparel is a basic concern each season. The perception of color is the key to sales for every sector in textile business. Mechanism of color perception, cognition in brain and color emotion are unique subjects, which scientists have been investigating for many years. The parameters of color may not be corresponding to visual scales since human emotions induced by color are completely subjective. However, with a very few exception each manufacturer concern their top selling colors for each season through seasonal sales reports of apparel companies. This paper examines sensory and instrumental methods for quantifying color of fabrics and investigates the relationship between fabric color and sale numbers. 5 top selling colors for each season from 10 leading apparel companies in the same segment are taken. The compilation is based according to the sales of the companies for 5 to 10 years. The research’s main concern is the corelation with the magnitude of seasonal color selling figures and the CIE chromaticity coordinates. The colors are chosen from the globally accepted Pantone Textile Color System and the three-dimentional measurement system CIE L*a*b* (CIELAB) is used, L* representing the degree of lightness of color, a* the degree of color ranging from magenta to green, and b* the degree of color ranging from blue to yellow. The objective of this paper is to demonstrate the feasibility of relating color perceptance to a laboratory instrument yielding measurements in the CIELAB system. Our approach is to obtain a total of a hundred reference fabrics to be measured on a laboratory spectrophotometer calibrated to the CIELAB color system. Relationships between the CIE tristimulus (X, Y, Z) and CIELAB (L*, a*, b*) are examined and are reported herein.

Keywords: CIELAB, CIE tristimulus, color preference, fashion

Procedia PDF Downloads 246
818 Review on Quaternion Gradient Operator with Marginal and Vector Approaches for Colour Edge Detection

Authors: Nadia Ben Youssef, Aicha Bouzid

Abstract:

Gradient estimation is one of the most fundamental tasks in the field of image processing in general, and more particularly for color images since that the research in color image gradient remains limited. The widely used gradient method is Di Zenzo’s gradient operator, which is based on the measure of squared local contrast of color images. The proposed gradient mechanism, presented in this paper, is based on the principle of the Di Zenzo’s approach using quaternion representation. This edge detector is compared to a marginal approach based on multiscale product of wavelet transform and another vector approach based on quaternion convolution and vector gradient approach. The experimental results indicate that the proposed color gradient operator outperforms marginal approach, however, it is less efficient then the second vector approach.

Keywords: gradient, edge detection, color image, quaternion

Procedia PDF Downloads 119
817 An Ensemble-based Method for Vehicle Color Recognition

Authors: Saeedeh Barzegar Khalilsaraei, Manoocheher Kelarestaghi, Farshad Eshghi

Abstract:

The vehicle color, as a prominent and stable feature, helps to identify a vehicle more accurately. As a result, vehicle color recognition is of great importance in intelligent transportation systems. Unlike conventional methods which use only a single Convolutional Neural Network (CNN) for feature extraction or classification, in this paper, four CNNs, with different architectures well-performing in different classes, are trained to extract various features from the input image. To take advantage of the distinct capability of each network, the multiple outputs are combined using a stack generalization algorithm as an ensemble technique. As a result, the final model performs better than each CNN individually in vehicle color identification. The evaluation results in terms of overall average accuracy and accuracy variance show the proposed method’s outperformance compared to the state-of-the-art rivals.

Keywords: Vehicle Color Recognition, Ensemble Algorithm, Stack Generalization, Convolutional Neural Network

Procedia PDF Downloads 2
816 Local Texture and Global Color Descriptors for Content Based Image Retrieval

Authors: Tajinder Kaur, Anu Bala

Abstract:

An image retrieval system is a computer system for browsing, searching, and retrieving images from a large database of digital images a new algorithm meant for content-based image retrieval (CBIR) is presented in this paper. The proposed method combines the color and texture features which are extracted the global and local information of the image. The local texture feature is extracted by using local binary patterns (LBP), which are evaluated by taking into consideration of local difference between the center pixel and its neighbors. For the global color feature, the color histogram (CH) is used which is calculated by RGB (red, green, and blue) spaces separately. In this paper, the combination of color and texture features are proposed for content-based image retrieval. The performance of the proposed method is tested on Corel 1000 database which is the natural database. The results after being investigated show a significant improvement in terms of their evaluation measures as compared to LBP and CH.

Keywords: color, texture, feature extraction, local binary patterns, image retrieval

Procedia PDF Downloads 273
815 RGB Color Based Real Time Traffic Sign Detection and Feature Extraction System

Authors: Kay Thinzar Phu, Lwin Lwin Oo

Abstract:

In an intelligent transport system and advanced driver assistance system, the developing of real-time traffic sign detection and recognition (TSDR) system plays an important part in recent research field. There are many challenges for developing real-time TSDR system due to motion artifacts, variable lighting and weather conditions and situations of traffic signs. Researchers have already proposed various methods to minimize the challenges problem. The aim of the proposed research is to develop an efficient and effective TSDR in real time. This system proposes an adaptive thresholding method based on RGB color for traffic signs detection and new features for traffic signs recognition. In this system, the RGB color thresholding is used to detect the blue and yellow color traffic signs regions. The system performs the shape identify to decide whether the output candidate region is traffic sign or not. Lastly, new features such as termination points, bifurcation points, and 90’ angles are extracted from validated image. This system uses Myanmar Traffic Sign dataset.

Keywords: adaptive thresholding based on RGB color, blue color detection, feature extraction, yellow color detection

Procedia PDF Downloads 192
814 Enhancing the Bionic Eye: A Real-time Image Optimization Framework to Encode Color and Spatial Information Into Retinal Prostheses

Authors: William Huang

Abstract:

Retinal prostheses are currently limited to low resolution grayscale images that lack color and spatial information. This study develops a novel real-time image optimization framework and tools to encode maximum information to the prostheses which are constrained by the number of electrodes. One key idea is to localize main objects in images while reducing unnecessary background noise through region-contrast saliency maps. A novel color depth mapping technique was developed through MiniBatchKmeans clustering and color space selection. The resulting image was downsampled using bicubic interpolation to reduce image size while preserving color quality. In comparison to current schemes, the proposed framework demonstrated better visual quality in tested images. The use of the region-contrast saliency map showed improvements in efficacy up to 30%. Finally, the computational speed of this algorithm is less than 380 ms on tested cases, making real-time retinal prostheses feasible.

Keywords: retinal implants, virtual processing unit, computer vision, saliency maps, color quantization

Procedia PDF Downloads 25
813 Color Conversion Films with CuInS2/ZnS Quantum Dots Embedded Polystyrene Nanofibers by Electrospinning Process

Authors: Wonkyung Na, Namhun Kim, Heeyeop Chae

Abstract:

Quantum dots (QDs) are getting attentions due to their excellent optical properties in display, solar cell, biomolecule detection and lighting applications. Energy band gap can be easilty controlled by controlling their size and QDs are proper to apply in light-emitting-diode(LED) and lighting application, especially. Typically cadmium (Cd) containing QDs show a narrow photoluminescence (PL) spectrum and high quantum yield. However, Cd is classified as a hazardous materials and the use of Cd is being tightly regulated under 100ppm level in many countries.InP and CuInS2 (CIS) are being investigated as Cd-free QD materials and it is recently demonstrated that the performance of those Cd-free QDs is comparable to their Cd-based rivals.Due to a broad emission spectrum, CuInS2 QDs are also proper to be applied to white LED.4 For the lighting applications, the QD should be made in forms of color conversion films. Various film processes are reported with QDs in polymer matrixes. In this work, we synthesized the CuInS2 (CIS) QDs and QD embedded polystyrene color conversion films were fabricated for white color emission with electro-spinning process. As a result, blue light from blue LED is converted to white light with high color rendering index (CRI) of 72 by the color conversion films.

Keywords: CuInS2/ZnS, electro-spinning, color conversion films, white light emitting diodes

Procedia PDF Downloads 631