Search results for: steel frame ground structure optimization
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5646

Search results for: steel frame ground structure optimization

5436 Simulated Annealing Application for Structural Optimization

Authors: Farhad Kolahan, M. Hossein Abolbashari, Samaeddin Mohitzadeh

Abstract:

Several methods are available for weight and shape optimization of structures, among which Evolutionary Structural Optimization (ESO) is one of the most widely used methods. In ESO, however, the optimization criterion is completely case-dependent. Moreover, only the improving solutions are accepted during the search. In this paper a Simulated Annealing (SA) algorithm is used for structural optimization problem. This algorithm differs from other random search methods by accepting non-improving solutions. The implementation of SA algorithm is done through reducing the number of finite element analyses (function evaluations). Computational results show that SA can efficiently and effectively solve such optimization problems within short search time.

Keywords: Simulated annealing, Structural optimization, Compliance, C.V. product.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1901
5435 Reliability-Based Topology Optimization Based on Evolutionary Structural Optimization

Authors: Sang-Rak Kim, Jea-Yong Park, Won-Goo Lee, Jin-Shik Yu, Seog-Young Han

Abstract:

This paper presents a Reliability-Based Topology Optimization (RBTO) based on Evolutionary Structural Optimization (ESO). An actual design involves uncertain conditions such as material property, operational load and dimensional variation. Deterministic Topology Optimization (DTO) is obtained without considering of the uncertainties related to the uncertainty parameters. However, RBTO involves evaluation of probabilistic constraints, which can be done in two different ways, the reliability index approach (RIA) and the performance measure approach (PMA). Limit state function is approximated using Monte Carlo Simulation and Central Composite Design for reliability analysis. ESO, one of the topology optimization techniques, is adopted for topology optimization. Numerical examples are presented to compare the DTO with RBTO.

Keywords: Evolutionary Structural Optimization, PerformanceMeasure Approach, Reliability-Based Topology Optimization, Reliability Index Approach.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2740
5434 Seismic Fragility Assessment of Strongback Steel Braced Frames Subjected to Near-Field Earthquakes

Authors: Mohammadreza Salek Faramarzi, Touraj Taghikhany

Abstract:

In this paper, seismic fragility assessment of a recently developed hybrid structural system, known as the strongback system (SBS) is investigated. In this system, to mitigate the occurrence of the soft-story mechanism and improve the distribution of story drifts over the height of the structure, an elastic vertical truss is formed. The strengthened members of the braced span are designed to remain substantially elastic during levels of excitation where soft-story mechanisms are likely to occur and impose a nearly uniform story drift distribution. Due to the distinctive characteristics of near-field ground motions, it seems to be necessary to study the effect of these records on seismic performance of the SBS. To this end, a set of 56 near-field ground motion records suggested by FEMA P695 methodology is used. For fragility assessment, nonlinear dynamic analyses are carried out in OpenSEES based on the recommended procedure in HAZUS technical manual. Four damage states including slight, moderate, extensive, and complete damage (collapse) are considered. To evaluate each damage state, inter-story drift ratio and floor acceleration are implemented as engineering demand parameters. Further, to extend the evaluation of the collapse state of the system, a different collapse criterion suggested in FEMA P695 is applied. It is concluded that SBS can significantly increase the collapse capacity and consequently decrease the collapse risk of the structure during its life time. Comparing the observing mean annual frequency (MAF) of exceedance of each damage state against the allowable values presented in performance-based design methods, it is found that using the elastic vertical truss, improves the structural response effectively.

Keywords: Strongback System, Near-fault, Seismic fragility, Uncertainty, IDA, Probabilistic performance assessment.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 512
5433 A Mean–Variance–Skewness Portfolio Optimization Model

Authors: Kostas Metaxiotis

Abstract:

Portfolio optimization is one of the most important topics in finance. This paper proposes a mean–variance–skewness (MVS) portfolio optimization model. Traditionally, the portfolio optimization problem is solved by using the mean–variance (MV) framework. In this study, we formulate the proposed model as a three-objective optimization problem, where the portfolio's expected return and skewness are maximized whereas the portfolio risk is minimized. For solving the proposed three-objective portfolio optimization model we apply an adapted version of the non-dominated sorting genetic algorithm (NSGAII). Finally, we use a real dataset from FTSE-100 for validating the proposed model.

Keywords: Evolutionary algorithms, portfolio optimization, skewness, stock selection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1325
5432 Experimental Investigation on Shear Behaviour of Fibre Reinforced Concrete Beams Using Steel Fibres

Authors: G. Beulah Gnana Ananthi, A. Jaffer Sathick, M. Abirami

Abstract:

Fibre reinforced concrete (FRC) has been widely used in industrial pavements and non-structural elements such as pipes, culverts, tunnels, and precast elements. The strengthening effect of fibres in the concrete matrix is achieved primarily due to the bridging effect of fibres at the crack interfaces. The workability of the concrete was reduced on addition of high percentages of steel fibres. The optimum percentage of addition of steel fibres varies with its aspect ratio. For this study, 1% addition of steel has resulted to be the optimum percentage for both Hooked and Crimped Steel Fibres and was added to the beam specimens. The fibres restrain efficiently the cracks and take up residual stresses beyond the cracking. In this sense, diagonal cracks are effectively stitched up by fibres crossing it. The failure of beams within the shear failure range changed from shear to flexure in the presence of sufficient steel fibre quantity. The shear strength is increased with the addition of steel fibres and had exceeded the enhancement obtained with the transverse reinforcement. However, such increase is not directly in proportion with the quantity of fibres used. Considering all the clarification made in the present experimental investigation, it is concluded that 1% of crimped steel fibres with an aspect ratio of 50 is the best type of steel fibres for replacement of transverse stirrups in high strength concrete beams when compared to the steel fibres with hooked ends.

Keywords: Fibre reinforced concrete, steel fibre, shear strength, crack pattern.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 762
5431 A Numerical Study of Seismic Response of Shallow Square Tunnels in Two-Layered Ground

Authors: Mahmoud Hassanlourad, Mehran Naghizadehrokni, Vahid Molaei

Abstract:

In this study, the seismic behavior of a shallow tunnel with square cross section is investigated in a two layered and elastic heterogeneous environment using numerical method. To do so, FLAC finite difference software was used. Behavioral model of the ground and tunnel structure was assumed linear elastic. Dynamic load was applied to the model for 0.2 seconds from the bottom in form of a square pulse with maximum acceleration of 1 m/s2. The interface between the two layers was considered at three different levels of crest, middle, and bottom of the tunnel. The stiffness of the two upper and lower layers was considered to be varied from 10 MPa to 1000 MPa. Deformation of cross section of the tunnel due to dynamic load propagation, as well as the values of axial force and bending moment created in the tunnel structure, were examined in the three states mentioned above. The results of analyses show that heterogeneity of the environment, its stratification, and positioning of the interface of the two layers with respect to tunnel height and the stiffness ratio of the two layers have significant effects on the value of bending moment, axial force, and distortion of tunnel cross-section.

Keywords: Dynamic analysis, shallow-buried tunnel, two-layered ground.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 721
5430 Building Gabor Filters from Retinal Responses

Authors: Johannes Partzsch, Christian Mayr, Rene Schuffny

Abstract:

Starting from a biologically inspired framework, Gabor filters were built up from retinal filters via LMSE algorithms. Asubset of retinal filter kernels was chosen to form a particular Gabor filter by using a weighted sum. One-dimensional optimization approaches were shown to be inappropriate for the problem. All model parameters were fixed with biological or image processing constraints. Detailed analysis of the optimization procedure led to the introduction of a minimization constraint. Finally, quantization of weighting factors was investigated. This resulted in an optimized cascaded structure of a Gabor filter bank implementation with lower computational cost.

Keywords: Gabor filter, image processing, optimization

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2362
5429 Effect of Local Steel Slag as a Coarse Aggregate on Properties of Fly Ash Based-Geopolymer Concrete

Authors: O. M. Omar, A. M. Heniegal, G. D. Abd Elhameed, H. A. Mohamadien

Abstract:

Local steel slag is produced as a by-product during the oxidation of steel pellets in an electric arc furnace. Using local steel slag waste as a hundred substitutes of crashed stone in construction materials would resolve the environmental problems caused by the large-scale depletion of the natural sources of crashed stone. This paper reports the experimental study to investigate the influence of a hundred replacement of crashed stone as a coarse aggregate with local steel slag, on the fresh and hardened geopolymer concrete properties. The investigation includes traditional testing of hardening concrete, for selected mixes of cement and geopolymer concrete. It was found that local steel slag as a coarse aggregate enhanced the slump test of the fresh state of cement and geopolymer concretes. Nevertheless, the unit weight of concretes was affected. Meanwhile, the good performance was observed when fly ash used as geopolymer concrete based.

Keywords: Geopolymer, molarity, steel slag, sodium hydroxide, sodium silicate.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2205
5428 Designing a Single-Floor Structure for the Control Room of a Petroleum Refinery and Assessing the Resistance of Such a Structure against Gas Explosion Load

Authors: Amin Lotfi Eghlim, Mehran pourgholi

Abstract:

Explosion occurs due to sudden release of energy. Common examples of explosion include chemical, atomic, heat, and pressure tank (due to ignition) explosions. Petroleum, gas, and petrochemical industries operations are threatened by natural risks and processes. Fires and explosions are the greatest process risks which cause financial damages. This study aims at designing a single-floor structure for the control room of a petroleum refinery to be resistant against gas explosion loads, and the information related to the structure specifications have been provided regarding the fact that the structure is made on the ground's surface. In this research, the lateral stiffness of single pile is calculated by SPPLN.FOR computer program, and its value for 13624 KN/m single pile has been assessed. The analysis used due to the loading conditions, is dynamic nonlinear analysis with direct integration method.

Keywords: Gas Explosion Load, Petroleum Refinery, Single-Floor Structure

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1209
5427 High-Temperature Corrosion of Weldment of Fe-2%Mn-0.5%Si Steel in N2/H2O/H2S-Mixed Gas

Authors: Sang Hwan Bak, Min Jung Kim, Dong Bok Lee

Abstract:

Fe-2%Mn-0.5%Si-0.2C steel was welded and corroded at 600, 700 and 800oC for 20 h in 1 atm of N2/H2S/H2O-mixed gas in order to characterize the high-temperature corrosion behavior of the welded joint. Corrosion proceeded fast and almost linearly. It increased with an increase in the corrosion temperature. H2S formed FeS owing to sulfur released from H2S. The scales were fragile and nonadherent.

Keywords: Fe-Mn-Si Steel, Corrosion, Welding, Sulfidation, H2S Gas.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1887
5426 Evaluation of Gasoline Engine Piston with Various Coating Materials Using Finite Element Method

Authors: Nouby Ghazaly, Gamal Fouad, Ali Abd-El-Tawwab, K. A. Abd El-Gwwad

Abstract:

The purpose of this paper is to examine the piston stress distribution using several thicknesses of the coating materials to achieve higher gasoline engine performance. First of all, finite element structure analysis is used to uncoated petrol piston made of aluminum alloy. Then, steel and cast-iron piston materials are conducted and compared with the aluminum piston. After that, investigation of four coating materials namely, yttria-stabilized zirconia, magnesia-stabilized zirconia, alumina, and mullite are studied for each piston materials. Next, influence of various thickness coating layers on the structure stresses of the top surfaces is examined. Comparison between simulated results for aluminum, steel, and cast-iron materials is reported. Moreover, the influences of different coating thickness on the Von Mises stresses of four coating materials are investigated. From the simulation results, it can report that the maximum Von Mises stresses and deformations for the piston materials are decreasing with increasing the coating thickness for magnesia-stabilized zirconia, yttria-stabilized zirconia, mullite and alumina coated materials.

Keywords: Structure analysis, aluminum piston, MgZrO3, YTZ, mullite and alumina.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 725
5425 Correlation of Microstructure and Corrosion Behavior of Martensitic Stainless Steel Surgical Grade AISI 420A Exposed to 980-1035oC

Authors: Taqi Zahid Butt, Tanveer Ahmad Tabish

Abstract:

Martensitic stainless steels have been extensively used for their good corrosion resistance and better mechanical properties. Heat treatment was suggested as one of the most excellent ways to this regard; hence, it affects the microstructure, mechanical and corrosion properties of the steel. In the current research work the microstructural changes and corrosion behavior in an AISI 420A stainless steel exposed to temperatures in the 980-1035oC range were investigated. The heat treatment is carried out in vacuum furnace within the said temperature range. The quenching of the samples was carried out in oil, brine and water media. The formation and stability of passive film was studied by Open Circuit Potential, Potentiodynamic polarization and Electrochemical Scratch Tests. The Electrochemical Impedance Spectroscopy results simulated with Equivalent Electrical Circuit suggested bilayer structure of outer porous and inner barrier oxide films. The quantitative data showed thick inner barrier oxide film retarded electrochemical reactions. Micrographs of the quenched samples showed sigma and chromium carbide phases which prove the corrosion resistance of steel alloy.

Keywords: Martensitic stainless steel corrosion, microstructure, vacuum furnace.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2605
5424 In Search of an SVD and QRcp Based Optimization Technique of ANN for Automatic Classification of Abnormal Heart Sounds

Authors: Samit Ari, Goutam Saha

Abstract:

Artificial Neural Network (ANN) has been extensively used for classification of heart sounds for its discriminative training ability and easy implementation. However, it suffers from overparameterization if the number of nodes is not chosen properly. In such cases, when the dataset has redundancy within it, ANN is trained along with this redundant information that results in poor validation. Also a larger network means more computational expense resulting more hardware and time related cost. Therefore, an optimum design of neural network is needed towards real-time detection of pathological patterns, if any from heart sound signal. The aims of this work are to (i) select a set of input features that are effective for identification of heart sound signals and (ii) make certain optimum selection of nodes in the hidden layer for a more effective ANN structure. Here, we present an optimization technique that involves Singular Value Decomposition (SVD) and QR factorization with column pivoting (QRcp) methodology to optimize empirically chosen over-parameterized ANN structure. Input nodes present in ANN structure is optimized by SVD followed by QRcp while only SVD is required to prune undesirable hidden nodes. The result is presented for classifying 12 common pathological cases and normal heart sound.

Keywords: ANN, Classification of heart diseases, murmurs, optimization, Phonocardiogram, QRcp, SVD.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2014
5423 Choosing Search Algorithms in Bayesian Optimization Algorithm

Authors: Hao Wu, Jonathan L. Shapiro

Abstract:

The Bayesian Optimization Algorithm (BOA) is an algorithm based on the estimation of distributions. It uses techniques from modeling data by Bayesian networks to estimating the joint distribution of promising solutions. To obtain the structure of Bayesian network, different search algorithms can be used. The key point that BOA addresses is whether the constructed Bayesian network could generate new and useful solutions (strings), which could lead the algorithm in the right direction to solve the problem. Undoubtedly, this ability is a crucial factor of the efficiency of BOA. Varied search algorithms can be used in BOA, but their performances are different. For choosing better ones, certain suitable method to present their ability difference is needed. In this paper, a greedy search algorithm and a stochastic search algorithm are used in BOA to solve certain optimization problem. A method using Kullback-Leibler (KL) Divergence to reflect their difference is described.

Keywords: Bayesian optimization algorithm, greedy search, KL divergence, stochastic search.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1646
5422 Experimental Study of Eccentrically Loaded Columns Strengthened Using a Steel Jacketing Technique

Authors: Mohamed K. Elsamny, Adel A. Hussein, Amr M. Nafie, Mohamed K. Abd-Elhamed

Abstract:

An experimental study of Reinforced Concrete, RC, columns strengthened using a steel jacketing technique was conducted. The jacketing technique consisted of four steel vertical angles installed at the corners of the column joined by horizontal steel straps confining the column externally. The effectiveness of the technique was evaluated by testing the RC column specimens under eccentric monotonic loading until failure occurred. Strain gauges were installed to monitor the strains in the internal reinforcement as well as the external jacketing system. The effectiveness of the jacketing technique was demonstrated, and the parameters affecting the technique were studied.

Keywords: Reinforced Concrete Columns, Steel Jacketing, Strengthening, Eccentric Load.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3813
5421 Numerical Study for Compressive Strength of Basalt Composite Sandwich Infill Panel

Authors: Viriyavudh Sim, Jung Kyu Choi, Yong Ju Kwak, Oh Hyeon Jeon, Woo Young Jung

Abstract:

In this study, we investigated the buckling performance of basalt fiber reinforced polymer (BFRP) sandwich infill panels. Fiber Reinforced Polymer (FRP) is a major evolution for energy dissipation when used as infill material of frame structure, a basic Polymer Matrix Composite (PMC) infill wall system consists of two FRP laminates surrounding an infill of foam core. Furthermore, this type of component is for retrofitting and strengthening frame structure to withstand the seismic disaster. In-plane compression was considered in the numerical analysis with ABAQUS platform to determine the buckling failure load of BFRP infill panel system. The present result shows that the sandwich BFRP infill panel system has higher resistance to buckling failure than those of glass fiber reinforced polymer (GFRP) infill panel system, i.e. 16% increase in buckling resistance capacity.

Keywords: Basalt fiber reinforced polymer, buckling performance, FEM analysis, sandwich infill panel.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1302
5420 Inverse Dynamic Active Ground Motion Acceleration Inputs Estimation of the Retaining Structure

Authors: Ming-Hui Lee, Iau-Teh Wang

Abstract:

The innovative fuzzy estimator is used to estimate the ground motion acceleration of the retaining structure in this study. The Kalman filter without the input term and the fuzzy weighting recursive least square estimator are two main portions of this method. The innovation vector can be produced by the Kalman filter, and be applied to the fuzzy weighting recursive least square estimator to estimate the acceleration input over time. The excellent performance of this estimator is demonstrated by comparing it with the use of difference weighting function, the distinct levels of the measurement noise covariance and the initial process noise covariance. The availability and the precision of the proposed method proposed in this study can be verified by comparing the actual value and the one obtained by numerical simulation.

Keywords: Earthquake, Fuzzy Estimator, Kalman Filter, Recursive Least Square Estimator.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1501
5419 Dynamic Response of Wind Turbines to Theoretical 3D Seismic Motions Taking into Account the Rotational Component

Authors: L. Hermanns, M.A. Santoyo, L. E. Quirós, J. Vega, J. M. Gaspar-Escribano, B. Benito

Abstract:

We study the dynamic response of a wind turbine structure subjected to theoretical seismic motions, taking into account the rotational component of ground shaking. Models are generated for a shallow moderate crustal earthquake in the Madrid Region (Spain). Synthetic translational and rotational time histories are computed using the Discrete Wavenumber Method, assuming a point source and a horizontal layered earth structure. These are used to analyze the dynamic response of a wind turbine, represented by a simple finite element model. Von Mises stress values at different heights of the tower are used to study the dynamical structural response to a set of synthetic ground motion time histories

Keywords: Synthetic seismograms, rotations, wind turbine, dynamic structural response

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1275
5418 Seismic Directionality Effects on In-Structure Response Spectra in Seismic Probabilistic Risk Assessment

Authors: S. Jarernprasert, E. Bazan-Zurita, P. C. Rizzo

Abstract:

Currently, seismic probabilistic risk assessments (SPRA) for nuclear facilities use In-Structure Response Spectra (ISRS) in the calculation of fragilities for systems and components. ISRS are calculated via dynamic analyses of the host building subjected to two orthogonal components of horizontal ground motion. Each component is defined as the median motion in any horizontal direction. Structural engineers applied the components along selected X and Y Cartesian axes. The ISRS at different locations in the building are also calculated in the X and Y directions. The choice of the directions of X and Y are not specified by the ground motion model with respect to geographic coordinates, and are rather arbitrarily selected by the structural engineer. Normally, X and Y coincide with the “principal” axes of the building, in the understanding that this practice is generally conservative. For SPRA purposes, however, it is desirable to remove any conservatism in the estimates of median ISRS. This paper examines the effects of the direction of horizontal seismic motion on the ISRS on typical nuclear structure. We also evaluate the variability of ISRS calculated along different horizontal directions. Our results indicate that some central measures of the ISRS provide robust estimates that are practically independent of the selection of the directions of the horizontal Cartesian axes.

Keywords: Seismic, Directionality, In-Structure Response Spectra, Probabilistic Risk Assessment.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2491
5417 Effects of the Mass and Damping Matrix Model in the Nonlinear Seismic Response of Steel Frames

Authors: A. Reyes-Salazar, M. D. Llanes-Tizoc, E. Bojorquez, F. Valenzuela-Beltran, J. Bojorquez, J. R. Gaxiola-Camacho, A. Haldar

Abstract:

Seismic analysis of steel buildings is usually based on the use of the concentrated mass (ML) matrix and the Rayleigh damping matrix (C). Similarly, the initial stiffness matrix (KO) and the first two modes associated to lateral vibrations are commonly used to develop the matrix C. The evaluation of the accuracy of these practices for the particular case of steel buildings with moment-resisting steel frames constitutes the main objective of this research. For this, the nonlinear seismic responses of three models of steel frames, representing low-, medium- and high-rise steel buildings, are considered. Results indicate that if the ML matrix is used, shears and bending moments in columns are underestimated by up to 30% and 65%, respectively, when compared to the corresponding results obtained with the consistent mass matrix (MC). It is also shown that if KO is used in C instead the tangent stiffness matrix (Kt), axial loads in columns are underestimated by up to 80%. It is concluded that the consistent mass matrix should be used in the structural modelling of moment resisting steel frames and the tangent stiffness matrix should be used to develop the Rayleigh damping matrix.

Keywords: Moment-resisting steel frames, consistent and concentrated mass matrices, nonlinear seismic response, Rayleigh damping.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 331
5416 Nonlinear Impact Responses for a Damped Frame Supported by Nonlinear Springs with Hysteresis Using Fast FEA

Authors: T. Yamaguchi, M. Watanabe, M. Sasajima, C. Yuan, S. Maruyama, T. B. Ibrahim, H. Tomita

Abstract:

This paper deals with nonlinear vibration analysis using finite element method for frame structures consisting of elastic and viscoelastic damping layers supported by multiple nonlinear concentrated springs with hysteresis damping. The frame is supported by four nonlinear concentrated springs near the four corners. The restoring forces of the springs have cubic non-linearity and linear component of the nonlinear springs has complex quantity to represent linear hysteresis damping. The damping layer of the frame structures has complex modulus of elasticity. Further, the discretized equations in physical coordinate are transformed into the nonlinear ordinary coupled differential equations using normal coordinate corresponding to linear natural modes. Comparing shares of strain energy of the elastic frame, the damping layer and the springs, we evaluate the influences of the damping couplings on the linear and nonlinear impact responses. We also investigate influences of damping changed by stiffness of the elastic frame on the nonlinear coupling in the damped impact responses.

Keywords: Dynamic response, Nonlinear impact response, Finite Element analysis, Numerical analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1681
5415 Seismic Fragility of Weir Structure Considering Aging Degradation of Concrete Material

Authors: HoYoung Son, DongHoon Shin, WooYoung Jung

Abstract:

This study presented the seismic fragility framework of concrete weir structure subjected to strong seismic ground motions and in particular, concrete aging condition of the weir structure was taken into account in this study. In order to understand the influence of concrete aging on the weir structure, by using probabilistic risk assessment, the analytical seismic fragility of the weir structure was derived for pre- and post-deterioration of concrete. The performance of concrete weir structure after five years was assumed for the concrete aging or deterioration, and according to after five years’ condition, the elastic modulus was simply reduced about one–tenth compared with initial condition of weir structures. A 2D nonlinear finite element analysis was performed considering the deterioration of concrete in weir structures using ABAQUS platform, a commercial structural analysis program. Simplified concrete degradation was resulted in the increase of almost 45% of the probability of failure at Limit State 3, in comparison to initial construction stage, by analyzing the seismic fragility.

Keywords: Weir, FEM, concrete, fragility, aging

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1102
5414 2-DOF Observer Based Controller for First Order with Dead Time Systems

Authors: Ashu Ahuja, Shiv Narayan, Jagdish Kumar

Abstract:

This paper realized the 2-DOF controller structure for first order with time delay systems. The co-prime factorization is used to design observer based controller K(s), representing one degree of freedom. The problem is based on H∞ norm of mixed sensitivity and aims to achieve stability, robustness and disturbance rejection. Then, the other degree of freedom, prefilter F(s), is formulated as fixed structure polynomial controller to meet open loop processing of reference model. This model matching problem is solved by minimizing integral square error between reference model and proposed model. The feedback controller and prefilter designs are posed as optimization problem and solved using Particle Swarm Optimization (PSO). To show the efficiency of the designed approach different variety of processes are taken and compared for analysis.

Keywords: 2-DOF, integral square error, mixed sensitivity function, observer based controller, particle swarm optimization, prefilter.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2391
5413 Non-Stationary Stochastic Optimization of an Oscillating Water Column

Authors: María L. Jalón, Feargal Brennan

Abstract:

A non-stationary stochastic optimization methodology is applied to an OWC (oscillating water column) to find the design that maximizes the wave energy extraction. Different temporal cycles are considered to represent the long-term variability of the wave climate at the site in the optimization problem. The results of the non-stationary stochastic optimization problem are compared against those obtained by a stationary stochastic optimization problem. The comparative analysis reveals that the proposed non-stationary optimization provides designs with a better fit to reality. However, the stationarity assumption can be adequate when looking at averaged system response.

Keywords: Non-stationary stochastic optimization, oscillating water column, temporal variability, wave energy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1332
5412 Identifying Unknown Dynamic Forces Applied on Two Dimensional Frames

Authors: H. Katkhuda

Abstract:

A time domain approach is used in this paper to identify unknown dynamic forces applied on two dimensional frames using the measured dynamic structural responses for a sub-structure in the two dimensional frame. In this paper a sub-structure finite element model with short length of measurement from only three or four accelerometers is required, and an iterative least-square algorithm is used to identify the unknown dynamic force applied on the structure. Validity of the method is demonstrated with numerical examples using noise-free and noise-contaminated structural responses. Both harmonic and impulsive forces are studied. The results show that the proposed approach can identify unknown dynamic forces within very limited iterations with high accuracy and shows its robustness even noise- polluted dynamic response measurements are utilized.

Keywords: Dynamic Force Identification, Dynamic Responses, Sub-structure and Time Domain.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1486
5411 Solid Waste Management in Steel Industry - Challenges and Opportunities

Authors: Sushovan Sarkar, Debabrata Mazumder

Abstract:

Solid waste management in steel industry is broadly classified in “4 Rs” i.e. reduce, reuse, recycle and restore the materials. Reuse and recycling the entire solid waste generated in the process of steel making is a viable solution in targeting a clean, green and zero waste technology leading to sustainable development of the steel industry. Solid waste management has gained importance in steel industry in view of its uncertainty, volatility and speculation due to world competitive standards, rising input costs, scarcity of raw materials and solid waste generated like in other sectors. The challenges that the steel Industry faces today are the requirement of a sustainable development by meeting the needs of our present generation without compromising the ability of future generations. Technologies are developed not only for gainful utilization of solid wastes in manufacture of conventional products but also for conversion of same in to completely new products.

Keywords: Reuse, recycle, solid waste, sustainable development.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8485
5410 Characterization of Cement Mortar Based on Fine Quartz

Authors: K. Arroudj, M. Lanez, M. N. Oudjit

Abstract:

The introduction of siliceous mineral additions in cement production allows, in addition to the ecological and economic gain, improvement of concrete performance. This improvement is mainly due to the fixing of Portlandite, released during the hydration of cement, by fine siliceous, forming denser calcium silicate hydrates and therefore a more compact cementitious matrix. This research is part of the valuation of the Dune Sand (DS) in the cement industry in Algeria. The high silica content of DS motivated us to study its effect, at ground state, on the properties of mortars in fresh and hardened state. For this purpose, cement pastes and mortars based on ground dune sand (fine quartz) has been analyzed with a replacement to cement of 15%, 20% and 25%. This substitution has reduced the amount of heat of hydration and avoids any risk of initial cracking. In addition, the grinding of the dune sand provides amorphous thin populations adsorbed at the surface of the crystal particles of quartz. Which gives to ground quartz pozzolanic character. This character results an improvement of mechanical strength of mortar (66 MPa in the presence of 25% of ground quartz).

Keywords: Mineralogical structure, Pozzolanic reactivity, quartz, mechanical strength.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 976
5409 Control Algorithm for Shunt Active Power Filter using Synchronous Reference Frame Theory

Authors: Consalva J. Msigwa, Beda J. Kundy, Bakari M. M. Mwinyiwiwa,

Abstract:

This paper presents a method for obtaining the desired reference current for Voltage Source Converter (VSC) of the Shunt Active Power Filter (SAPF) using Synchronous Reference Frame Theory. The method relies on the performance of the Proportional-Integral (PI) controller for obtaining the best control performance of the SAPF. To improve the performance of the PI controller, the feedback path to the integral term is introduced to compensate the winding up phenomenon due to integrator. Using Reference Frame Transformation, reference signals are transformed from a - b - c stationery frame to 0 - d - q rotating frame. Using the PI controller, the reference signals in the 0 - d - q rotating frame are controlled to get the desired reference signals for the Pulse Width Modulation. The synchronizer, the Phase Locked Loop (PLL) with PI filter is used for synchronization, with much emphasis on minimizing delays. The system performance is examined with Shunt Active Power Filter simulation model.

Keywords: Phase Locked Loop (PLL), Voltage Source Converter (VSC), Shunt Active Power Filter (SAPF), PI, Pulse Width Modulation (PWM)

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3513
5408 Contribution to the Query Optimization in the Object-Oriented Databases

Authors: Minyar Sassi, Amel Grissa-Touzi

Abstract:

Appeared toward 1986, the object-oriented databases management systems had not known successes knew five years after their birth. One of the major difficulties is the query optimization. We propose in this paper a new approach that permits to enrich techniques of query optimization existing in the object-oriented databases. Seen success that knew the query optimization in the relational model, our approach inspires itself of these optimization techniques and enriched it so that they can support the new concepts introduced by the object databases.

Keywords: Query, query optimization, relational databases, object-oriented databases.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1501
5407 Evaluating and Selecting Optimization Software Packages: A Framework for Business Applications

Authors: Waleed Abohamad, Amr Arisha

Abstract:

Owing the fact that optimization of business process is a crucial requirement to navigate, survive and even thrive in today-s volatile business environment, this paper presents a framework for selecting a best-fit optimization package for solving complex business problems. Complexity level of the problem and/or using incorrect optimization software can lead to biased solutions of the optimization problem. Accordingly, the proposed framework identifies a number of relevant factors (e.g. decision variables, objective functions, and modeling approach) to be considered during the evaluation and selection process. Application domain, problem specifications, and available accredited optimization approaches are also to be regarded. A recommendation of one or two optimization software is the output of the framework which is believed to provide the best results of the underlying problem. In addition to a set of guidelines and recommendations on how managers can conduct an effective optimization exercise is discussed.

Keywords: Complex Business Problems, Optimization, Selection Criteria, Software Evaluation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2871