Search results for: soil respiration rate.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3559

Search results for: soil respiration rate.

3349 Soil Remediation Technologies towards Green Remediation Strategies

Authors: G. Petruzzelli, F. Pedron, M. Grifoni, M. Barbafieri, I. Rosellini, B. Pezzarossa

Abstract:

As a result of diverse industrial activities, pollution from numerous contaminant affects both groundwater and soils. Many contaminated sites have been discovered in industrialized countries and their remediation is a priority in environmental legislations. The aim of this paper is to provide the evolution of remediation from consolidated invasive technologies to environmental friendly green strategies. Many clean-up technologies have been used. Nowadays the technologies selection is no longer exclusively based on eliminating the source of pollution, but the aim of remediation includes also the recovery of soil quality. “Green remediation”, a strategy based on “soft technologies”, appears the key to tackle the issue of remediation of contaminated sites with the greatest attention to environmental quality, including the preservation of soil functionality.

Keywords: Bioremediation, green remediation, phytoremediation, remediation technologies, soil.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1776
3348 Determination the Curve Number Catchment by Using GIS and Remote Sensing

Authors: Abouzar Nasiri, Hamid Alipur

Abstract:

In recent years, geographic information systems (GIS) and remote sensing using has increased to estimate runoff catchment. In this research, runoff curve number maps for captive catchment of Tehran by helping GIS and also remote sensing which based on factors such as vegetation, lands using, group of soil hydrology and hydrological conditions were obtained. Runoff curve numbers map was obtained by combining these maps in ARC GIS and SCS table. To evaluate the accuracy of the results, the maximum flow rate of flood which was obtained from curve numbers, was compared with the measured maximum flood rate at the watershed outlet and correctness of curve numbers were approved.

Keywords: Curve number, GIS, Remote sensing, Runoff.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4917
3347 Determining G-γ Degradation Curve in Cohesive Soils by Dilatometer and in situ Seismic Tests

Authors: Ivandic Kreso, Spiranec Miljenko, Kavur Boris, Strelec Stjepan

Abstract:

This article discusses the possibility of using dilatometer tests (DMT) together with in situ seismic tests (MASW) in order to get the shape of G-g degradation curve in cohesive soils (clay, silty clay, silt, clayey silt and sandy silt). MASW test provides the small soil stiffness (Go from vs) at very small strains and DMT provides the stiffness of the soil at ‘work strains’ (MDMT). At different test locations, dilatometer shear stiffness of the soil has been determined by the theory of elasticity. Dilatometer shear stiffness has been compared with the theoretical G-g degradation curve in order to determine the typical range of shear deformation for different types of cohesive soil. The analysis also includes factors that influence the shape of the degradation curve (G-g) and dilatometer modulus (MDMT), such as the overconsolidation ratio (OCR), plasticity index (IP) and the vertical effective stress in the soil (svo'). Parametric study in this article defines the range of shear strain gDMT and GDMT/Go relation depending on the classification of a cohesive soil (clay, silty clay, clayey silt, silt and sandy silt), function of density (loose, medium dense and dense) and the stiffness of the soil (soft, medium hard and hard). The article illustrates the potential of using MASW and DMT to obtain G-g degradation curve in cohesive soils.

Keywords: Dilatometer testing, MASW testing, shear wave, soil stiffness, stiffness reduction, shear strain.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 831
3346 Analysis of Bit Error Rate Improvement in MFSK Communication Link

Authors: O. P. Sharma, V. Janyani, S. Sancheti

Abstract:

Data rate, tolerable bit error rate or frame error rate and range & coverage are the key performance requirement of a communication link. In this paper performance of MFSK link is analyzed in terms of bit error rate, number of errors and total number of data processed. In the communication link model proposed, which is implemented using MATLAB block set, an improvement in BER is observed. Different parameters which effects and enables to keep BER low in M-ary communication system are also identified.

Keywords: Additive White Gaussian Noise (AWGN), Bit Error Rate (BER), Frequency Shift Keying (FSK), Orthogonal Signaling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2838
3345 Nonlinear Response of Infinite Beams on a Multilayer Tensionless Extensible Geo-Synthetic: Reinforced Earth Beds under Moving Load

Authors: K. Karuppasamy

Abstract:

In this paper, analysis of an infinite beam resting on multilayer tensionless extensible geosynthetic reinforced granular fill-poor soil system overlying soft soil strata under moving load with constant velocity is presented. The beam is subjected to a concentrated load moving with constant velocity. The upper reinforced granular bed is modeled by a rough membrane embedded in Pasternak shear layer overlying a series of compressible nonlinear winkler springs representing the underlying the very poor soil. The multilayer tensionless extensible geosynthetic layer has been assumed to deform such that at interface the geosynthetic and the soil have some deformation. Nonlinear behaviour of granular fill and the very poor soil has been considered in the analysis by means of hyperbolic constitutive relationships. Governing differential equations of the soil foundation system have been obtained and solved with the help of appropriate boundary conditions. The solution has been obtained by employing finite difference method by means of Gauss-Siedal iterative scheme. Detailed parametric study has been conducted to study the influence of various parameters on the response of soil–foundation system under consideration by means of deflection and bending moment in the beam and tension mobilized in the geosynthetic layer. These parameters include magnitude of applied load, velocity of load, damping, ultimate resistance of poor soil and granular fill layer. Range of values of parameters has been considered as per Indian Railway conditions. This study clearly observed that the comparisons of multilayer tensionless extensible geosynthetic reinforcement with poor foundation soil and magnitude of applied load, relative compressibility of granular fill and ultimate resistance of poor soil has significant influence on the response of soil–foundation system.

Keywords: Infinite beams, multilayer tensionless extensible geosynthetic, granular layer, moving load, nonlinear behavior of poor soil.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2388
3344 Effect of Bamboo Chips in Cemented Sand Soil on Permeability and Mechanical Properties in Triaxial Compression

Authors: Sito Ismanti, Noriyuki Yasufuku

Abstract:

Cement utilization to improve the properties of soil is a well-known method applied in field. However, its addition in large quantity must be controlled. This study presents utilization of natural and environmental-friendly material mixed with small amount of cement content in soil improvement, i.e. bamboo chips. Absorbability, elongation, and flatness ratio of bamboo chips were examined to investigate and understand the influence of its characteristics in the mixture. Improvement of dilation behavior as a problem of loose and poorly graded sand soil is discussed. Bamboo chips are able to improve the permeability value that affects the dilation behavior of cemented sand soil. It is proved by the stress path as the result of triaxial compression test in the undrained condition. The effect of size and content variation of bamboo chips, as well as the curing time variation are presented and discussed.  

Keywords: Bamboo chips, permeability, mechanical properties, triaxial compression.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1594
3343 Hazard Rate Estimation of Temporal Point Process, Case Study: Earthquake Hazard Rate in Nusatenggara Region

Authors: Sunusi N., Kresna A. J., Islamiyati A., Raupong

Abstract:

Hazard rate estimation is one of the important topics in forecasting earthquake occurrence. Forecasting earthquake occurrence is a part of the statistical seismology where the main subject is the point process. Generally, earthquake hazard rate is estimated based on the point process likelihood equation called the Hazard Rate Likelihood of Point Process (HRLPP). In this research, we have developed estimation method, that is hazard rate single decrement HRSD. This method was adapted from estimation method in actuarial studies. Here, one individual associated with an earthquake with inter event time is exponentially distributed. The information of epicenter and time of earthquake occurrence are used to estimate hazard rate. At the end, a case study of earthquake hazard rate will be given. Furthermore, we compare the hazard rate between HRLPP and HRSD method.

Keywords: Earthquake forecast, Hazard Rate, Likelihood point process, Point process.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1439
3342 Development of In Situ Permeability Test Using Constant Discharge Method for Sandy Soils

Authors: A. Rifa’i, Y. Takeshita, M. Komatsu

Abstract:

The post-rain puddles problem that occurs in the first yard of Prambanan Temple are often disturbing visitor activity. A poodle layer and a drainage system had ever built to avoid such a problem, but puddles still did not stop appearing after rain. Permeability parameter needs to be determined by using a simpler procedure to find exact method of solution. The instrument modelling was proposed according to the development of field permeability testing instrument. This experiment used a proposed Constant Discharge method. Constant Discharge method used a tube poured with constant water flow from unsaturated until saturated soil condition. Volumetric water content (θ) were monitored by soil moisture measurement device. The results were correlations between k and θ which were drawn by numerical approach from Van Genutchen model. Parameters θr optimum value obtained from the test was at very dry soil. Coefficient of permeability with a density of 19.8 kN/m3 for unsaturated conditions was in range of 3 x 10-6 cm/sec (Sr=68%) until 9.98 x 10-4 cm/sec (Sr=82%). The equipment and testing procedure developed in this research was quite effective, simple and easy to be implemented on determining field soil permeability coefficient value of sandy soil. Using constant discharge method in proposed permeability test, value of permeability coefficient under unsaturated condition can be obtained without establish soil water characteristic curve.

Keywords: Constant discharge method, in situ permeability test, sandy soil, unsaturated conditions.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3409
3341 Investigation of the Effect of Fine-Grained and Its Plastic Properties on Liquefaction Resistance of Sand

Authors: S. A. Naeini, M. Mortezaee

Abstract:

The purpose of this paper is to investigate the effect of fine grain content in soil and its plastic properties on soil liquefaction potential. For this purpose, the conditions for considering the fine grains effect and percentage of plastic fine on the liquefaction resistance of saturated sand presented by researchers has been investigated. Then, some comprehensive results of all the issues raised by some researchers are stated. From these investigations it was observed that by increasing the percentage of cohesive fine grains in the sandy soil (up to 20%), the maximum shear strength decreases and by adding more fine- grained percentage, the maximum shear strength of the resulting soil increases but never reaches the amount of clean sand.

Keywords: Fine-grained, liquefaction, plasticity, shear strength, sand.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 421
3340 Support Vector Regression for Retrieval of Soil Moisture Using Bistatic Scatterometer Data at X-Band

Authors: Dileep Kumar Gupta, Rajendra Prasad, Pradeep Kumar, Varun Narayan Mishra, Ajeet Kumar Vishwakarma, Prashant Kumar Srivastava

Abstract:

An approach was evaluated for the retrieval of soil moisture of bare soil surface using bistatic scatterometer data in the angular range of 200 to 700 at VV- and HH- polarization. The microwave data was acquired by specially designed X-band (10 GHz) bistatic scatterometer. The linear regression analysis was done between scattering coefficients and soil moisture content to select the suitable incidence angle for retrieval of soil moisture content. The 250 incidence angle was found more suitable. The support vector regression analysis was used to approximate the function described by the input output relationship between the scattering coefficient and corresponding measured values of the soil moisture content. The performance of support vector regression algorithm was evaluated by comparing the observed and the estimated soil moisture content by statistical performance indices %Bias, root mean squared error (RMSE) and Nash-Sutcliffe Efficiency (NSE). The values of %Bias, root mean squared error (RMSE) and Nash-Sutcliffe Efficiency (NSE) were found 2.9451, 1.0986 and 0.9214 respectively at HHpolarization. At VV- polarization, the values of %Bias, root mean squared error (RMSE) and Nash-Sutcliffe Efficiency (NSE) were found 3.6186, 0.9373 and 0.9428 respectively.

Keywords: Bistatic scatterometer, soil moisture, support vector regression, RMSE, %Bias, NSE.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3171
3339 Soil Resistivity Cut off Value and Concrete Pole Deployments in HV Transmission Mains

Authors: M. Nassereddine, J. Rizk, A. Hellany, M. Nagrial

Abstract:

The prologue of new High Voltage (HV) transmission mains into the community necessitates earthing design to ensure safety compliance of the system. Concrete poles are widely used within HV transmission mains; many retired transmission mains with timber poles are being replaced with concrete ones, green transmission mains are deploying concrete poles. The earthing arrangement of the concrete poles could have an impact on the earth grid impedance also on the input impedance of the system from the fault point of view. This paper endeavors to provide information on the soil resistivity of the area and the deployments of concrete poles. It introduce the cut off soil resistivity value ρSC, this value aid in determine the impact of deploying the concrete poles on the earthing system. Multiple cases were discussed in this paper.

Keywords: Soil Resistivity, HV Transmission Mains, Earthing, Safety.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2485
3338 Leaching of Mineral Nitrogen and Phosphate from Rhizosphere Soil Stressed by Drought and Intensive Rainfall

Authors: J. Elbl, J. K. Friedel, J. Záhora, L. Plošek, A. Kintl, J. Přichystalová, J. Hynšt, L. Dostálová, K. Zákoutská

Abstract:

This work presents the first results from the long-term experiment, which is focused on the impact of intensive rainfall and long period of drought on microbial activities in soil. Fifteen lysimeters were prepared in the area of our interest. This area is a protection zone of underground source of drinking water. These lysimeters were filed with topsoil and subsoil collected in this area and divided into two groups. These groups differ in fertilization and amount of water received during the growing season. Amount of microbial biomass and leaching of mineral nitrogen and phosphates were chosen as main indicators of microbial activities in soil. Content of mineral nitrogen and phosphates was measured in soil solution, which was collected from each lysimeters. Amount of microbial biomass was determined in soil samples that were taken from the lysimeters before and after the long period of drought and intensive rainfall.

Keywords: Mineral nitrogen, Phosphates, Microbial activities, Drought, Precipitation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2104
3337 Landslide Susceptibility Mapping: A Comparison between Logistic Regression and Multivariate Adaptive Regression Spline Models in the Municipality of Oudka, Northern of Morocco

Authors: S. Benchelha, H. C. Aoudjehane, M. Hakdaoui, R. El Hamdouni, H. Mansouri, T. Benchelha, M. Layelmam, M. Alaoui

Abstract:

The logistic regression (LR) and multivariate adaptive regression spline (MarSpline) are applied and verified for analysis of landslide susceptibility map in Oudka, Morocco, using geographical information system. From spatial database containing data such as landslide mapping, topography, soil, hydrology and lithology, the eight factors related to landslides such as elevation, slope, aspect, distance to streams, distance to road, distance to faults, lithology map and Normalized Difference Vegetation Index (NDVI) were calculated or extracted. Using these factors, landslide susceptibility indexes were calculated by the two mentioned methods. Before the calculation, this database was divided into two parts, the first for the formation of the model and the second for the validation. The results of the landslide susceptibility analysis were verified using success and prediction rates to evaluate the quality of these probabilistic models. The result of this verification was that the MarSpline model is the best model with a success rate (AUC = 0.963) and a prediction rate (AUC = 0.951) higher than the LR model (success rate AUC = 0.918, rate prediction AUC = 0.901).

Keywords: Landslide susceptibility mapping, regression logistic, multivariate adaptive regression spline, Oudka, Taounate, Morocco.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 938
3336 Research of Ring MEMS Rate Integrating Gyroscopes

Authors: Hui Liu, Haiyang Quan

Abstract:

This paper To get the angle value with a MEMS rate gyroscope in some specific field, the usual method is to make an integral operation to the rate output, which will lead the error cumulating effect. So the rate gyro is not suitable. MEMS rate integrating gyroscope (MRIG) will solve this problem. A DSP system has been developed to implement the control arithmetic. The system can measure the angle of rotation directly by the control loops that make the sensor work in whole-angle mode. Modeling the system with MATLAB, desirable results of angle outputs are got, which prove the feasibility of the control arithmetic.

Keywords: Rate gyroscope, Rate integrating gyroscope, Whole angle mode, MATLAB modeling, DSP control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3212
3335 The Effect of Polypropylene Fiber in the Stabilization of Expansive Soils

Authors: A. S. Soğancı

Abstract:

Expansive soils are often encountered in many parts of the world, especially in arid and semi-arid fields. Such kind of soils, generally including active clay minerals in low water content, enlarge in volume by absorbing the water through the surface and cause a great harm to the light structures such as channel coating, roads and airports. The expansive soils were encountered on the path of Apa-Hotamış conveyance channel belonging to the State Hydraulic Works in the region of Konya. In the research done in this area, it is predicted that the soil has a swollen nature and the soil should be filled with proper granular equipments by digging the ground to 50-60 cm. In this study, for purpose of helping the other research to be done in the same area, it is thought that instead of replacing swollen soil with the granular soil, by stabilizing it with polypropylene fiber and using it its original place decreases effect of swelling percent, in this way the cost will be decreased. Therefore, laboratory tests were conducted to study the effects of polypropylene fiber on swelling characteristics of expansive soil. Test results indicated that inclusion of fiber reduced swell percent of expansive soil. As the fiber content increased, the unconfined compressive strength was increased. Finally, it can be said that stabilization of expansive soils with polypropylene fiber is an effective method.

Keywords: Expansive soils, polypropylene fiber, stabilization, swelling percent.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5673
3334 Application of Micro-Tunneling Technique to Rectify Tilted Structures Constructed on Cohesive Soil

Authors: Yasser R. Tawfic, Mohamed A. Eid

Abstract:

Foundation differential settlement and supported structure tilting are an occasionally occurred engineering problem. This may be caused by overloading, changes in ground soil properties or unsupported nearby excavations. Engineering thinking points directly toward the logic solution for such problem by uplifting the settled side. This can be achieved with deep foundation elements such as micro-piles and macro-piles™, jacked piers, and helical piers, jet grouted mortar columns, compaction grout columns, cement grouting or with chemical grouting, or traditional pit underpinning with concrete and mortar. Although, some of these techniques offer economic, fast and low noise solutions, many of them are quite the contrary. For tilted structures, with the limited inclination, it may be much easier to cause a balancing settlement on the less-settlement side which shall be done carefully in a proper rate. This principal has been applied in Leaning Tower of Pisa stabilization with soil extraction from the ground surface. In this research, the authors attempt to introduce a new solution with a different point of view. So, the micro-tunneling technique is presented in here as an intended ground deformation cause. In general, micro-tunneling is expected to induce limited ground deformations. Thus, the researchers propose to apply the technique to form small size ground unsupported holes to produce the target deformations. This shall be done in four phases: 1. Application of one or more micro-tunnels, regarding the existing differential settlement value, under the raised side of the tilted structure. 2. For each individual tunnel, the lining shall be pulled out from both sides (from jacking and receiving shafts) in the slow rate. 3. If required, according to calculations and site records, an additional surface load can be applied on the raised foundation side. 4. Finally, a strengthening soil grouting shall be applied for stabilization after adjustment. A finite element based numerical model is presented to simulate the proposed construction phases for different tunneling positions and tunnels group. For each case, the surface settlements are calculated and induced plasticity points are checked. These results show the impact of the suggested procedure on the tilted structure and its feasibility. Comparing results also show the importance of the position selection and tunnels group gradual effect. Thus, a new engineering solution is presented to one of the structural and geotechnical engineering challenges.

Keywords: Differential settlement, micro-tunnel, soil-structure interaction, tilted structures.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2724
3333 Potential of Native Microorganisms in Tagus Estuary

Authors: Ana C. Sousa, Beatriz C. Santos, Fátima N. Serralha

Abstract:

The Tagus estuary is heavily affected by industrial and urban activities, making bioremediation studies crucial for environmental preservation. Fuel contamination in the area can arise from various anthropogenic sources, such as oil spills from shipping, fuel storage and transfer operations, and industrial discharges. These pollutants can cause severe harm to the ecosystem and the organisms, including humans, that inhabit it. Nonetheless, there are always natural organisms with the ability to resist these pollutants and transform them into non-toxic or harmless substances, which defines the process of bioremediation. Exploring the microbial communities existing in soil and their capacity to break down hydrocarbons has the potential to enhance the development of more efficient bioremediation approaches. The aim of this investigation was to explore the existence of hydrocarbonoclastic microorganisms in six locations within the Tagus estuary, three on the north bank: Trancão River, Praia Fluvial do Cais das Colinas and Praia de Algés, and three on the south bank: Praia Fluvial de Alcochete, Praia Fluvial de Alburrica, and Praia da Trafaria. In all studied locations, native microorganisms of the genus Pseudomonas were identified. The bioremediation rate of common hydrocarbons like gasoline, hexane, and toluene was assessed using the redox indicator 2,6-dichlorophenolindophenol (DCPIP). Effective hydrocarbon-degrading bacterial strains were identified in all analyzed areas, despite adverse environmental conditions. The highest bioremediation rates were achieved for gasoline (68%) in Alburrica, hexane (65%) in Algés, and toluene (79%) in Algés. Generally, the bacteria demonstrated efficient degradation of hydrocarbons added to the culture medium, with higher rates of aerobic biodegradation of hydrocarbons observed. These findings underscore the necessity for further in situ studies to better comprehend the relationship between native microbial communities and the potential for pollutant degradation in soil.

Keywords: Biodegradability rate, hydrocarbonoclastic microorganisms, soil bioremediation, Tagus estuary.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 60
3332 Using Micropiles to Improve the Anzali's Saturated Loose Silty Sand

Authors: S. A. Naeini, M. Hamidzadeh

Abstract:

Today, with the daily advancement of geotechnical engineering on soil improvement and modification of the physical properties and shear strength of soil, it is now possible to construct structures with high-volume and high service load on loose sandy soils. One of such methods is using micropiles, which are mostly used to control asymmetrical subsidence, increase bearing capacity, and prevent soil liquefaction. This study examined the improvement of Anzali's saturated loose silty sand using 192 micropiles with a length of 8 meters and diameter of 75 mm. Bandar-e Anzali is one of Iran's coastal populated cities which are located in a high-seismicity region. The effects of the insertion of micropiles on prevention of liquefaction and improvement of subsidence were examined through comparison of the results of Standard Penetration Test (SPT) and Plate Load Test (PLT) before and after implementation of the micropiles. The results show that the SPT values and the ultimate bearing capacity of silty sand increased after the implementation of the micropiles. Therefore, the installation of micropiles increases the strength of silty sand improving the resistance of soil against liquefaction.

Keywords: Soil improvement, silty sand, micropiles, SPT, PLT, strength.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1256
3331 Migration and Accumulation of Artificial Radionuclides in the System Water-Soil-Plants Depending on Polymers Applying

Authors: Anna H. Tadevosyan, Stepan K. Mayrapetyan, Michael P. Schellenberg, Laura M. Ghalachyan, Albert H. Hovsepyan, Khachatur S. Mayrapetyan

Abstract:

The possibility of radionuclides-related contamination of lands at agricultural holdings defines the necessity to apply special protective measures in plant growing. The aim of researches is to elucidate the influence of polymers applying on biological migration of man-made anthropogenic radionuclides 90Sr and 137Cs in the system water - soil – plant. The tests are being carried out under field conditions with and without application of polymers in root-inhabited media in more radioecological tension zone (with the radius of 7 km from the Armenian Nuclear Power Plant). The polymers on the base of K+, Caµ, KµCaµ ions were tested. Productivity of pepper depending on the presence and type of polymer material, content of artificial radionuclides in waters, soil and plant material has been determined. The character of different polymers influence on the artificial radionuclides migration and accumulation in the system water-soil-plant and accumulation in the plants has been cleared up.

Keywords: accumulation of artificial radionuclides, pepper, polymer, water-soil-plant system

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1590
3330 Foundation Retrofitting of Storage Tank under Seismic Load

Authors: Seyed Abolhasan Naeini, Mohammad Hossein Zade, E. Izadi, M. Hossein Zade

Abstract:

The different seismic behavior of liquid storage tanks rather than conventional structures makes their responses more complicated. Uplifting and excessive settlement due to liquid sloshing are the most frequent damages in cylindrical liquid tanks after shell bucking failure modes. As a matter of fact, uses of liquid storage tanks because of the simple construction on compact layer of soil as a foundation are very conventional, but in some cases need to retrofit are essential. The tank seismic behavior can be improved by modifying dynamic characteristic of tank with verifying seismic loads as well as retrofitting and improving base ground. This paper focuses on a typical steel tank on loose, medium and stiff sandy soil and describes an evaluation of displacement of the tank before and after retrofitting. The Abaqus program was selected for its ability to include shell and structural steel elements, soil-structure interaction, and geometrical nonlinearities and contact type elements. The result shows considerable decreasing in settlement and uplifting in the case of retrofitted tank. Also, by increasing shear strength parameter of soil, the performance of the liquid storage tank under the case of seismic load increased.

Keywords: Steel tank, soil-structure, sandy soil, seismic load.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1567
3329 Application of Particle Image Velocimetry in the Analysis of Scale Effects in Granular Soil

Authors: Zuhair Kadhim Jahanger, S. Joseph Antony

Abstract:

The available studies in the literature which dealt with the scale effects of strip footings on different sand packing systematically still remain scarce. In this research, the variation of ultimate bearing capacity and deformation pattern of soil beneath strip footings of different widths under plane-strain condition on the surface of loose, medium-dense and dense sand have been systematically studied using experimental and noninvasive methods for measuring microscopic deformations. The presented analyses are based on model scale compression test analysed using Particle Image Velocimetry (PIV) technique. Upper bound analysis of the current study shows that the maximum vertical displacement of the sand under the ultimate load increases for an increase in the width of footing, but at a decreasing rate with relative density of sand, whereas the relative vertical displacement in the sand decreases for an increase in the width of the footing. A well agreement is observed between experimental results for different footing widths and relative densities. The experimental analyses have shown that there exists pronounced scale effect for strip surface footing. The bearing capacity factors rapidly decrease up to footing widths B=0.25 m, 0.35 m, and 0.65 m for loose, medium-dense and dense sand respectively, after that there is no significant decrease in . The deformation modes of the soil as well as the ultimate bearing capacity values have been affected by the footing widths. The obtained results could be used to improve settlement calculation of the foundation interacting with granular soil.

Keywords: PIV, granular mechanics, scale effect, upper bound analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 953
3328 The Effects of Four Organic Cropping Sequences on Soil Phosphorous Cycling and Arbuscular Mycorrhizal Fungi

Authors: R. J. Parham, J. D. Knight

Abstract:

Organic farmers across Saskatchewan face soil phosphorus (P) shortages. Due to the restriction on inputs in organic systems, farmers rely on crop rotation and naturally-occurring arbuscular mycorrhizal fungi (AMF) for plant P supply. Crop rotation is important for disease, pest, and weed management. Crops that are not colonized by AMF (non-mycorrhizal) can decrease colonization of a following crop. An experiment was performed to quantify soil P cycling in four cropping sequences under organic management and determine if mustard (non-mycorrhizal) was delaying the colonization of subsequent wheat. Soils from the four cropping sequences were measured for inorganic soil P (Pi), AMF spore density (SD), phospholipid fatty acid analysis (PLFA, for AMF biomarker counts), and alkaline phosphatase activity (ALPase, related to AMF metabolic activity). Plants were measured for AMF colonization and P content and uptake of above-ground biomass. A lack of difference in AMF activity indicated that mustard was not depressing colonization. Instead, AMF colonization was largely determined by crop type and crop rotation.

Keywords: Arbuscular mycorrhizal fungi, crop rotation, organic farming, phosphorous, soil microbiology.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2050
3327 Influence of Compactive Efforts on Cement- Bagasse Ash Treatment of Expansive Black Cotton Soil

Authors: Moses, G, Osinubi, K. J.

Abstract:

A laboratory study on the influence of compactive effort on expansive black cotton specimens treated with up to 8% ordinary Portland cement (OPC) admixed with up to 8% bagasse ash (BA) by dry weight of soil and compacted using the energies of the standard Proctor (SP), West African Standard (WAS) or “intermediate” and modified Proctor (MP) were undertaken. The expansive black cotton soil was classified as A-7-6 (16) or CL using the American Association of Highway and Transportation Officials (AASHTO) and Unified Soil Classification System (USCS), respectively. The 7day unconfined compressive strength (UCS) values of the natural soil for SP, WAS and MP compactive efforts are 286, 401 and 515kN/m2 respectively, while peak values of 1019, 1328 and 1420kN/m2 recorded at 8% OPC/ 6% BA, 8% OPC/ 2% BA and 6% OPC/ 4% BA treatments, respectively were less than the UCS value of 1710kN/m2 conventionally used as criterion for adequate cement stabilization. The soaked California bearing ratio (CBR) values of the OPC/BA stabilized soil increased with higher energy level from 2, 4 and 10% for the natural soil to Peak values of 55, 18 and 8% were recorded at 8% OPC/4% BA 8% OPC/2% BA and 8% OPC/4% BA, treatments when SP, WAS and MP compactive effort were used, respectively. The durability of specimens was determined by immersion in water. Soils treatment at 8% OPC/ 4% BA blend gave a value of 50% resistance to loss in strength value which is acceptable because of the harsh test condition of 7 days soaking period specimens were subjected instead of the 4 days soaking period that specified a minimum resistance to loss in strength of 80%. Finally An optimal blend of is 8% OPC/ 4% BA is recommended for treatment of expansive black cotton soil for use as a sub-base material.

Keywords: Bagasse ash, California bearing ratio, Compaction, Durability, Ordinary Portland cement, Unconfined compressive strength.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3516
3326 Total and Leachable Concentration of Trace Elements in Soil towards Human Health Risk, Related with Coal Mine in Jorong, South Kalimantan, Indonesia

Authors: Arie Pujiwati, Kengo Nakamura, Noriaki Watanabe, Takeshi Komai

Abstract:

Coal mining is well known to cause considerable environmental impacts, including trace element contamination of soil. This study aimed to assess the trace element (As, Cd, Co, Cu, Ni, Pb, Sb, and Zn) contamination of soil in the vicinity of coal mining activities, using the case study of Asam-asam River basin, South Kalimantan, Indonesia, and to assess the human health risk, incorporating total and bioavailable (water-leachable and acid-leachable) concentrations. The results show the enrichment of As and Co in soil, surpassing the background soil value. Contamination was evaluated based on the index of geo-accumulation, Igeo and the pollution index, PI. Igeo values showed that the soil was generally uncontaminated (Igeo ≤ 0), except for elevated As and Co. Mean PI for Ni and Cu indicated slight contamination. Regarding the assessment of health risks, the Hazard Index, HI showed adverse risks (HI > 1) for Ni, Co, and As. Further, Ni and As were found to pose unacceptable carcinogenic risk (risk > 1.10-5). Farming, settlement, and plantation were found to present greater risk than coal mines. These results show that coal mining activity in the study area contaminates the soils by particular elements and may pose potential human health risk in its surrounding area. This study is important for setting appropriate countermeasure actions and improving basic coal mining management in Indonesia.

Keywords: Coal mine, risk, soil, trace elements.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1127
3325 Study and Evaluation of Added Stresses under Foundation due to Adjacent Structure

Authors: Alireza M. goltabar, Issa shooshpasha , Reza Shamstabar kami , Mostafa Habibi

Abstract:

Added stresses due to adjacent structure should be considered in foundation design and stress control in soil under the structure. This case is considered less than other cases in design and calculation whereas stresses in implementation are greater than analytical stress. Structure load are transmitted to earth by foundation and role of foundation is propagation of load on the continuous and half extreme soil. This act cause that, present stresses lessen to allowable strength of soil. Some researchers such as Boussinesq and westergaurd by using of some assumption studied on this issue, theorically. Target of this paper is study and evaluation of added stresses under structure due to adjacent structure. For this purpose, by using of assumption, theoric relation and numeral methods, effects of adjacent structure with 4 to 10 storeys on the main structure with 4 storeys are studied and effect of parameters and sensitivity of them are evaluated.

Keywords: stress, soil, adjacent structure, foundation, loading.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1413
3324 The Effect of Zeolite on Sandy-Silt Soil Mechanical Properties

Authors: Shahryar Aftabi, Saeed Fathi, Mohammad H. Aminfar

Abstract:

It is well known that cemented sand is one of the best approaches for soil stabilization. In some cases, a blend of sand, cement and other pozzolan materials such as zeolite, nano-particles and fiber can be widely (commercially) available and be effectively used in soil stabilization, especially in road construction. In this research, we investigate the effects of CaO which is based on the geotechnical characteristics of zeolite composition with sandy silt soil. Zeolites have low amount of CaO in their structures, that is, varying from 3% to 10%, and by removing the cement paste, we want to investigate the effect of zeolite pozzolan without any activator on soil samples strength. In this research, experiments are concentrated on various weight percentages of zeolite in the soil to examine the effect of the zeolite on drainage shear strength and California Bearing Ratio (CBR) both with and without curing. The study also investigates their liquid limit and plastic limit behavior and makes a comparative result by using Feng's and Wroth-Wood's methods in fall cone (cone penetrometer) device; in the final the SEM images have been presented. The results show that by increasing the percentage of zeolite in without-curing samples, the fine zeolite particles increase some soil's strength, but in the curing-state we can see a relatively higher strength toward without-curing state, since the zeolites have no plastic behavior, the pozzolanic property of zeolites plays a much higher role than cementing properties. Indeed, it is better to combine zeolite particle with activator material such as cement or lime to gain better results.

Keywords: CBR, direct shear, fall-cone, sandy-silt, SEM, zeolite.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 537
3323 Effect of Subsequent Drying and Wetting on the Small Strain Shear Modulus of Unsaturated Soils

Authors: A. Khosravi, S. Ghadirian, J. S. McCartney

Abstract:

Evaluation of the seismic-induced settlement of an unsaturated soil layer depends on several variables, among which the small strain shear modulus, Gmax, and soil’s state of stress have been demonstrated to be of particular significance. Recent interpretation of trends in Gmax revealed considerable effects of the degree of saturation and hydraulic hysteresis on the shear stiffness of soils in unsaturated states. Accordingly, the soil layer is expected to experience different settlement behaviors depending on the soil saturation and seasonal weathering conditions. In this study, a semi-empirical formulation was adapted to extend an existing Gmax model to infer hysteretic effects along different paths of the SWRC including scanning curves. The suitability of the proposed approach is validated against experimental results from a suction-controlled resonant column test and from data reported in literature. The model was observed to follow the experimental data along different paths of the SWRC, and showed a slight hysteresis in shear modulus along the scanning curves.

Keywords: Hydraulic hysteresis, Scanning path, Small strain shear modulus, Unsaturated soil.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1522
3322 The Effect of Treated Waste-Water on Compaction and Compression of Fine Soil

Authors: M. Attom, F. Abed, M. Elemam, M. Nazal, N. ElMessalami

Abstract:

—The main objective of this paper is to study the effect of treated waste-water (TWW) on the compaction and compressibility properties of fine soil. Two types of fine soils (clayey soils) were selected for this study and classified as CH soil and Cl type of soil. Compaction and compressibility properties such as optimum water content, maximum dry unit weight, consolidation index and swell index, maximum past pressure and volume change were evaluated using both tap and treated waste water. It was found that the use of treated waste water affects all of these properties. The maximum dry unit weight increased for both soils and the optimum water content decreased as much as 13.6% for highly plastic soil. The significant effect was observed in swell index and swelling pressure of the soils. The swell indexed decreased by as much as 42% and 33% for highly plastic and low plastic soils, respectively, when TWW is used. Additionally, the swelling pressure decreased by as much as 16% for both soil types. The result of this research pointed out that the use of treated waste water has a positive effect on compaction and compression properties of clay soil and promise for potential use of this water in engineering applications. Keywords—Consolidation, proctor compaction, swell index, treated waste-water, volume change.

Keywords: Consolidation, proctor compaction, swell index, treated waste-water, volume change.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1592
3321 Impact of Long Term Application of Municipal Solid Waste on Physicochemical and Microbial Parameters and Heavy Metal Distribution in Soils in Accordance to Its Agricultural Uses

Authors: Rinku Dhanker, Suman Chaudhary, Tanvi Bhatia, Sneh Goyal

Abstract:

Municipal Solid Waste (MSW), being a rich source of organic materials, can be used for agricultural applications as an important source of nutrients for soil and plants. This is also an alternative beneficial management practice for MSW generated in developing countries. In the present study, MSW treated soil samples from last four to six years at farmer’s field in Rohtak and Gurgaon states (Haryana, India) were collected. The samples were analyzed for all-important agricultural parameters and compared with the control untreated soil samples. The treated soil at farmer’s field showed increase in total N by 48 to 68%, P by 45.7 to 51.3%, and K by 60 to 67% compared to untreated soil samples. Application of sewage sludge at different sites led to increase in microbial biomass C by 60 to 68% compared to untreated soil. There was significant increase in total Cu, Cr, Ni, Fe, Pb, and Zn in all sewage sludge amended soil samples; however, concentration of all the metals were still below the current permitted (EU) limits. To study the adverse effect of heavy metals accumulation on various soil microbial activities, the sewage sludge samples (from wastewater treatment plant at Gurgaon) were artificially contaminated with heavy metal concentration above the EU limits. They were then applied to soil samples with different rates (0.5 to 4.0%) and incubated for 90 days under laboratory conditions. The samples were drawn at different intervals and analyzed for various parameters like pH, EC, total N, P, K, microbial biomass C, carbon mineralization, and diethylenetriaminepentaacetic acid (DTPA) exactable heavy metals. The results were compared to the uncontaminated sewage sludge. The increasing level of sewage sludge from 0.5 to 4% led to build of organic C and total N, P and K content at the early stages of incubation. But, organic C was decreased after 90 days because of decomposition of organic matter. Biomass production was significantly increased in both contaminated and uncontaminated sewage soil samples, but also led to slight increases in metal accumulation and their bioavailability in soil. The maximum metal concentrations were found in treatment with 4% of contaminated sewage sludge amendment.

Keywords: Heavy metals, municipal sewage sludge, sustainable agriculture, soil fertility, quality.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1251
3320 Enhancing Landfill Gas Production by Methanogenic Sand Layer

Authors: N. Sapari, S. Mustapha, H. Jusoh

Abstract:

Landfill gas, particularly methane is one of the greenhouse gases which contributes to global warming. This paper presents the findings of a study on methane gas production from simulated landfill reactor under saturated conditions. A reactor was constructed to represent a landfill cell of 2.5 m thickness on sandy soil. The reactor was 0.2 m in diameter and 4 m in height. One meter of sand and pebble layer was packed at the bottom of the reactor followed by 2.5 m of solid waste layer and 0.4 m of sand layer as the cover soil. Degradation of waste in the solid waste layer was at acidification stage as indicated by the leachate quality with COD as high as 55,511 mg/L and pH as low as 5.1. However, methanogenic environment was established at the bottom sand layer after one year of operation indicated by pH of 7.2 and methane gas generation. Leachate degradation took place as the leachate moved through the sand layer at an infiltration of rate 0.7 cm/day. This resulted in landfill gas production of 77 mL/day/kg containing 55 to 65% methane. The application of sand layer contributed to the gas production from landfill by an in-situ degradation of leachate in the sand at the bottom of the landfill.

Keywords: Gas production, methane, methanogenic sand layer, municipal solid waste, saturated landfill

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1597