WASET
	%0 Journal Article
	%A Yasser R. Tawfic and  Mohamed A. Eid
	%D 2015
	%J International Journal of Structural and Construction Engineering
	%B World Academy of Science, Engineering and Technology
	%I Open Science Index 107, 2015
	%T Application of Micro-Tunneling Technique to Rectify Tilted Structures Constructed on Cohesive Soil
	%U https://publications.waset.org/pdf/10002907
	%V 107
	%X Foundation differential settlement and supported
structure tilting are an occasionally occurred engineering problem.
This may be caused by overloading, changes in ground soil properties
or unsupported nearby excavations. Engineering thinking points
directly toward the logic solution for such problem by uplifting the
settled side. This can be achieved with deep foundation elements
such as micro-piles and macro-piles™, jacked piers, and helical piers,
jet grouted mortar columns, compaction grout columns, cement
grouting or with chemical grouting, or traditional pit underpinning
with concrete and mortar. Although, some of these techniques offer
economic, fast and low noise solutions, many of them are quite the
contrary. For tilted structures, with the limited inclination, it may be much
easier to cause a balancing settlement on the less-settlement side
which shall be done carefully in a proper rate. This principal has been
applied in Leaning Tower of Pisa stabilization with soil extraction
from the ground surface. In this research, the authors attempt to
introduce a new solution with a different point of view. So, the
micro-tunneling technique is presented in here as an intended ground
deformation cause. In general, micro-tunneling is expected to induce
limited ground deformations. Thus, the researchers propose to apply
the technique to form small size ground unsupported holes to produce
the target deformations. This shall be done in four phases: 1.
Application of one or more micro-tunnels, regarding the existing
differential settlement value, under the raised side of the tilted
structure. 2. For each individual tunnel, the lining shall be pulled out
from both sides (from jacking and receiving shafts) in the slow rate.
3. If required, according to calculations and site records, an additional
surface load can be applied on the raised foundation side. 4. Finally, a
strengthening soil grouting shall be applied for stabilization after
adjustment. A finite element based numerical model is presented to simulate
the proposed construction phases for different tunneling positions and
tunnels group. For each case, the surface settlements are calculated
and induced plasticity points are checked. These results show the
impact of the suggested procedure on the tilted structure and its
feasibility. Comparing results also show the importance of the
position selection and tunnels group gradual effect. Thus, a new
engineering solution is presented to one of the structural and
geotechnical engineering challenges.
	%P 1450 - 1457