Search results for: regeneration efficiency
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2526

Search results for: regeneration efficiency

2166 Mathematical Modeling on Capturing of Magnetic Nanoparticles in an Implant Assisted Channel for Magnetic Drug Targeting

Authors: Shashi Sharma, V. K. Katiyar, Uaday Singh

Abstract:

In IA-MDT, the magnetic implants are placed strategically at the target site to greatly and locally increase the magnetic force on MDCPs and help to attract and retain the MDCPs at the targeted region. In the present work, we develop a mathematical model to study the capturing of magnetic nanoparticles flowing within a fluid in an implant assisted cylindrical channel under magnetic field. A coil of ferromagnetic SS-430 has been implanted inside the cylindrical channel to enhance the capturing of magnetic nanoparticles under magnetic field. The dominant magnetic and drag forces, which significantly affect the capturing of nanoparticles, are incorporated in the model. It is observed through model results that capture efficiency increases as we increase the magnetic field from 0.1 to 0.5 T, respectively. The increase in capture efficiency by increase in magnetic field is because as the magnetic field increases, the magnetization force, which is attractive in nature and responsible to attract or capture the magnetic particles, increases and results the capturing of large number of magnetic particles due to high strength of attractive magnetic force.

Keywords: Capture efficiency, Implant assisted-Magnetic drug targeting (IA-MDT), Magnetic nanoparticles (MNPs).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1751
2165 Using Rao-Blackwellised Particle Filter Track 3D Arm Motion based on Hierarchical Limb Model

Authors: XueSong Yu, JiaFeng Liu, XiangLong Tang, JianHua Huang

Abstract:

For improving the efficiency of human 3D tracking, we present an algorithm to track 3D Arm Motion. First, the Hierarchy Limb Model (HLM) is proposed based on the human 3D skeleton model. Second, via graph decomposition, the arm motion state space, modeled by HLM, can be discomposed into two low dimension subspaces: root nodes and leaf nodes. Finally, Rao-Blackwellised Particle Filter is used to estimate the 3D arm motion. The result of experiment shows that our algorithm can advance the computation efficiency.

Keywords: Hierarchy Limb Model; Rao-Blackwellised Particle Filter; 3D tracking

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1549
2164 Synthesis of Novel Nanostructured Catalysts for Pyrolysis of Biomass

Authors: Phuong T. Dang, Hy G. Le, Giang T. Pham, Hong T. M. Vu, Kien T, Nguyen, Canh D. Dao, Giang H. Le, Hoa T. K. Tran, Quang K. Nguyen, Tuan A. Vu

Abstract:

Nanostructured catalysts were successfully prepared by acidification of diatomite and regeneration of FCC spent catalysts. The obtained samples were characterized by IR, XRD, SEM, EDX, MAS-NMR (27Al and 29Si), NH3-TPD and tested in catalytic pyrolysis of biomass (rice straw). The results showed that the similar bio-oil yield of 41.4% can be obtained by pyrolysis with catalysts at 450oC as compared to that of the pyrolysis without catalyst at 550oC. The bio-oil yield reached a maximum of 42.55% at the pyrolysis temperature of 500oC with catalytic content of 20%. Moreover, by catalytic pyrolysis, bio-oil quality was better as reflected in higher ratio of H/C, lower ratio of O/C. This clearly indicated high application potential of these new nanostructured catalysts in the production of bio-oil with low oxygenated compounds.

Keywords: Acidified diatomite, biomass, catalytic pyrolysis, bio-oil, nanostructured catalysts, regenerated FCC catalyst.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2581
2163 Experimental Study on Capturing of Magnetic Nanoparticles Transported in an Implant Assisted Cylindrical Tube under Magnetic Field

Authors: Anurag Gaur, Nidhi, Shashi Sharma

Abstract:

Targeted drug delivery is a method of delivering medication to a patient in a manner that increases the concentration of the medication in some parts of the body relative to others. Targeted drug delivery seeks to concentrate the medication in the tissues of interest while reducing the relative concentration of the medication in the remaining tissues. This improves efficacy of the while reducing side effects. In the present work, we investigate the effect of magnetic field, flow rate and particle concentration on the capturing of magnetic particles transported in a stent implanted fluidic channel. Iron oxide magnetic nanoparticles (Fe3O4) nanoparticles were synthesized via co-precipitation method. The synthesized Fe3O4 nanoparticles were added in the de-ionized (DI) water to prepare the Fe3O4 magnetic particle suspended fluid. This fluid is transported in a cylindrical tube of diameter 8 mm with help of a peristaltic pump at different flow rate (25-40 ml/min). A ferromagnetic coil of SS 430 has been implanted inside the cylindrical tube to enhance the capturing of magnetic nanoparticles under magnetic field. The capturing of magnetic nanoparticles was observed at different magnetic magnetic field, flow rate and particle concentration. It is observed that capture efficiency increases from 47-67% at magnetic field 2-5kG, respectively at particle concentration 0.6mg/ml and at flow rate 30 ml/min. However, the capture efficiency decreases from 65 to 44% by increasing the flow rate from 25 to 40 ml/min, respectively. Furthermore, it is observed that capture efficiency increases from 51 to 67% by increasing the particle concentration from 0.3 to 0.6 mg/ml, respectively.

Keywords: Capture efficiency, Implant assisted-Magnetic drug targeting (IA-MDT), Magnetic nanoparticles, in vitro study.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1796
2162 A Comparative Case Study of the Impact of Square and Yurt-Shape Buildings on Energy Efficiency

Authors: Valeriya Tyo, Serikbolat Yessengabulov

Abstract:

Regions with extreme climate conditions such as Astana city require energy saving measures to increase energy performance of buildings which are responsible for more than 40% of total energy consumption. Identification of optimal building geometry is one of key factors to be considered. Architectural form of a building has impact on space heating and cooling energy use, however the interrelationship between the geometry and resultant energy use is not always readily apparent. This paper presents a comparative case study of two prototypical buildings with compact building shape to assess its impact on energy performance.

Keywords: Building geometry, energy efficiency, heat gain, heat loss.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2481
2161 Encryption Efficiency Analysis and Security Evaluation of RC6 Block Cipher for Digital Images

Authors: Hossam El-din H. Ahmed, Hamdy M. Kalash, Osama S. Farag Allah

Abstract:

This paper investigates the encryption efficiency of RC6 block cipher application to digital images, providing a new mathematical measure for encryption efficiency, which we will call the encryption quality instead of visual inspection, The encryption quality of RC6 block cipher is investigated among its several design parameters such as word size, number of rounds, and secret key length and the optimal choices for the best values of such design parameters are given. Also, the security analysis of RC6 block cipher for digital images is investigated from strict cryptographic viewpoint. The security estimations of RC6 block cipher for digital images against brute-force, statistical, and differential attacks are explored. Experiments are made to test the security of RC6 block cipher for digital images against all aforementioned types of attacks. Experiments and results verify and prove that RC6 block cipher is highly secure for real-time image encryption from cryptographic viewpoint. Thorough experimental tests are carried out with detailed analysis, demonstrating the high security of RC6 block cipher algorithm. So, RC6 block cipher can be considered to be a real-time secure symmetric encryption for digital images.

Keywords: Block cipher, Image encryption, Encryption quality, and Security analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2356
2160 Energy Recovery Soft Switching Improved Efficiency Half Bridge Inverter for Electronic Ballast Applications

Authors: A. Yazdanpanah Goharrizi

Abstract:

An improved topology of a voltage-fed quasi-resonant soft switching LCrCdc series-parallel half bridge inverter with a constant-frequency for electronic ballast applications is proposed in this paper. This new topology introduces a low-cost solution to reduce switching losses and circuit rating to achieve high-efficiency ballast. Switching losses effect on ballast efficiency is discussed through experimental point of view. In this discussion, an improved topology in which accomplishes soft switching operation over a wide power regulation range is proposed. The proposed structure uses reverse recovery diode to provide better operation for the ballast system. A symmetrical pulse wide modulation (PWM) control scheme is implemented to regulate a wide range of out-put power. Simulation results are kindly verified with the experimental measurements obtained by ballast-lamp laboratory prototype. Different load conditions are provided in order to clarify the performance of the proposed converter.

Keywords: Electronic ballast, Pulse wide modulation (PWM) Reverse recovery diode, Soft switching.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2151
2159 Zero Voltage Switched Full Bridge Converters for the Battery Charger of Electric Vehicle

Authors: Rizwan Ullah, Abdar Ali, Zahid Ullah

Abstract:

This paper illustrates the study of three isolated zero voltage switched (ZVS) PWM full bridge (FB) converters to charge the high voltage battery in the charger of electric vehicle (EV). EV battery chargers have several challenges such as high efficiency, high reliability, low cost, isolation, and high power density. The cost of magnetic and filter components in the battery charger is reduced when switching frequency is increased. The increase in the switching frequency increases switching losses. ZVS is used to reduce switching losses and to operate the converter in the battery charger at high frequency. The performance of each of the three converters is evaluated on the basis of ZVS range, dead times of the switches, conduction losses of switches, circulating current stress, circulating energy, duty cycle loss, and efficiency. The limitations and merits of each PWM FB converter are reviewed. The converter with broader ZVS range, high efficiency and low switch stresses is selected for battery charger applications in EV.

Keywords: Electric vehicle, PWM FB converter, zero voltage switching, circulating energy, duty cycle loss, battery charger.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2363
2158 An Overview of Energy Efficient Routing Protocols for Acoustic Sensor Network

Authors: V. P. Dhivya, R. Arthi

Abstract:

Underwater acoustic network is one of the rapidly growing areas of research and finds different applications for monitoring and collecting various data for environmental studies. The communication among dynamic nodes and high error probability in an acoustic medium forced to maximize energy consumption in Underwater Sensor Networks (USN) than in traditional sensor networks. Developing energy-efficient routing protocol is the fundamental and a curb challenge because all the sensor nodes are powered by batteries, and they cannot be easily replaced in UWSNs. This paper surveys the various recent routing techniques that mainly focus on energy efficiency.

Keywords: Acoustic channels, Energy efficiency, Routing in sensor networks, Underwater Sensor Network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2950
2157 Effects of Dust on the Performance of PV Panels

Authors: Shaharin A. Sulaiman, Haizatul H. Hussain, Nik Siti H. Nik Leh, Mohd S. I. Razali

Abstract:

Accumulation of dust from the outdoor environment on the panels of solar photovoltaic (PV) system is natural. There were studies that showed that the accumulated dust can reduce the performance of solar panels, but the results were not clearly quantified. The objective of this research was to study the effects of dust accumulation on the performance of solar PV panels. Experiments were conducted using dust particles on solar panels with a constant-power light source, to determine the resulting electrical power generated and efficiency. It was found from the study that the accumulated dust on the surface of photovoltaic solar panel can reduce the system-s efficiency by up to 50%.

Keywords: Dust, Photovoltaic, Solar Energy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13598
2156 Comparison between the Efficiency of Heterojunction Thin Film InGaP\GaAs\Ge and InGaP\GaAs Solar Cell

Authors: F. Djaafar, B. Hadri, G. Bachir

Abstract:

This paper presents the design parameters for a thin film 3J InGaP/GaAs/Ge solar cell with a simulated maximum efficiency of 32.11% using Tcad Silvaco. Design parameters include the doping concentration, molar fraction, layers’ thickness and tunnel junction characteristics. An initial dual junction InGaP/GaAs model of a previous published heterojunction cell was simulated in Tcad Silvaco to accurately predict solar cell performance. To improve the solar cell’s performance, we have fixed meshing, material properties, models and numerical methods. However, thickness and layer doping concentration were taken as variables. We, first simulate the InGaP\GaAs dual junction cell by changing the doping concentrations and thicknesses which showed an increase in efficiency. Next, a triple junction InGaP/GaAs/Ge cell was modeled by adding a Ge layer to the previous dual junction InGaP/GaAs model with an InGaP /GaAs tunnel junction.

Keywords: Heterojunction, modeling, simulation, thin film, Tcad Silvaco.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1190
2155 Performance Improvement of a Supersonic External Compression Inlet by Heat Source Addition

Authors: Mohammad Reza Soltani, Mohammad Farahani, Javad Sepahi Younsi

Abstract:

Heat source addition to the axisymmetric supersonic inlet may improve the performance parameters, which will increase the inlet efficiency. In this investigation the heat has been added to the flow field at some distance ahead of an axisymmetric inlet by adding an imaginary thermal source upstream of cowl lip. The effect of heat addition on the drag coefficient, mass flow rate and the overall efficiency of the inlet have been investigated. The results show that heat addition causes flow separation, hence to prevent this phenomena, roughness has been added on the spike surface. However, heat addition reduces the drag coefficient and the inlet mass flow rate considerably. Furthermore, the effects of position, size, and shape on the inlet performance were studied. It is found that the thermal source deflects the flow streamlines. By improper location of the thermal source, the optimum condition has been obtained. For the optimum condition, the drag coefficient is considerably reduced and the inlet mass flow rate and its efficiency have been increased slightly. The optimum shape of the heat source is obtained too.

Keywords: Drag coefficient, heat source, performanceparameters, supersonic inlet.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2246
2154 WDM and OCDMA Systems under MAI Effects: A Comparison Analysis

Authors: Hilal A. Fadhil, Thanaa Hussein Abd, Hamza M. R. Al-Khafaji, S. A. Aljunid

Abstract:

This paper presents a comparison between Spectrum- Sliced Wavelength Division Multiplexing (SS-WDM) and Spectrum Amplitude Coding Optical Code Division Multiple Access (SAC Optical CDMA) systems for different light sources. The performance of the system is shown in the simulated results of the bit error rate (BER) and the eye diagram of both systems. The comparison results indicate that the Multiple Access Interference (MAI) effects have a significant impact on SS-WDM over SAC Optical CDMA systems. Finally, in terms of spectral efficiency at constant BER of 10-12, SSWDM offers higher spectral efficiency than optical CDMA since no bandwidth expansion in needed.

Keywords: WDM, OCDMA, BER, RD code

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2322
2153 Thermo-Exergy Optimization of Gas Turbine Cycle with Two Different Regenerator Designs

Authors: Saria Abed, Tahar Khir, Ammar Ben Brahim

Abstract:

A thermo-exergy optimization of a gas turbine cycle with two different regenerator designs is established. A comparison was made between the performance of the two regenerators and their roles in improving the cycle efficiencies. The effect of operational parameters (the pressure ratio of the compressor, the ambient temperature, excess of air, geometric parameters of the regenerators, etc.) on thermal efficiencies, the exergy efficiencies, and irreversibilities were studied using thermal balances and quantitative exegetic equilibrium for each component and for the whole system. The results are given graphically by using the EES software, and an appropriate discussion and conclusion was made.

Keywords: Exergy efficiency, gas turbine, heat transfer, irreversibility, optimization, regenerator, thermal efficiency.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1047
2152 A Study on the Effectiveness of Alternative Commercial Ventilation Inlets That Improve Energy Efficiency of Building Ventilation Systems

Authors: Brian Considine, Aonghus McNabola, John Gallagher, Prashant Kumar

Abstract:

Passive air pollution control devices known as aspiration efficiency reducers (AER) have been developed using aspiration efficiency (AE) concepts. Their purpose is to reduce the concentration of particulate matter (PM) drawn into a building air handling unit (AHU) through alterations in the inlet design improving energy consumption. In this paper an examination is conducted into the effect of installing a deflector system around an AER-AHU inlet for both a forward and rear-facing orientations relative to the wind. The results of the study found that these deflectors are an effective passive control method for reducing AE at various ambient wind speeds over a range of microparticles of varying diameter. The deflector system was found to induce a large wake zone at low ambient wind speeds for a rear-facing AER-AHU, resulting in significantly lower AE in comparison to without. As the wind speed increased, both contained a wake zone but have much lower concentration gradients with the deflectors. For the forward-facing models, the deflector system at low ambient wind speed was preferred at higher Stokes numbers but there was negligible difference as the Stokes number decreased. Similarly, there was no significant difference at higher wind speeds across the Stokes number range tested. The results demonstrate that a deflector system is a viable passive control method for the reduction of ventilation energy consumption.

Keywords: Aspiration efficiency, energy, particulate matter, ventilation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 423
2151 Multi-Robotic Partial Disassembly Line Balancing with Robotic Efficiency Difference via HNSGA-II

Authors: Tao Yin, Zeqiang Zhang, Wei Liang, Yanqing Zeng, Yu Zhang

Abstract:

To accelerate the remanufacturing process of electronic waste products, this study designs a partial disassembly line with the multi-robotic station to effectively dispose of excessive wastes. The multi-robotic partial disassembly line is a technical upgrade to the existing manual disassembly line. Balancing optimization can make the disassembly line smoother and more efficient. For partial disassembly line balancing with the multi-robotic station (PDLBMRS), a mixed-integer programming model (MIPM) considering the robotic efficiency differences is established to minimize cycle time, energy consumption and hazard index and to calculate their optimal global values. Besides, an enhanced NSGA-II algorithm (HNSGA-II) is proposed to optimize PDLBMRS efficiently. Finally, MIPM and HNSGA-II are applied to an actual mixed disassembly case of two types of computers, the comparison of the results solved by GUROBI and HNSGA-II verifies the correctness of the model and excellent performance of the algorithm, and the obtained Pareto solution set provides multiple options for decision-makers.

Keywords: Waste disposal, disassembly line balancing, multi-robot station, robotic efficiency difference, HNSGA-II.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 421
2150 Study of the Effect of the Contra-Rotating Component on the Performance of the Centrifugal Compressor

Authors: Van Thang Nguyen, Amelie Danlos, Richard Paridaens, Farid Bakir

Abstract:

This article presents a study of the effect of a contra-rotating component on the efficiency of centrifugal compressors. A contra-rotating centrifugal compressor (CRCC) is constructed using two independent rotors, rotating in the opposite direction and replacing the single rotor of a conventional centrifugal compressor (REF). To respect the geometrical parameters of the REF one, two rotors of the CRCC are designed, based on a single rotor geometry, using the hub and shroud length ratio parameter of the meridional contour. Firstly, the first rotor is designed by choosing a value of length ratio. Then, the second rotor is calculated to be adapted to the fluid flow of the first rotor according aerodynamics principles. In this study, four values of length ratios 0.3, 0.4, 0.5, and 0.6 are used to create four configurations CF1, CF2, CF3, and CF4 respectively. For comparison purpose, the circumferential velocity at the outlet of the REF and the CRCC are preserved, which means that the single rotor of the REF and the second rotor of the CRCC rotate with the same speed of 16000rpm. The speed of the first rotor in this case is chosen to be equal to the speed of the second rotor. The CFD simulation is conducted to compare the performance of the CRCC and the REF with the same boundary conditions. The results show that the configuration with a higher length ratio gives higher pressure rise. However, its efficiency is lower. An investigation over the entire operating range shows that the CF1 is the best configuration in this case. In addition, the CRCC can improve the pressure rise as well as the efficiency by changing the speed of each rotor independently. The results of changing the first rotor speed show with a 130% speed increase, the pressure ratio rises of 8.7% while the efficiency remains stable at the flow rate of the design operating point.

Keywords: Centrifugal compressor, contra-rotating, interaction rotor, vacuum.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 774
2149 The Research of Taiwan Green Building Materials (GBM) system and GBM Eco-Efficiency Model on Climate Change

Authors: Ting-Ting Hsieh, Che-Ming Chiang, Ming-Chin Ho, Kwang-Pang Lai

Abstract:

The globe Sustainability has become the subject of international attention, the key reason is that global climate change. Climate and disasters around the abnormal frequency multiplier, the global temperature of the catastrophe and disaster continue to occur throughout the world, as well as countries around the world. Currently there are many important international conferences and policy, it is a "global environmental sustainability " and "living human health " as the goal of development, including the APEC 2007 meeting to "climate Clean Energy" as the theme Sydney Declaration, 2008 World Economic Forum's "Carbon - promote Cool Earth energy efficiency improvement project", the EU proposed "Green Idea" program, the Japanese annual policy, "low-carbon society, sustainable eco-city environment (Eco City) "And from 2009 to 2010 to promote the "Eco-Point" to promote green energy and carbon reduction products .And the 2010 World Climate Change Conference (COP16 United Nations Climate Change Conference Copenhagen), the world has been the subject of Negative conservative "Environmental Protection ", "save energy consumption, " into a positive response to the "Sustainable " and" LOHAS", while Taiwan has actively put forward eco-cities, green building, green building materials and other related environmental response Measures, especially green building construction environment that is the basis of factors, the most widely used application level, and direct contact with human health and the key to sustainable planet. "Sustainable development "is a necessary condition for continuation of the Earth, "healthy and comfortable" is a necessary condition for the continuation of life, and improve the "quality" is a necessary condition for economic development, balance between the three is "to enhance the efficiency of ", According to the World Business Council for Sustainable Development (WBCSD) for the "environmental efficiency "(Eco-Efficiency) proposed: " the achievement of environmental efficiency, the price to be competitive in the provision of goods or services to meet people's needs, improve living Quality at the same time, the goods or services throughout the life cycle. Its impact on the environment and natural resource utilization and gradually reduced to the extent the Earth can load. "whichever is the economy "Economic" and " Ecologic". The research into the methodology to obtain the Taiwan Green Building Material Labeling product as the scope of the study, by investigating and weight analysis to explore green building environmental load (Ln) factor and the Green Building Quality (Qn) factor to Establish green building environmental efficiency assessment model (GBM Eco-Efficiency). And building materials for healthy green label products for priority assessment object, the object is set in the material evidence for the direct response to the environmental load from the floor class-based, explicit feedback correction to the Green Building environmental efficiency assessment model, "efficiency " as a starting point to achieve balance between human "health "and Earth "sustainable development of win-win strategy. The study is expected to reach 1.To establish green building materials and the quality of environmental impact assessment system, 2. To establish value of GBM Eco-Efficiency model, 3. To establish the GBM Eco-Efficiency model for application of green building material feedback mechanisms.

Keywords: Climate Change, Green Building Material (GBM), Eco-Efficiency, Life Cycle Assessment, Performance Evaluation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2282
2148 Study of Energy Efficiency Opportunities in UTHM

Authors: Zamri Noranai, Mohammad Zainal Md Yusof

Abstract:

Sustainable energy usage has been recognized as one of the important measure to increase the competitiveness of the nation globally. Many strong emphases were given in the Ninth Malaysia Plan (RMK9) to improve energy efficient especially to government buildings. With this in view, a project to investigate the potential of energy saving in selected building in Universiti Tun Hussein Onn Malaysia (UTHM) was carried out. In this project, a case study involving electric energy consumption of the academic staff office building was conducted. The scope of the study include to identify energy consumption in a selected building, to study energy saving opportunities, to analyse cost investment in term of economic and to identify users attitude with respect to energy usage. The MS1525:2001, Malaysian Standard -Code of practice on energy efficiency and use of renewable energy for non-residential buildings was used as reference. Several energy efficient measures were considered and their merits and priority were compared. Improving human behavior can reduce energy consumption by 6% while technical measure can reduce energy consumption by 44%. Two economic analysis evaluation methods were applied; they are the payback period method and net present value method.

Keywords: office building, energy, efficiency, economic analyses

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2509
2147 Exergy Analysis of a Solar Humidification- Dehumidification Desalination Unit

Authors: Mohammed A. Elhaj, Jamal S. Yassin

Abstract:

This paper presents the exergy analysis of a desalination unit using humidification-dehumidification process. Here, this unit is considered as a thermal system with three main components, which are the heating unit by using a solar collector, the evaporator or the humidifier, and the condenser or the dehumidifier. In these components the exergy is a measure of the quality or grade of energy and it can be destroyed in them. According to the second law of thermodynamics this destroyed part is due to irreversibilities which must be determined to obtain the exergetic efficiency of the system. In the current paper a computer program has been developed using visual basic to determine the exergy destruction and the exergetic efficiencies of the components of the desalination unit at variable operation conditions such as feed water temperature, outlet air temperature, air to feed water mass ratio and salinity, in addition to cooling water mass flow rate and inlet temperature, as well as quantity of solar irradiance. The results obtained indicate that the exergy efficiency of the humidifier increases by increasing the mass ratio and decreasing the outlet air temperature. In the other hand the exergy efficiency of the condenser increases with the increase of this ratio and also with the increase of the outlet air temperature.

Keywords: Exergy analysis, desalination, solar, humidifier, condenser.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2419
2146 Performance Analysis of a Single-Phase Thermosyphon Solar Water Heating System

Authors: S. Sadhishkumar, T. Balusamy

Abstract:

A single-phase closed thermosyphon has been fabricated and experimented to utilize solar energy for water heating. The working fluid of the closed thermosyphon is heated at the flatplate collector and the hot water goes to the water tank due to density gradient caused by temperature differences. This experimental work was done using insulated water tank and insulated connecting pipe between the tank and the flat-plate collector. From the collected data, performance parameters such as instantaneous collector efficiency and heat removal factor are calculated. In this study, the effects of glazing were also observed. The water temperature rise and the maximum instantaneous efficiency obtained from this experiment with glazing using insulated water tank and insulated connecting pipe are 17°C in a period of 5 hours and 60% respectively. Whereas the water temperature rise and the maximum instantaneous efficiency obtained from this experiment with glazing using non-insulated water tank and non-insulated connecting pipe are 14°C in a period of 5 hours and 39% respectively.

Keywords: Solar water heating systems, Single-phase thermosyphon, Flat-plate collector, Insulated tank and pipe.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3089
2145 3 State Current Mode of a Grid Connected PV Converter

Authors: Attila Balogh, Eszter Varga, István Varjasi

Abstract:

Nowadays in applications of renewable energy sources it is important to develop powerful and energy-saving photovoltaic converters and to keep the prescriptions of the standards. In grid connected PV converters the obvious solution to increase the efficiency is to reduce the switching losses. Our new developed control method reduces the switching losses and keeps the limitations of the harmonic distortion standards. The base idea of the method is the utilization of 3-state control causing discontinuous current mode at low input power. In the following sections the control theory, the realizations and the simulation results are presented.

Keywords: Discontinuous current, high efficiency, PVconverter, control method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1420
2144 Experimental Investigation of the Effect of Hydrogen Manifold Injection on the Performance of Compression Ignition Engines

Authors: Haroun A.K. Shahad, Nabeel Abdul-Hadi

Abstract:

Experiments were carried out to evaluate the influence of the addition of hydrogen to the inlet air on the performance of a single cylinder direct injection diesel engine. Hydrogen was injected in the inlet manifold. The addition of hydrogen was done on energy replacement basis. It was found that the addition of hydrogen improves the combustion process due to superior combustion characteristics of hydrogen in comparison to conventional diesel fuels. It was also found that 10% energy replacement improves the engine thermal efficiency by about 40% and reduces the sfc by about 35% however the volumetric efficiency was reduced by about 35%.

Keywords: Hydrogen, Blended fuel, Manifold injection , Performance , Combustion

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2103
2143 Energetic and Exergetic Evaluation of Box-Type Solar Cookers Using Different Insulation Materials

Authors: Ademola K. Aremu, Joseph. C. Igbeka

Abstract:

The performance of box-type solar cookers has been reported by several researchers but little attention was paid to the effect of the type of insulation material on the energy and exergy efficiency of these cookers. This research aimed at evaluating the energy and exergy efficiencies of the box-type cookers containing different insulation materials. Energy and exergy efficiencies of five box-type solar cookers insulated with maize cob, air (control), maize husk, coconut coir and polyurethane foam respectively were obtained over a period of three years. The cookers were evaluated using water heating test procedures in determining the energy and exergy analysis. The results were subjected to statistical analysis using ANOVA. The result shows that the average energy input for the five solar cookers were: 245.5, 252.2, 248.7, 241.5 and 245.5J respectively while their respective average energy losses were: 201.2, 212.7, 208.4, 189.1 and 199.8J. The average exergy input for five cookers were: 228.2, 234.4, 231.1, 224.4 and 228.2J respectively while their respective average exergy losses were: 223.4, 230.6, 226.9, 218.9 and 223.0J. The energy and exergy efficiency was highest in the cooker with coconut coir (37.35 and 3.90% respectively) in the first year but was lowest for air (11 and 1.07% respectively) in the third year. Statistical analysis showed significant difference between the energy and exergy efficiencies over the years. These results reiterate the importance of a good insulating material for a box-type solar cooker.

Keywords: Efficiency, energy, exergy, heating, insolation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2579
2142 Process of Revitalization of the City Centers in Poland: The Problem of Cooperation between Sectors

Authors: Ewa M. Boryczka

Abstract:

Contemporary city is a subject to rapid economic and social changes. Therefore, it requires an active policy designed to meet the diverse needs of their residents, build competitive position and capacity to compete with other cities. Competitiveness of cities depends largely on their resources but also to a large extent, on the policies and performance of local authorities. Cooperation with social sector also plays an important role, as it affects the use of resources and builds an advantage over other cities. The subject of this article is city's contemporary problems of development with particular emphasis on central areas. This issue is a starting point for reflection on the process of urban regeneration in medium size cities in Poland, as well as cooperation between various actors and their roles in the revitalization processes of Polish cities' centers.

Keywords: City, cooperation between sectors, crisis of city centers, revitalization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1612
2141 The Influence of the Inlet Conditions on the Airside Heat Transfer Performance of Plain Finned Evaporator

Authors: Abdenour Bourabaa, Mohamed Saighi, Ibrahim Belal

Abstract:

A numerical study has been conducted to investigate the influence of fin pitch and relative humidity on the heat transfer performance of the fin-and-tube heat exchangers having plain fin geometry under dehumidifying conditions. The analysis is done using the ratio between the heat transfer coefficients in totally wet conditions and those in totally dry conditions using the appropriate correlations for both dry and wet conditions. For a constant relative humidity, it is found that the heat transfer coefficient increases with the increase of the air frontal velocity. By contrast, the fin efficiency decreases when the face velocity is increased. Apparently, this phenomenon is attributed to the path of condensate drainage. For the influence of relative humidity, the results showed an increase in heat transfer performance and a decrease in wet fin efficiency when relative humidity increases. This is due to the higher amount of mass transfer encountered at higher relative humidity. However, it is found that the effect of fin pitch on the heat transfer performance depends strongly on the face velocity. At lower frontal velocity the heat transfer increases with fin pitch. Conversely, an increase in fin pitch gives lower heat transfer coefficients when air velocity is increased.

Keywords: Dehumidifying conditions, Fin efficiency, Heat andmass transfer, Heat exchangers.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2289
2140 Wet Polymeric Precipitation Synthesis for Monophasic Tricalcium Phosphate

Authors: I. Grigoraviciute-Puroniene, K. Tsuru, E. Garskaite, Z. Stankeviciute, A. Beganskiene, K. Ishikawa, A. Kareiva

Abstract:

Tricalcium phosphate (β-Ca3(PO4)2, β-TCP) powders were synthesized using wet polymeric precipitation method for the first time to our best knowledge. The results of X-ray diffraction analysis showed the formation of almost single a Ca-deficient hydroxyapatite (CDHA) phase of a poor crystallinity already at room temperature. With continuously increasing the calcination temperature up to 800 °C, the crystalline β-TCP was obtained as the main phase. It was demonstrated that infrared spectroscopy is very effective method to characterize the formation of β-TCP. The SEM results showed that β-TCP solids were homogeneous having a small particle size distribution. The β-TCP powders consisted of spherical particles varying in size from 100 to 300 nm. Fabricated β-TCP specimens were placed to the bones of the rats and maintained for 1-2 months.

Keywords: β-TCP, bone regeneration, wet chemical processing, polymeric precipitation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1007
2139 Hybrid MAC Protocols Characteristics in Multi-hops Wireless Sensor Networks

Authors: M. Miladi, T. Ezzedine, R. Bouallegue

Abstract:

In the current decade, wireless sensor networks are emerging as a peculiar multi-disciplinary research area. By this way, energy efficiency is one of the fundamental research themes in the design of Medium Access Control (MAC) protocols for wireless sensor networks. Thus, in order to optimize the energy consumption in these networks, a variety of MAC protocols are available in the literature. These schemes were commonly evaluated under simple network density and a few results are published on their robustness in realistic network-s size. We, in this paper, provide an analytical study aiming to highlight the energy waste sources in wireless sensor networks. Then, we experiment three energy efficient hybrid CSMA/CA based MAC protocols optimized for wireless sensor networks: Sensor-MAC (SMAC), Time-out MAC (TMAC) and Traffic aware Energy Efficient MAC (TEEM). We investigate these protocols with different network densities in order to discuss the end-to-end performances of these schemes (i.e. in terms of energy efficiency, delay and throughput). Through Network Simulator (NS- 2) implementations, we explore the behaviors of these protocols with respect to the network density. In fact, this study may help the multihops sensor networks designers to design or select the MAC layer which matches better their applications aims.

Keywords: Energy efficiency, medium access control, network density, wireless sensor networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1588
2138 Flow Modeling and Runner Design Optimization in Turgo Water Turbines

Authors: John S. Anagnostopoulos, Dimitrios E. Papantonis

Abstract:

The incorporation of computational fluid dynamics in the design of modern hydraulic turbines appears to be necessary in order to improve their efficiency and cost-effectiveness beyond the traditional design practices. A numerical optimization methodology is developed and applied in the present work to a Turgo water turbine. The fluid is simulated by a Lagrangian mesh-free approach that can provide detailed information on the energy transfer and enhance the understanding of the complex, unsteady flow field, at very small computing cost. The runner blades are initially shaped according to hydrodynamics theory, and parameterized using Bezier polynomials and interpolation techniques. The use of a limited number of free design variables allows for various modifications of the standard blade shape, while stochastic optimization using evolutionary algorithms is implemented to find the best blade that maximizes the attainable hydraulic efficiency of the runner. The obtained optimal runner design achieves considerably higher efficiency than the standard one, and its numerically predicted performance is comparable to a real Turgo turbine, verifying the reliability and the prospects of the new methodology.

Keywords: Turgo turbine, Lagrangian flow modeling, Surface parameterization, Design optimization, Evolutionary algorithms.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4005
2137 Thermodynamic Analysis of GT Cycle with Naphtha or Natural Gas as the Fuel: A Thermodynamic Comparison

Authors: S. Arpit, P. K. Das, S. K. Dash

Abstract:

In this paper, a comparative study is done between two fuels, naphtha and natural gas (NG), for a gas turbine (GT) plant of 32.5 MW with the same thermodynamic configuration. From the energy analysis, it is confirmed that the turbine inlet temperature (TIT) of the gas turbine in the case of natural gas is higher as compared to naphtha, and hence the isentropic efficiency of the turbine is better. The result from the exergy analysis also confirms that due to high turbine inlet temperature in the case of natural gas, exergy destruction in combustion chamber is less. But comparing two fuels for overall analysis, naphtha has higher energy and exergetic efficiency as compared to natural gas.

Keywords: Exergy, gas turbine, naphtha, natural gas.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 994