Comparison between the Efficiency of Heterojunction Thin Film InGaP\GaAs\Ge and InGaP\GaAs Solar Cell
Authors: F. Djaafar, B. Hadri, G. Bachir
Abstract:
This paper presents the design parameters for a thin film 3J InGaP/GaAs/Ge solar cell with a simulated maximum efficiency of 32.11% using Tcad Silvaco. Design parameters include the doping concentration, molar fraction, layers’ thickness and tunnel junction characteristics. An initial dual junction InGaP/GaAs model of a previous published heterojunction cell was simulated in Tcad Silvaco to accurately predict solar cell performance. To improve the solar cell’s performance, we have fixed meshing, material properties, models and numerical methods. However, thickness and layer doping concentration were taken as variables. We, first simulate the InGaP\GaAs dual junction cell by changing the doping concentrations and thicknesses which showed an increase in efficiency. Next, a triple junction InGaP/GaAs/Ge cell was modeled by adding a Ge layer to the previous dual junction InGaP/GaAs model with an InGaP /GaAs tunnel junction.
Keywords: Heterojunction, modeling, simulation, thin film, Tcad Silvaco.
Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1340156
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1253References:
[1] A. D. Bates, «Novel optimization techniques for multijunction solar cell design using Atlas», Master's Thesis, Naval Postgraduate school, Monterey, California, (2004).
[2] S. Michael, M Green, Innovative approach for the design and optimization for multijunction photovoltaic devices, NCPV and Solar Program Review Meeting, 2003, pp. 737–740.
[3] AbdelhaknMaoucha, «Etude et identification paramétrique d’une cellule photovoltaïque organique», mémoire de magister en microélectronique, Université de Batna (2011).
[4] «Atlas User’s Manual device simulation software », (2013).
[5] S. Michael and A. Bates, The design and optimization of advanced multi-junction solar cells using SILVACO/ATLAS Software Package, Solar Energy Materials & Solar Cells
[6] http://thescipub.com/PDF/ajassp.2009.667.671.pdf accessed on 27/02/2017
[7] F Robert Pierret, «Semiconductor Device Fundamentals», New York: Addison-Wesley, School of Electrical and Computer engineering Purdue University, (1996).
[8] Sullivan, Brian P, «The effect of temperature on the optimization of photovoltaic cells using Silvaco ATLAS modeling», Naval Postgraduate School Monterey, California, USA, (2010).
[9] S. Michael, P. Michalopoulos, Application of the SILVACO/ATLAS software package in modeling and optimization of state-of-the-art photovoltaic devices, proceedings of the 45 Midwest Symposium on Circuits and Systems, Tulsa, Oklahoma, Aug 5–7, 2002.
[10] Djicknoum DIOUF, “Cellules photovoltaïques silicium à hétérojonctions et à structure interdigitée en face arrière”, 2010, thèse de doctorat, université paris sud 11
[11] Nelson, J., 2003. “The Physic of Solar Cells”. Imperial College Press, London, pp. 81–117.
[12] Jackson, J.D., “Classical Electrodynamics”, second ed. John Wiley &Sons, New York, pp. 269–284. 1975
[13] http://www.silvaco.com/content/kbase/device.pdfaccessed on 31/01/2017
[14] https://www.deepdyve.com/lp/elsevier/analytical-model-for-multi-junction-solar-cells-prediction-in-space-anliv1zzi6 accessed on 26 /02/2017
[15] F. Kürker, «Microfabrication based design and simulation of heterojunction solar cell», department of computer engineering the Master of Science, (2010).
[16] F. Djaafar «Modélisation et Simulation de l’effet de la température sur la cellule photovoltaïque à structure hétérogène pat TCAD Silvaco.» Mémoire de Master en Energie Renouvelable et développement Durable Département de génie Electrique Université Abdelhamid Ibn Badis Mostaganem Algeria (2014).