Search results for: nonlinear partial differential equations
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2791

Search results for: nonlinear partial differential equations

2341 Reduction of Differential Column Shortening in Tall Buildings

Authors: Hansoo Kim, Seunghak Shin

Abstract:

The differential column shortening in tall buildings can be reduced by improving material and structural characteristics of the structural systems. This paper proposes structural methods to reduce differential column shortening in reinforced concrete tall buildings; connecting columns with rigidly jointed horizontal members, using outriggers, and placing additional reinforcement at the columns. The rigidly connected horizontal members including outriggers reduce the differential shortening between adjacent vertical members. The axial stiffness of columns with greater shortening can be effectively increased by placing additional reinforcement at the columns, thus the differential column shortening can be reduced in the design stage. The optimum distribution of additional reinforcement can be determined by applying a gradient based optimization technique.

Keywords: Column shortening, long-term behavior, optimization, tall building.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3942
2340 Nonlinear Finite Element Modeling of Deep Beam Resting on Linear and Nonlinear Random Soil

Authors: M. Seguini, D. Nedjar

Abstract:

An accuracy nonlinear analysis of a deep beam resting on elastic perfectly plastic soil is carried out in this study. In fact, a nonlinear finite element modeling for large deflection and moderate rotation of Euler-Bernoulli beam resting on linear and nonlinear random soil is investigated. The geometric nonlinear analysis of the beam is based on the theory of von Kàrmàn, where the Newton-Raphson incremental iteration method is implemented in a Matlab code to solve the nonlinear equation of the soil-beam interaction system. However, two analyses (deterministic and probabilistic) are proposed to verify the accuracy and the efficiency of the proposed model where the theory of the local average based on the Monte Carlo approach is used to analyze the effect of the spatial variability of the soil properties on the nonlinear beam response. The effect of six main parameters are investigated: the external load, the length of a beam, the coefficient of subgrade reaction of the soil, the Young’s modulus of the beam, the coefficient of variation and the correlation length of the soil’s coefficient of subgrade reaction. A comparison between the beam resting on linear and nonlinear soil models is presented for different beam’s length and external load. Numerical results have been obtained for the combination of the geometric nonlinearity of beam and material nonlinearity of random soil. This comparison highlighted the need of including the material nonlinearity and spatial variability of the soil in the geometric nonlinear analysis, when the beam undergoes large deflections.

Keywords: Finite element method, geometric nonlinearity, material nonlinearity, soil-structure interaction, spatial variability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1882
2339 Precision Identification of Nonlinear Damping Parameter for a Miniature Moving-Coil Transducer

Authors: Yu-Ting Tsai, Yu-da Lee, Jin H. Huang

Abstract:

The nonlinear damping behavior is usually ignored in the design of a miniature moving-coil loudspeaker. But when the loudspeaker operated in air, the damping parameter varies with the voice-coil displacement corresponding due to viscous air flow. The present paper presents an identification model as inverse problem to identify the nonlinear damping parameter in the lumped parameter model for the loudspeaker. Theoretical results for the nonlinear damping are verified by using laser displacement measurement scanner. These results indicate that the damping parameter has the greatly different nonlinearity between in air and vacuum. It is believed that the results of the present work can be applied in diagnosis and sound quality improvement of a miniature loudspeaker.

Keywords: Miniature loudspeaker, non-linear damping, system identification, Lumped parameter model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1940
2338 Material Defects Identification in Metal Ceramic Fixed Partial Dentures by En-Face Polarization Sensitive Optical Coherence Tomography

Authors: C. Sinescu, M. Negrutiu, R. Negru, M. Romînu, A.G. Podoleanu

Abstract:

The fixed partial dentures are mainly used in the frontal part of the dental arch because of their great esthetics. There are several factors that are associated with the stress state created in ceramic restorations, including: thickness of ceramic layers, mechanical properties of the materials, elastic modulus of the supporting substrate material, direction, magnitude and frequency of applied load, size and location of occlusal contact areas, residual stresses induced by processing or pores, restoration-cement interfacial defects and environmental defects. The purpose of this study is to evaluate the capability of Polarization Sensitive Optical Coherence Tomography (PSOCT) in detection and analysis of possible material defects in metal-ceramic and integral ceramic fixed partial dentures. As a conclusion, it is important to have a non invasive method to investigate fixed partial prostheses before their insertion in the oral cavity in order to satisfy the high stress requirements and the esthetic function.

Keywords: Ceramic Fixed Partial Dentures, Material Defects, Polarization Sensitive Optical Coherence Tomography, Numerical Simulation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1752
2337 Pattern Recognition of Partial Discharge by Using Simplified Fuzzy ARTMAP

Authors: S. Boonpoke, B. Marungsri

Abstract:

This paper presents the effectiveness of artificial intelligent technique to apply for pattern recognition and classification of Partial Discharge (PD). Characteristics of PD signal for pattern recognition and classification are computed from the relation of the voltage phase angle, the discharge magnitude and the repeated existing of partial discharges by using statistical and fractal methods. The simplified fuzzy ARTMAP (SFAM) is used for pattern recognition and classification as artificial intelligent technique. PDs quantities, 13 parameters from statistical method and fractal method results, are inputted to Simplified Fuzzy ARTMAP to train system for pattern recognition and classification. The results confirm the effectiveness of purpose technique.

Keywords: Partial discharges, PD Pattern recognition, PDClassification, Artificial intelligent, Simplified Fuzzy ARTMAP

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3029
2336 Fractional Delay FIR Filters Design with Enhanced Differential Evolution

Authors: Krzysztof Walczak

Abstract:

Fractional delay FIR filters design method based on the differential evolution algorithm is presented. Differential evolution is an evolutionary algorithm for solving a global optimization problems in the continuous search space. In the proposed approach, an evolutionary algorithm is used to determine the coefficients of a fractional delay FIR filter based on the Farrow structure. Basic differential evolution is enhanced with a restricted mating technique, which improves the algorithm performance in terms of convergence speed and obtained solution. Evolutionary optimization is carried out by minimizing an objective function which is based on the amplitude response and phase delay errors. Experimental results show that the proposed algorithm leads to a reduction in the amplitude response and phase delay errors relative to those achieved with the Least-Squares method.

Keywords: Fractional Delay Filters, Farrow Structure, Evolutionary Computation, Differential Evolution

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1822
2335 On The Comparison of Fuzzy Logic and State Space Averaging based Sliding Control Methods Applied onan Arc Welding Machine

Authors: İres İskender, Ahmet Karaarslan

Abstract:

In this study, the performance of a high-frequency arc welding machine including a two-switch inverter is analyzed. The control of the system is achieved using two different control techniques i- fuzzy logic control (FLC) ii- state space averaging based sliding control. Fuzzy logic control does not need accurate mathematical model of a plant and can be used in nonlinear applications. The second method needs the mathematical model of the system. In this method the state space equations of the system are derived for two different “on" and “off" states of the switches. The derived state equations are combined with the sliding control rule considering the duty-cycle of the converter. The performance of the system is analyzed by simulating the system using SIMULINK tool box of MATLAB. The simulation results show that fuzzy logic controller is more robust and less sensitive to parameter variations.

Keywords: Fuzzy logic, arc welding, sliding state space control, PWM, current control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2019
2334 Identifying Chaotic Architecture: Origins of Nonlinear Design Theory

Authors: Mohammadsadegh Zanganehfar

Abstract:

Through the emergence of modern architecture, an aggressive desire for new design theories appeared through the works of architects and critics. The discourse of complexity and volumetric composition happened to be an important and controversial issue in the discipline of architecture which was discussed through a general point of view in Robert Venturi and Denise Scott Brown's book “Complexity and contradiction in architecture” in 1966, this paper attempts to identify chaos theory as a scientific model of complexity and its relation to architecture design theory by conducting a qualitative analysis and multidisciplinary critical approach through architecture and basic sciences resources. Accordingly, we identify chaotic architecture as the correlation between chaos theory and the discipline of architecture, and as an independent nonlinear design theory with specific characteristics and properties.

Keywords: Architecture complexity, chaos theory, fractals, nonlinear dynamic systems, nonlinear ontology.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 973
2333 Identification of Aircraft Gas Turbine Engines Temperature Condition

Authors: Pashayev A., Askerov D., C. Ardil, Sadiqov R., Abdullayev P.

Abstract:

Groundlessness of application probability-statistic methods are especially shown at an early stage of the aviation GTE technical condition diagnosing, when the volume of the information has property of the fuzzy, limitations, uncertainty and efficiency of application of new technology Soft computing at these diagnosing stages by using the fuzzy logic and neural networks methods. It is made training with high accuracy of multiple linear and nonlinear models (the regression equations) received on the statistical fuzzy data basis. At the information sufficiency it is offered to use recurrent algorithm of aviation GTE technical condition identification on measurements of input and output parameters of the multiple linear and nonlinear generalized models at presence of noise measured (the new recursive least squares method (LSM)). As application of the given technique the estimation of the new operating aviation engine D30KU-154 technical condition at height H=10600 m was made.

Keywords: Identification of a technical condition, aviation gasturbine engine, fuzzy logic and neural networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1616
2332 Verification and Application of Finite Element Model Developed for Flood Routing in Rivers

Authors: A. L. Qureshi, A. A. Mahessar, A. Baloch

Abstract:

Flood wave propagation in river channel flow can be enunciated by nonlinear equations of motion for unsteady flow. It is difficult to find analytical solution of these non-linear equations. Hence, in this paper verification of the finite element model has been carried out against available numerical predictions and field data. The results of the model indicate a good matching with both Preissmann scheme and HEC-RAS model for a river reach of 29km at both sites (15km from upstream and at downstream end) for discharge hydrographs. It also has an agreeable comparison with the Preissemann scheme for the flow depth (stage) hydrographs. The proposed model has also been applying to forecast daily discharges at 400km downstream in the Indus River from Sukkur barrage of Sindh, Pakistan, which demonstrates accurate model predictions with observed the daily discharges. Hence, this model may be utilized for flood warnings in advance.

Keywords: Finite Element Method, Flood Forecasting, HEC-RAS, Indus river.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2633
2331 Identification of Aircraft Gas Turbine Engine's Temperature Condition

Authors: Pashayev A., Askerov D., C. Ardil, Sadiqov R., Abdullayev P.

Abstract:

Groundlessness of application probability-statistic methods are especially shown at an early stage of the aviation GTE technical condition diagnosing, when the volume of the information has property of the fuzzy, limitations, uncertainty and efficiency of application of new technology Soft computing at these diagnosing stages by using the fuzzy logic and neural networks methods. It is made training with high accuracy of multiple linear and nonlinear models (the regression equations) received on the statistical fuzzy data basis. At the information sufficiency it is offered to use recurrent algorithm of aviation GTE technical condition identification on measurements of input and output parameters of the multiple linear and nonlinear generalized models at presence of noise measured (the new recursive least squares method (LSM)). As application of the given technique the estimation of the new operating aviation engine D30KU-154 technical condition at height H=10600 m was made.

Keywords: Identification of a technical condition, aviation gasturbine engine, fuzzy logic and neural networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1638
2330 Design of an Augmented Automatic Choosing Control with Constrained Input by Lyapunov Functions Using Gradient Optimization Automatic Choosing Functions

Authors: Toshinori Nawata

Abstract:

In this paper a nonlinear feedback control called augmented automatic choosing control (AACC) for a class of nonlinear systems with constrained input is presented. When designed the control, a constant term which arises from linearization of a given nonlinear system is treated as a coefficient of a stable zero dynamics. Parameters of the control are suboptimally selected by maximizing the stable region in the sense of Lyapunov with the aid of a genetic algorithm. This approach is applied to a field excitation control problem of power system to demonstrate the splendidness of the AACC. Simulation results show that the new controller can improve performance remarkably well.

Keywords: Augmented automatic choosing control, nonlinear control, genetic algorithm, zero dynamics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1694
2329 Functionally Graded MEMS Piezoelectric Energy Harvester with Magnetic Tip Mass

Authors: M. Derayatifar, M. Packirisamy, R.B. Bhat

Abstract:

Role of piezoelectric energy harvesters has gained interest in supplying power for micro devices such as health monitoring sensors. In this study, in order to enhance the piezoelectric energy harvesting in capturing energy from broader range of excitation and to improve the mechanical and electrical responses, bimorph piezoelectric energy harvester beam with magnetic mass attached at the end is presented. In view of overcoming the brittleness of piezo-ceramics, functionally graded piezoelectric layers comprising of both piezo-ceramic and piezo-polymer is employed. The nonlinear equations of motions are derived using energy method and then solved analytically using perturbation scheme. The frequency responses of the forced vibration case are obtained for the near resonance case. The nonlinear dynamic responses of the MEMS scaled functionally graded piezoelectric energy harvester in this paper may be utilized in different design scenarios to increase the efficiency of the harvester.

Keywords: Energy harvesting, functionally graded piezoelectric material, magnetic force, MEMS piezoelectric, perturbation method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 852
2328 Design of an Augmented Automatic Choosing Control by Lyapunov Functions Using Gradient Optimization Automatic Choosing Functions

Authors: Toshinori Nawata

Abstract:

In this paper we consider a nonlinear feedback control called augmented automatic choosing control (AACC) using the gradient optimization automatic choosing functions for nonlinear systems. Constant terms which arise from sectionwise linearization of a given nonlinear system are treated as coefficients of a stable zero dynamics. Parameters included in the control are suboptimally selected by expanding a stable region in the sense of Lyapunov with the aid of the genetic algorithm. This approach is applied to a field excitation control problem of power system to demonstrate the splendidness of the AACC. Simulation results show that the new controller can improve performance remarkably well.

Keywords: augmented automatic choosing control, nonlinear control, genetic algorithm, zero dynamics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1467
2327 Postbuckling Analysis of End Supported Rods under Self-Weight Using Intrinsic Coordinate Finite Elements

Authors: C. Juntarasaid, T. Pulngern, S. Chucheepsakul

Abstract:

A formulation of postbuckling analysis of end supported rods under self-weight has been presented by the variational method. The variational formulation involving the strain energy due to bending and the potential energy of the self-weight, are expressed in terms of the intrinsic coordinates. The variational formulation is accomplished by introducing the Lagrange multiplier technique to impose the boundary conditions. The finite element method is used to derive a system of nonlinear equations resulting from the stationary of the total potential energy and then Newton-Raphson iterative procedure is applied to solve this system of equations. The numerical results demonstrate the postbluckled configurations of end supported rods under self-weight. This finite element method based on variational formulation expressed in term of intrinsic coordinate is highly recommended for postbuckling analysis of end-supported rods under self-weight.

Keywords: Variational method, postbuckling, finite element method, intrinsic coordinate.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 768
2326 Monthly River Flow Prediction Using a Nonlinear Prediction Method

Authors: N. H. Adenan, M. S. M. Noorani

Abstract:

River flow prediction is an essential tool to ensure proper management of water resources and the optimal distribution of water to consumers. This study presents an analysis and prediction by using nonlinear prediction method with monthly river flow data for Tanjung Tualang from 1976 to 2006. Nonlinear prediction method involves the reconstruction of phase space and local linear approximation approach. The reconstruction of phase space involves the reconstruction of one-dimension (the observed 287 months of data) in a multidimensional phase space to reveal the dynamics of the system. The revenue of phase space reconstruction is used to predict the next 72 months. A comparison of prediction performance based on correlation coefficient (CC) and root mean square error (RMSE) was employed to compare prediction performance for the nonlinear prediction method, ARIMA and SVM. Prediction performance comparisons show that the prediction results using the nonlinear prediction method are better than ARIMA and SVM. Therefore, the results of this study could be used to develop an efficient water management system to optimize the allocation of water resources.

Keywords: River flow, nonlinear prediction method, phase space, local linear approximation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1918
2325 Designing Intelligent Adaptive Controller for Nonlinear Pendulum Dynamical System

Authors: R. Ghasemi, M. R. Rahimi Khoygani

Abstract:

This paper proposes the designing direct adaptive neural controller to apply for a class of a nonlinear pendulum dynamic system. The radial basis function (RBF) neural adaptive controller is robust in presence of external and internal uncertainties. Both the effectiveness of the controller and robustness against disturbances are importance of this paper. The simulation results show the promising performance of the proposed controller.

Keywords: Adaptive Neural Controller, Nonlinear Dynamical, Neural Network, RBF, Driven Pendulum, Position Control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2552
2324 Complexity Reduction Approach with Jacobi Iterative Method for Solving Composite Trapezoidal Algebraic Equations

Authors: Mohana Sundaram Muthuvalu, Jumat Sulaiman

Abstract:

In this paper, application of the complexity reduction approach based on half- and quarter-sweep iteration concepts with Jacobi iterative method for solving composite trapezoidal (CT) algebraic equations is discussed. The performances of the methods for CT algebraic equations are comparatively studied by their application in solving linear Fredholm integral equations of the second kind. Furthermore, computational complexity analysis and numerical results for three test problems are also included in order to verify performance of the methods.

Keywords: Complexity reduction approach, Composite trapezoidal scheme, Jacobi method, Linear Fredholm integral equations

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1558
2323 Free Vibration of Axially Functionally Graded Simply Supported Beams Using Differential Transformation Method

Authors: A. Selmi

Abstract:

Free vibration analysis of homogenous and axially functionally graded simply supported beams within the context of Euler-Bernoulli beam theory is presented in this paper. The material properties of the beams are assumed to obey the linear law distribution. The effective elastic modulus of the composite was predicted by using the rule of mixture. Here, the complexities which appear in solving differential equation of transverse vibration of composite beams which limit the analytical solution to some special cases are overcome using a relatively new approach called the Differential Transformation Method. This technique is applied for solving differential equation of transverse vibration of axially functionally graded beams. Natural frequencies and corresponding normalized mode shapes are calculated for different Young’s modulus ratios. MATLAB code is designed to solve the transformed differential equation of the beam. Comparison of the present results with the exact solutions proves the effectiveness, the accuracy, the simplicity, and computational stability of the differential transformation method. The effect of the Young’s modulus ratio on the normalized natural frequencies and mode shapes is found to be very important.

Keywords: Differential transformation method, functionally graded material, mode shape, natural frequency.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 739
2322 A Type-2 Fuzzy Adaptive Controller of a Class of Nonlinear System

Authors: A. El Ougli, I. Lagrat, I. Boumhidi

Abstract:

In this paper we propose a robust adaptive fuzzy controller for a class of nonlinear system with unknown dynamic. The method is based on type-2 fuzzy logic system to approximate unknown non-linear function. The design of the on-line adaptive scheme of the proposed controller is based on Lyapunov technique. Simulation results are given to illustrate the effectiveness of the proposed approach.

Keywords: Fuzzy set type-2, Adaptive fuzzy control, Nonlinear system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1780
2321 Designing Back-stepping Sliding Mode Controller for a Class of 4Y Octorotor

Authors: I. Khabbazi, R. Ghasemi

Abstract:

This paper presents a combination of both robust nonlinear controller and nonlinear controller for a class of nonlinear 4Y Octorotor UAV using Back-stepping and sliding mode controller. The robustness against internal and external disturbance and decoupling control are the merits of the proposed paper. The proposed controller decouples the Octorotor dynamical system. The controller is then applied to a 4Y Octortor UAV and its feature will be shown.

Keywords: Backstepping, Decoupling, Octorotor UAV, sliding mode.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2374
2320 Heat and Mass Transfer in MHD Flow of Nanofluids through a Porous Media Due to a Permeable Stretching Sheet with Viscous Dissipation and Chemical Reaction Effects

Authors: Yohannes Yirga, Daniel Tesfay

Abstract:

The convective heat and mass transfer in nanofluid flow through a porous media due to a permeable stretching sheet with magnetic field, viscous dissipation, chemical reaction and Soret effects are numerically investigated. Two types of nanofluids, namely Cu-water and Ag-water were studied. The governing boundary layer equations are formulated and reduced to a set of ordinary differential equations using similarity transformations and then solved numerically using the Keller box method. Numerical results are obtained for the skin friction coefficient, Nusselt number and Sherwood number as well as for the velocity, temperature and concentration profiles for selected values of the governing parameters. Excellent validation of the present numerical results has been achieved with the earlier linearly stretching sheet problems in the literature.

Keywords: Heat and mass transfer, magnetohydrodynamics, nanofluid.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3747
2319 Flexure of Cantilever Thick Beams Using Trigonometric Shear Deformation Theory

Authors: Yuwaraj M. Ghugal, Ajay G. Dahake

Abstract:

A trigonometric shear deformation theory for flexure of thick beams, taking into account transverse shear deformation effects, is developed. The number of variables in the present theory is same as that in the first order shear deformation theory. The sinusoidal function is used in displacement field in terms of thickness coordinate to represent the shear deformation effects. The noteworthy feature of this theory is that the transverse shear stresses can be obtained directly from the use of constitutive relations with excellent accuracy, satisfying the shear stress free conditions on the top and bottom surfaces of the beam. Hence, the theory obviates the need of shear correction factor. Governing differential equations and boundary conditions are obtained by using the principle of virtual work. The thick cantilever isotropic beams are considered for the numerical studies to demonstrate the efficiency of the. Results obtained are discussed critically with those of other theories.

Keywords: Trigonometric shear deformation, thick beam, flexure, principle of virtual work, equilibrium equations, stress.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3059
2318 An Augmented Automatic Choosing Control with Constrained Input Using Weighted Gradient Optimization Automatic Choosing Functions

Authors: Toshinori Nawata

Abstract:

In this paper we consider a nonlinear feedback control called augmented automatic choosing control (AACC) for nonlinear systems with constrained input using weighted gradient optimization automatic choosing functions. Constant term which arises from linearization of a given nonlinear system is treated as a coefficient of a stable zero dynamics. Parameters of the control are suboptimally selected by maximizing the stable region in the sense of Lyapunov with the aid of a genetic algorithm. This approach is applied to a field excitation control problem of power system to demonstrate the splendidness of the AACC. Simulation results show that the new controller can improve performance remarkably well.

Keywords: Augmented automatic choosing control, nonlinear control, genetic algorithm, zero dynamics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1806
2317 Pushover Analysis of Short Structures

Authors: M.O. Makhmalbaf, M. GhanooniBagha, M.A. Tutunchian, M. Zabihi Samani

Abstract:

In this paper first, Two buildings have been modeled and then analyzed using nonlinear static analysis method under two different conditions in Nonlinear SAP 2000 software. In the first condition the interaction of soil adjacent to the walls of basement are ignored while in the second case this interaction have been modeled using Gap elements of nonlinear SAP2000 software. Finally, comparing the results of two models, the effects of soil-structure on period, target point displacement, internal forces, shape deformations and base shears have been studied. According to the results, this interaction has always increased the base shear of buildings, decreased the period of structure and target point displacement, and often decreased the internal forces and displacements.

Keywords: Seismic Rehabilitation, Soil-Structure Interaction, Short Structure, Nonlinear Static Analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1914
2316 Availability Analysis of Milling System in a Rice Milling Plant

Authors: P. C. Tewari, Parveen Kumar

Abstract:

The paper describes the availability analysis of milling system of a rice milling plant using probabilistic approach. The subsystems under study are special purpose machines. The availability analysis of the system is carried out to determine the effect of failure and repair rates of each subsystem on overall performance (i.e. steady state availability) of system concerned. Further, on the basis of effect of repair rates on the system availability, maintenance repair priorities have been suggested. The problem is formulated using Markov Birth-Death process taking exponential distribution for probable failures and repair rates. The first order differential equations associated with transition diagram are developed by using mnemonic rule. These equations are solved using normalizing conditions and recursive method to drive out the steady state availability expression of the system. The findings of the paper are presented and discussed with the plant personnel to adopt a suitable maintenance policy to increase the productivity of the rice milling plant.

Keywords: Markov process, milling system, availability modeling, rice milling plant.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1528
2315 An Augmented Automatic Choosing Control Designed by Extremizing a Combination of Hamiltonian and Lyapunov Functions for Nonlinear Systems with Constrained Input

Authors: Toshinori Nawata, Hitoshi Takata

Abstract:

In this paper we consider a nonlinear feedback control called augmented automatic choosing control (AACC) for nonlinear systems with constrained input. Constant terms which arise from section wise linearization of a given nonlinear system are treated as coefficients of a stable zero dynamics.Parameters included in the control are suboptimally selectedby extremizing a combination of Hamiltonian and Lyapunov functions with the aid of the genetic algorithm. This approach is applied to a field excitation control problem of power system to demonstrate the splendidness of the AACC. Simulation results show that the new controller can improve performance remarkably well.

Keywords: Augmented Automatic Choosing Control, NonlinearControl, Genetic Algorithm, Hamiltonian, Lyapunovfunction

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1403
2314 The Link between Anthropometry and Fat-Based Obesity Indices in Pediatric Morbid Obesity

Authors: Mustafa M. Donma, Orkide Donma

Abstract:

Anthropometric measurements are essential for obesity studies. Waist circumference (WC) is the most frequently used measure and along with hip circumference (HC), it is used in most equations derived for the evaluation of obese individuals. Morbid obesity (MO) is the most severe clinical form of obesity and such individuals may also exhibit some clinical findings leading to metabolic syndrome (MetS). Then, it becomes a requirement to discriminate MO children with MetS (MOMetS+) from MO children without MetS (MOMetS-). Almost all obesity indices can differentiate obese (OB) children from children with normal body mass index (N-BMI). However, not all of them are capable of making this distinction. The aim of this study was to find out the clinical availability of (waist circumference + hip circumference)/2 ((WC+HC)/2) for the differential diagnosis of MOMetS+ and MOMetS- and to compare the possible preponderance of it over some other anthropometric or fat-based obesity indices. 45 MOMetS+ and 45 MOMetS- children were included in the study. Participants have submitted informed consent forms. The study protocol was approved by the Non-interventional Clinical Studies Ethics Committee of Tekirdag Namik Kemal University. Anthropometric measurements were performed. BMI, waist-to-hip circumference (WHR), (WC+HC)/2, trunk-to-leg fat ratio (TLFR), trunk-to-appendicular fat ratio (TAFR), trunk fat+leg fat/2 ((trunk+leg fat)/2), diagnostic obesity notation model assessment index-2 (D2I) and fat mass index (FMI) were calculated for both groups. Study data were analyzed statistically and 0.05 for p value was accepted as the statistical significance degree. Statistically higher BMI, WC, (WC+HC)/2, (trunk+leg fat)/2 values were found in MOMetS+ children than MOMetS- children. No statistically significant difference was detected for WHR, TLFR, TAFR, D2I and FMI between two groups. The lack of difference between the groups in terms of FMI and D2I pointed out the fact that the recently developed fat-based index; (trunk+leg fat)/2 gives much more valuable information during the evaluation of MOMetS+ and MOMetS- children. Upon evaluation of the correlations, (WC+HC)/2 was strongly correlated with D2I and FMI in both MOMetS+ and MOMetS- groups. Neither D2I nor FMI was correlated with W/H. Strong correlations were calculated between (WC+HC)/2 and (trunk+leg fat)/2 in both MOMetS- (r = 0.961; p < 0.001) and MOMetS+ (r = 0.936; p < 0.001) groups. Partial correlations between (WC+HC)/2 and (trunk+leg fat)/2 after controlling the effect of basal metabolic rate were r = 0.726; p < 0.001 in MOMetS- group and r = 0.932; p < 0.001 in MOMetS+ group. The correlation in the latter group was higher than the first group. In conclusion, recently developed anthropometric obesity index (WC+HC)/2 and fat-based obesity index (trunk+leg fat)/2 were of preponderance over the previously introduced classical obesity indices such as WHR, D2I and FMI during the differential diagnosis of MOMetS+ and MOMetS- children.

Keywords: Hip circumference, metabolic syndrome, morbid obesity, waist circumference.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 162
2313 Study of Stress Wave Propagation with NHDMOC

Authors: G.Y. Zhang , M.L. Xu, R.Q. Zhang, W.H. Tang

Abstract:

MOC (method of cell) is a new method of investigating wave propagating in material with periodic microstructure, and can reflect the effect of microstructure. Wave propagation in periodically laminated medium consisting of linearly elastic layers can be treated as a special application of this method. In this paper, it was used to simulate the dynamic response of carbon-phenolic to impulsive loading under certain boundary conditions. From the comparison between the results obtained from this method and the exact results based on propagator matrix theory, excellent agreement is achieved. Conclusion can be made that the oscillation periodicity is decided by the thickness of sub-cells. In the end, the NHDMOC method, which permits studying stress wave propagation with one dimensional strain, was applied to study the one-dimensional stress wave propagation. In this paper, the ZWT nonlinear visco-elastic constitutive relationship with 7 parameters, NHDMOC, and corresponding equations were deduced. The equations were verified, comparing the elastic stress wave propagation in SHPB with, respectively, the elastic and the visco-elastic bar. Finally the dispersion and attenuation of stress wave in SHPB with visco-elastic bar was studied.

Keywords: MOC, NHDMOC, visco-elastic, wave propagation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1880
2312 Unsteady Laminar Boundary Layer Forced Flow in the Region of the Stagnation Point on a Stretching Flat Sheet

Authors: A. T. Eswara

Abstract:

This paper analyses the unsteady, two-dimensional stagnation point flow of an incompressible viscous fluid over a flat sheet when the flow is started impulsively from rest and at the same time, the sheet is suddenly stretched in its own plane with a velocity proportional to the distance from the stagnation point. The partial differential equations governing the laminar boundary layer forced convection flow are non-dimensionalised using semi-similar transformations and then solved numerically using an implicit finitedifference scheme known as the Keller-box method. Results pertaining to the flow and heat transfer characteristics are computed for all dimensionless time, uniformly valid in the whole spatial region without any numerical difficulties. Analytical solutions are also obtained for both small and large times, respectively representing the initial unsteady and final steady state flow and heat transfer. Numerical results indicate that the velocity ratio parameter is found to have a significant effect on skin friction and heat transfer rate at the surface. Furthermore, it is exposed that there is a smooth transition from the initial unsteady state flow (small time solution) to the final steady state (large time solution).

Keywords: Forced flow, Keller-box method, Stagnation point, Stretching flat sheet, Unsteady laminar boundary layer, Velocity ratio parameter.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1651